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This paper deals with the numerical computation of null controls for the wave equation with a potential. The goal is to compute approximations of controls that drive the solution from a prescribed initial state to zero at a large enough controllability time. In [Cindea, Fernandez-Cara & Münch, Numerical controllability of the wave equation through primal methods and Carleman estimates, 2013 ], a so called primal method is described leading to a strongly convergent approximation of boundary controls : the controls minimize quadratic weighted functionals involving both the control and the state and are obtained by solving the corresponding optimality condition. In this work, we adapt the method to approximate the control of minimal square-integrable norm. The optimality conditions of the problem are reformulated as a mixed formulation involving both the state and his adjoint. We prove the well-posedeness of the mixed formulation (in particular the inf-sup condition) then discuss several numerical experiments. The approach covers both the boundary and the inner controllability. For simplicity, we present the approach in the one dimensional case.

Introduction. The null controllability problem

We are concerned in this work with the null controllability for the 1D wave equation with a potential. Let us explain our motivation for the boundary case for which the state equation is the following:    y tt -(c(x)y x ) x + d(x, t)y = 0, (x, t) ∈ (0, 1) × (0, T ) y(0, t) = 0, y(1, t) = v(t), t ∈ (0, T ) y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x),

x ∈ (0, 1).

(

) 1 
Here, T > 0 and we assume that c ∈ C 3 ([0, 1]) with c(x) ≥ c 0 > 0 in [0, 1], d ∈ L ∞ ((0, 1) × (0, T )), y 0 ∈ L 2 (0, 1) and y 1 ∈ H -1 (0, 1); v = v(t) is the control (a function in L 2 (0, T )) and y = y(x, t) is the associated state.

In the sequel, for any τ > 0 we denote by Q τ and Σ τ the sets (0, 1) × (0, τ ) and {0, 1} × (0, τ ), respectively. We also use the following notation:

L y := y tt -(c(x)y x ) x + d(x, t)y.

(

For any (y 0 , y 1 ) ∈ Y := L 2 (0, 1) × H -1 (0, 1) and any v ∈ L 2 (0, T ), there exists exactly one solution y to [START_REF] Asch | Geometrical aspects of exact boundary controllability for the wave equation-a numerical study[END_REF], with the following regularity: y ∈ C 0 ([0, T ]; L 2 (0, 1)) ∩ C 1 ([0, T ]; H -1 (0, 1)) [START_REF] Bernadou | Basis functions for general Hsieh-Clough-Tocher triangles, complete or reduced[END_REF] (see for instance [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF]). The null controllability problem for (1) at time T is the following: for each (y 0 , y 1 ) ∈ Y , find v ∈ L 2 (0, T ) such that the corresponding solution to (1) satisfies y(• , T ) = 0, y t (• , T ) = 0 in (0, 1).

It is well known that (1) is null-controllable at any large time T > T ⋆ for some T ⋆ that depends on c (for instance, see [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF][START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF] for c ≡ 1 and d ≡ 0 leading to T ⋆ = 2 and see [START_REF] Yao | On the observability inequalities for exact controllability of wave equations with variable coefficients[END_REF] for a general situation). Moreover, as a consequence of the Hilbert Uniqueness Method of J.-L. Lions [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF], the null controllability of (1) is equivalent to an observability inequality for the associated adjoint problem.

In the last two decades, a large number of works has been concerned with the (numerical) approximation of null controls for wave type equations. Since controllability holds in L 2 , the approximation of the minimal L 2 -norm control (refereed by some authors as the HUM control) has focused most of the attention : the problem reads

     Minimize J(y, v) = 1 2 T 0 |v(t)| 2 dt
Subject to (y, v) ∈ C(y 0 , y 1 ; T ) [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF] where C(y 0 , y 1 ; T ) denotes the linear manifold C(y 0 , y 1 ; T ) = { (y, v) : v ∈ L 2 (0, T ), y solves (1) and satisfies (4) }.

The earlier contribution is due to Glowinski and Lions in [START_REF] Glowinski | Exact and approximate controllability for distributed parameter systems[END_REF] (updated in [START_REF] Glowinski | Exact and approximate controllability for distributed parameter systems[END_REF]) and relies on duality arguments. Duality allows to replace the original constrained minimization problem by an unconstrained and a priori easier minimization (dual) problem. We define V = H 1 0 (0, 1)×L 2 (0, 1). The dual problem associated with [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF] is : min

(ϕ0,ϕ1)∈V J ⋆ (ϕ 0 , ϕ 1 ) = 1 2 T 0 |c(1)ϕ x (1, t)| 2 dt + 1 0 y 0 (x)ϕ t (x, 0)dx -y 1 , ϕ(•, 0) H -1 ,H 1 0 (6)
where the variable ϕ solves the backward wave equation :

Lϕ = 0 in Q T , ϕ = 0 on Σ T ; (ϕ(•, T ), ϕ t (•, T )) = (ϕ 0 , ϕ 1 ). ( 7 
)
The coercivity of J ⋆ -called the conjugate functional of J -is the consequence of the following estimate : there exists k T > 0 such that

ϕ(•, 0), ϕ t (•, 0) 2 V ≤ k T c(1)ϕ x (1, •) 2 L 2 (0,T ) , ∀(ϕ 0 , ϕ 1 ) ∈ V (8) 
where (ϕ 0 , ϕ 1 , ϕ) solves [START_REF] Castro | Controllability of the linear wave equation with moving inner actions[END_REF]. This estimate, refereed in the literature as an observability inequality, holds true if T is large enough. At the level of the approximation, the minimization of J ⋆ requires to find a finite dimensional and conformal approximation of V such that the corresponding discrete adjoint solution satisfies [START_REF] Castro | Controllability of the linear wave equation with moving inner actions[END_REF], which is in general impossible for polynomial piecewise approximation. In practice, the trick initially described in [START_REF] Glowinski | Exact and approximate controllability for distributed parameter systems[END_REF], consists first to introduce a discrete and consistent approximation of (1) and then minimize the corresponding discrete conjugate functional. But this requires to prove uniform discrete observability inequalities that turn out to be not satisfied when very standard approximations (for instance based on finite differences on uniform meshes) are used. This is due to some spurious high frequencies components generated by the approximation which can not be controlled in a uniform time (with respect to the discretization parameters). This observation has raised many developments in order to get so-called uniform observable (or equivalently controllable) approximation. We mention the references [START_REF] Castro | Numerical approximation of the boundary control for the wave equation with mixed finite elements in a square[END_REF][START_REF] Ervedoza | On the numerical approximation of exact controls for waves[END_REF][START_REF] Gunzburger | A numerical method for exact boundary controllability problems for the wave equation[END_REF][START_REF] Ju | Approximation of exact boundary controllability problems for the 1-D wave equation by optimization-based methods[END_REF][START_REF] Komornik | Observability of discretized wave equations[END_REF][START_REF] Loreti | An Ingham type proof for a two-grid observability theorem[END_REF][START_REF] Münch | A uniformly controllable and implicit scheme for the 1-D wave equation[END_REF] and we refer to [START_REF] Asch | Geometrical aspects of exact boundary controllability for the wave equation-a numerical study[END_REF][START_REF] Bourquin | Approximation theory for the problem of exact controllability of the wave equation with boundary control[END_REF][START_REF] Lebeau | Experimental study of the HUM control operator for linear waves[END_REF] for some numerical realizations in 2D based on spectral methods. As far as we know, the determination of discrete observability inequalities is still open in the general case (non uniform mesh, wave equation with non constant coefficient, etc).

In contrast to these works where solutions of the discrete wave equations are exactly controlled to zero, we mention [START_REF] Cîndea | An approximation method for exact controls of vibrating systems[END_REF][START_REF] Pedregal | A numerical method of local energy decay for the boundary controllability of time-reversible distributed parameter systems[END_REF] based on Russell's approach where convergent approximations of an exact control (not necessarily the HUM control) are build.

In [START_REF] Cîndea | Numerical controllability of the wave equation through primal methods and Carleman estimates[END_REF], a different -so-called primal approach -allowing more general results has been used and consists to solve directly optimality conditions: specifically, the following general extremal problem is considered

     Minimize J(y, v) = 1 2 Q T ρ 2 |y| 2 dx dt + 1 2 T 0 ρ 2 0 |v| 2 dt
Subject to (y, v) ∈ C(y 0 , y 1 ; T ).

The weights ρ and ρ 0 are strictly positive, continuous and uniformly bounded from below by a positive constant in Q T and (0, T ), respectively. For c in the class A(x 0 , c 0 ) and T large enough, greater than T ⋆ (c) (both defined in Section 2), the extremal problem ( 9) is well-posed. Moreover, defining the Hilbert space P as the completion of the linear space P 0 = {q ∈ C ∞ (Q T ) : q = 0 on Σ T } with respect to the scalar product (p, q) P :=

Q T ρ -2 Lp Lq dx dt + T 0 ρ -2 0 c(1) 2 p x (1, t) q x (1, t) dt, (10) 
we may obtain the following characterization of the optimal pair (y, v) in term of an additional variable p ∈ P as follows:

y = -ρ -2 Lp in Q T , v = -(c(x)ρ -2 0 p x ) x=1 in (0, T ); (11) 
p ∈ P is the unique solution to the following variational equality:

(p, q) P =

1 0 y 0 (x) q t (x, 0) dx -y 1 , q(•, 0) H -1 ,H 1 0 , ∀q ∈ P. (12) 
Here and in the sequel, we use the following duality pairing:

y 1 , q(•, 0) H -1 ,H 1 0 = 1 0 ∂ ∂x ((-∆) -1 y 1 )(x) q x (x, 0) dx,
where -∆ is the Dirichlet Laplacian in (0, 1). We refer the reader to [START_REF] Cîndea | Numerical controllability of the wave equation through primal methods and Carleman estimates[END_REF] for the details. The search of a control v in the manifold C(y 0 , y 1 , T ) is reduced to solve the (elliptic) variational formulation [START_REF] Cîndea | An approximation method for exact controls of vibrating systems[END_REF]. The approximation of the solution of ( 12) is performed in the framework of the finite element theory through a discretization of the space-time domain Q T . In practice, an approximation p h of p is obtained in a direct way by inverting a symmetric positive definite matrix, in contrast with the iterative (and possibly divergent) methods used within dual methods. Moreover, a major advantage of this approach is that a conformal approximation, say P h of P , leads to the strong convergence of p h toward p in P , and consequently from [START_REF] Cîndea | Numerical controllability of the wave equation through primal methods and Carleman estimates[END_REF], to a strong convergence in [START_REF] Asch | Geometrical aspects of exact boundary controllability for the wave equation-a numerical study[END_REF]. It is worth to mention that, for any h > 0, as in the works [START_REF] Cîndea | An approximation method for exact controls of vibrating systems[END_REF][START_REF] Pedregal | A numerical method of local energy decay for the boundary controllability of time-reversible distributed parameter systems[END_REF] mentioned earlier, v h is not a priori an exact control for any finite dimensional system but an approximation for the L 2 -norm of the control v.

L 2 of v h := -(c(x)ρ -2 0 p h,x ) x=1 toward v, a null control for
The variational formulation [START_REF] Cîndea | An approximation method for exact controls of vibrating systems[END_REF] derived from the optimality conditions ( 11) is obtained assuming that the weights ρ and ρ 0 are strictly positive in Q T and (0, T ) respectively. In particular, this approach does not apply for the control of minimal L 2 -norm, for which simply ρ := 0 and ρ 0 := 1. The main reason of the present work is to adapt this approach to cover the case ρ := 0 and therefore obtain directly a strong convergent approximation v h of the control of minimal L 2 -norm.

The paper is organized as follows. In Section 2, we recall the definition of the admissible set A(x 0 , c 0 ) for the function c and of the minimal time T ⋆ (c) determined in [START_REF] Cîndea | Numerical controllability of the wave equation through primal methods and Carleman estimates[END_REF] then we associate to the dual problem [START_REF] Castro | Exact controllability of the 1-D wave equation from a moving interior point[END_REF] an equivalent mixed formulation which relies on the optimality conditions associated to the problem [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF]. We then show the well-posedness of this mixed formulation, in particular we check the inf-sup condition. The mixed formulation allows to approximate simultaneously the dual variable and the primal one, controlled solution of [START_REF] Asch | Geometrical aspects of exact boundary controllability for the wave equation-a numerical study[END_REF]. Interestingly, we also derive an extremal problem in the primal variable y only. Section 3 is devoted to the distributed case for which the strategy also applies. Section 4 is devoted to the numerical approximation of the mixed formulation as well as numerical experiments, both in the boundary and inner case. Eventually, Section 5 concludes with some perspectives : in particular, we highlight that the variational approach is very appropriate to consider inner control distributed on time dependent support, an issue recently considered in [START_REF] Castro | Exact controllability of the 1-D wave equation from a moving interior point[END_REF].

Control of minimal L -norm: a mixed reformulation

We present in this section a mixed formulation based on the optimality conditions associated to the extremal problem [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF]. The starting point is the dual problem recalled in the introduction. Preliminary, we precise the minimal controllability time T ⋆ .

We introduce the set

A(x 0 , c 0 ) = c ∈ C 3 ([0, 1]) : c(x) ≥ c 0 > 0, -min [0,1] c(x) + (x -x 0 )c x (x) < min [0,1] c(x) + 1 2 (x -x 0 )c x (x) , (13) 
where x 0 < 0 and c 0 is a positive constant. This set is non empty and contains in particular the constant function c := c 0 . The following result holds.

Proposition 2.1 ( [START_REF] Cîndea | Numerical controllability of the wave equation through primal methods and Carleman estimates[END_REF]) Let us assume that x 0 < 0, c 0 > 0 and c ∈ A(x 0 , c 0 ). Let β > 0 be a positive number with min

[0,1] c(x) + (x -x 0 )c x (x) < β < min [0,1] c(x) + 1 2 (x -x 0 )c x (x)
and let us consider the function φ(x, t) := |xx 0 | 2βt 2 + M 0 where M 0 is such that φ(x, t) ≥ 1 for all (x, t) ∈ (0, 1) × (-T, T ). Then, for any λ > 0 we set g(x, t) := e λφ(x,t) . Finally, let us assume that

T > 1 β max [0,1] c(x) 1/2 (x -x 0 ). ( 14 
)
Then there exist positive constants s 0 and M , only depending on

x 0 , c 0 , c C 3 ([0,1]) , d L ∞ (Q T )
and T , such that, for all s > s 0 , one has

s T -T 1 0 e 2sg |w t | 2 + |w x | 2 dx dt + s 3 T -T 1 0 e 2sg |w| 2 dx dt ≤ M T -T 1 0 e 2sg |Lw| 2 dx dt + M s T -T e 2sg |w x (1, t)| 2 dt ( 15 
)
for any w ∈ L 2 (-T, T ;

H 1 0 (0, 1)) satisfying Lw ∈ L 2 ((0, 1) × (-T, T )) and w x (1, •) ∈ L 2 (-T, T ).
Then, for any c ∈ A(x 0 , c 0 ), we define T ⋆ (c) as follows :

T ⋆ (c) := 2 β max [0,1] c(x) 1/2 (x -x 0 ). ( 16 
)
with β as in Proposition 2.1. Proposition 2.1 allows to show in particular that for any c ∈ A and any T > T ⋆ (c), there exists a positive constant k T = k T (c) such that the estimate (8) holds. We refer to [START_REF] Cîndea | Numerical controllability of the wave equation through primal methods and Carleman estimates[END_REF] for details. The minimization of J ⋆ is then well-posed and if ( φ0 , φ1 ) denotes the minimizer of J ⋆ , the control of minimal L 2 -norm is given by

v = c(1) φx (1, •) in (0, T ). ( 17 
)
The extremal problem min (ϕ0,ϕ1)∈V J ⋆ (ϕ 0 , ϕ 1 ) is usually called the dual problem associated to [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF].

Remark 1

The inequality (8) can also be obtained directly by the multiplier method (see [START_REF] Yao | On the observability inequalities for exact controllability of wave equations with variable coefficients[END_REF]) and requires T to be large enough. Note that, when c(x) ≡ c 0 , the assumption (14) simply reads

T > 2(1-x0) √ c0 > 2 √ c0 which is optimal. 2 

Mixed reformulation of the controllability problem

In order to avoid the minimization of the functional J ⋆ with respect to the initial data (ϕ 0 , ϕ 1 ), we now present a direct way to approximate the HUM control, in the spirit of the primal approach recalled in the introduction and developed in [START_REF] Cîndea | Numerical controllability of the wave equation through primal methods and Carleman estimates[END_REF].

Since the variable ϕ, solution of [START_REF] Castro | Controllability of the linear wave equation with moving inner actions[END_REF], is completely and uniquely determined by the data (ϕ 0 , ϕ 1 ), the main idea of the reformulation is to keep ϕ as main variable and consider the following extremal problem:

min ϕ∈W Ĵ⋆ (ϕ) = 1 2 T 0 |c(1)ϕ x (1, t)| 2 dt + 1 0 y 0 (x)ϕ t (x, 0)dx -y 1 , ϕ(•, 0) H -1 ,H 1 0 , (18) 
where

W = ϕ ∈ L 2 (Q T ), ϕ = 0 on Σ T such that Lϕ = 0 ∈ L 2 (Q T ) and ϕ x (1, •) ∈ L 2 (0, T ) .
W is an Hilbert space endowed with the inner product

(ϕ, ϕ) W = T 0 c(1)ϕ x (1, t)ϕ x (1, t) dt + η Q T LϕLϕ dx dt, ∀ϕ, ϕ ∈ W,
for any fixed η > 0. We denote • W the associated norm such that

ϕ 2 W = T 0 |c(1)ϕ x (1, t)| 2 dt + η Lϕ 2 L 2 (Q T ) , ∀ϕ ∈ W. ( 19 
)
The minimization of Ĵ⋆ is evidently equivalent to the minimization of J ⋆ over V . Remark that from (8) the property ϕ ∈ W implies that (ϕ(•, 0), ϕ t (•, 0)) ∈ V , so that the functional Ĵ⋆ is well-defined over W . The main variable is now ϕ submitted to the constraint equality (in L 2 (Q T )) Lϕ = 0. This constraint is addressed by introducing a mixed formulation. We define the space Φ larger than W by

Φ = ϕ ∈ L 2 (Q T ), ϕ = 0 on Σ T such that Lϕ ∈ L 2 (Q T ) and ϕ x (1, •) ∈ L 2 (0, T ) .
Φ is endowed with the same norm than W . Then, we consider the following mixed formulation : find (ϕ, λ)

∈ Φ × L 2 (Q T ) solution of a(ϕ, ϕ) + b(ϕ, λ) = l(ϕ), ∀ϕ ∈ Φ b(ϕ, λ) = 0, ∀λ ∈ L 2 (Q T ), (20) 
where

a : Φ × Φ → R, a(ϕ, ϕ) = T 0 c(1)ϕ x (1, t)ϕ x (1, t)dt (21) 
b

: Φ × L 2 (Q T ) → R, b(ϕ, λ) = Q T Lϕ(x, t)λ(x, t)dxdt (22) 
l : Φ → R, l(ϕ) = - 1 0 y 0 (x) ϕ t (x, 0)dx + y 1 , ϕ(•, 0) H -1 ,H 1 0 . ( 23 
)
We have the following result : (ii) The unique solution (ϕ, λ)

∈ Φ × L 2 (Q T ) is the unique saddle-point of the Lagrangian L : Φ × L 2 (Q T ) → R defined by L(ϕ, λ) = 1 2 a(ϕ, ϕ) + b(ϕ, λ) -l(ϕ). (24) 
(iii) The optimal function ϕ is the minimizer of Ĵ⋆ over Φ while the optimal function λ ∈ L 2 (Q T ) is the state of the controlled wave equation (1) in the weak sense.

Proof -We easily check that the bilinear form a is continuous over Φ × Φ, symmetric and positive and that the bilinear form b is continuous over Φ × L 2 (Q T ). Furthermore, assuming c ∈ A and T > T ⋆ (c), the continuity of the linear form l over Φ is a direct consequence of the Carleman estimate [START_REF] Ervedoza | On the numerical approximation of exact controls for waves[END_REF] given by Proposition 2.1. Precisely, using the fact that the weight e 2gs (see [START_REF] Ervedoza | On the numerical approximation of exact controls for waves[END_REF]) is bounded and uniformly positive, we deduce from (15) that there exists a constant C 0 > 0 such that

ϕ(•, 0), ϕ t (•, 0) 2 H 1 0 ×L 2 ≤ C 0 Lϕ 2 L 2 (Q T ) + c(1)ϕ x (1, •) 2 L 2 (0,T ) , ∀ϕ ∈ Φ. ( 25 
)
Therefore, the well-posedness of the mixed formulation is a consequence of the following two properties (see [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF]):

• a is coercive on N (b), where N (b) denotes the kernel of b :

N (b) = {ϕ ∈ Φ such that b(ϕ, λ) = 0 for every λ ∈ L 2 (Q T )}.
• b satisfies the usual "inf-sup" condition over Φ × L 2 (Q T ): there exists δ > 0 such that inf

λ∈L 2 (Q T ) sup ϕ∈Φ b(ϕ, λ) ϕ Φ λ L 2 (Q T ) ≥ δ. (26) 
From the definition of a, the first point is clear : for all ϕ ∈ N (b) = W , a(ϕ, ϕ) = ϕ 2 W . Let us check the inf-sup condition. For any fixed λ 0 ∈ L 2 (Q T ), we define the (unique) element ϕ 0 such that Lϕ 0 = λ 0 and such that ϕ(•, 0) = 0 in H 1 0 (0, 1) and ϕ t (•, 0) = 0 in L 2 (0, 1). ϕ 0 is therefore solution of the wave equation with source term λ 0 ∈ L 2 (Q T ), null Dirichlet boundary condition and zero initial state. Since λ 0 ∈ L 2 (Q T ), then ϕ 0,x (1, •) ∈ L 2 (0, T ): precisely, using the multipliers method (see, for instance, Chapter 1 in [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF]), there exists a constant C Ω,T > 0 such that the solution ϕ 0 of the wave equation with source term λ 0 satisfies the so-called direct equality

T 0 |c(1)ϕ 0,x (1, t)| 2 dt ≤ C Ω,T c 2 (1) λ 0 2 L 2 (Q T ) . (27) 
Consequently, ϕ 0 ∈ Φ. In particular, we have b(ϕ

0 , λ 0 ) = λ 0 2 L 2 (Q T ) and sup ϕ∈Φ b(ϕ, λ 0 ) ϕ Φ λ 0 L 2 (Q T ) ≥ b(ϕ 0 , λ 0 ) ϕ 0 Φ λ 0 L 2 (Q T ) = λ 2 L 2 (Q T ) T 0 |c(1)ϕ x (1, t)| 2 dt + η λ 0 2 L 2 (Q T ) 1 2 λ 0 L 2 (Q T )
.

Combining the above two inequalities, we obtain

sup ϕ0∈Φ b(ϕ 0 , λ 0 ) ϕ 0 Φ λ 0 L 2 (Q T ) ≥ 1 C Ω,T c 2 (1) + η
and, hence, [START_REF] Lebeau | Experimental study of the HUM control operator for linear waves[END_REF] 

holds with δ = C Ω,T c 2 (1) + η -1 2 .
The point (ii) is due to the symmetry and to the positivity of the bilinear form a. (iii). The equality b(ϕ, λ) = 0 for all λ ∈ L 2 (Q T ) implies that Lϕ = 0 as an L 2 (Q T ) function, so that if (ϕ, λ) ∈ Φ × L 2 (Q T ) solves the mixed formulation, then ϕ ∈ W and L(ϕ, λ) = Ĵ⋆ (ϕ). Finally, the first equation of the mixed formulation reads as follows :

T 0 c(1)ϕ x (1, t) ϕ x (1, t)dt + Q T Lϕ(x, t) λ(x, t) dx dt = l(ϕ), ∀ϕ ∈ Φ, or equivalently, since the control is given by v = c(1)ϕ x (1, •), T 0 v(t) ϕ x (1, t)dt + Q T Lϕ(x, t) λ(x, t) dx dt = l(ϕ), ∀ϕ ∈ Φ.
But this means that λ ∈ L 2 (Q T ) is solution of the wave equation in the transposition sense. Since (y 0 , y 1 ) ∈ L 2 (0, 1) × H -1 (0, 1) and v ∈ L 2 (0, T ), λ must coincide with the unique weak solution to (1).

2 Therefore, Theorem 2.1 reduces the search of the HUM control to the resolution of the mixed formulation [START_REF] Glowinski | Exact and approximate controllability for distributed parameter systems[END_REF], or equivalently the search of the saddle point for L. In general, it is very convenient (actually in the case considered here, it is necessary) to "augment" the Lagrangien (see [START_REF] Fortin | Augmented Lagrangian methods[END_REF]), and consider instead the Lagrangien L r defined for any r > 0 by

       L r (ϕ, λ) = 1 2 a r (ϕ, ϕ) + b(ϕ, λ) -l(ϕ), a r (ϕ, ϕ) = a(ϕ, ϕ) + r Q T |Lϕ| 2 dx dt.
Since a(ϕ, ϕ) = a r (ϕ, ϕ) on W , the lagrangian L and L r share the same saddle-point.

Dual problem of the extremal problem (18)

The mixed formulation allows to solve simultaneously the dual variable ϕ, argument of the conjugate functional [START_REF] Glowinski | Handbook of numerical analysis[END_REF], and the Lagrange multiplier λ. Since λ turns out to be the controlled state of (1), we may qualify λ as the primal variable of the problem. We derive in this section the corresponding extremal problem involving only that variable λ.

For any r > 0, let us define the linear operator

A r from L 2 (Q T ) into L 2 (Q T ) by A r λ := Lϕ, ∀λ ∈ L 2 (Q T )
where ϕ ∈ Φ is the unique solution to

a r (ϕ, ϕ) = b(ϕ, λ), ∀ϕ ∈ Φ. ( 28 
)
Notice that the assumption r > 0 is necessary here in order to guarantee the well-posedness of [START_REF] Loreti | An Ingham type proof for a two-grid observability theorem[END_REF]. Precisely, for any r > 0, the form a r defines a norm equivalent to the norm on Φ (see [START_REF] Glowinski | Exact and approximate controllability for distributed parameter systems[END_REF]).

We have the following important lemma :

Lemma 2.1 For any r > 0, the operator A r is a strongly elliptic, symmetric isomorphism from

L 2 (Q T ) into L 2 (Q T ).
Proof-From the definition of a r , we easily get that

A r λ L 2 (Q T ) ≤ r -1 λ L 2 (Q T ) and the conti- nuity of A r . Next, consider any λ ′ ∈ L 2 (Q T )
and denote by ϕ ′ the corresponding unique solution of (28) so that A r λ ′ := Lϕ ′ . Relation [START_REF] Loreti | An Ingham type proof for a two-grid observability theorem[END_REF] with ϕ = ϕ ′ then implies that

Q T (A r λ ′ )λ dx dt = a r (ϕ, ϕ ′ ) (29) 
and therefore the symmetry and positivity of A r . The last relation with λ ′ = λ and the Carleman estimate [START_REF] Lasiecka | Exact controllability for second-order hyperbolic equations with variable coefficient-principal part and first-order terms[END_REF] imply that A r is also positive definite.

Finally, let us check the strong ellipticity of A r , equivalently that the bilinear functional

(λ, λ ′ ) → Q T (A r λ)λ ′ dx dt is L 2 (Q T )-elliptic. Thus we want to show that Q T (A r λ)λ dx dt ≥ C λ 2 L 2 (Q T ) , ∀λ ∈ L 2 (Q T ) (30) 
for some positive constant C. Suppose that (30) does not hold; there exists then a sequence

{λ n } n≥0 of L 2 (Q T ) such that λ n L 2 (Q T ) = 1, ∀n ≥ 0, lim n→∞ Q T (A r λ n )λ n dx dt = 0.
Let us denote by ϕ n the solution of ( 28) corresponding to λ n . From (29), we then obtain that

lim n→∞ Lϕ n L 2 (Q T ) = 0, lim n→∞ ϕ n,x (1, •) L 2 (0,T ) = 0 ( 31 
)
and thus lim n→∞ Q T Lϕ λ n dx dt = 0 for all ϕ ∈ Φ (and so the L 2 (Q T )-weak-convergence of λ n toward 0). From ( 28) with ϕ = ϕ n and λ n , we have

Q T (rLϕ n -λ n )Lϕ dx dt + T 0 c(1)ϕ n,x (1, •)ϕ x (1, •) dt = 0, ∀ϕ ∈ Φ. ( 32 
)
We define the sequence {ϕ n } n≥0 as follows :

     Lϕ n = r Lϕ n -λ n , in Q T , ϕ n (0, •) = ϕ n (1, •) = 0, in (0, T ), ϕ n (•, 0) = ϕ n,t (•, 0) = 0, in (0, 1),
so that, for all n, ϕ n is the solution of the wave equation with zero initial data and source term r Lϕ nλ n in L 2 (Q T ). Using again [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF], we get

ϕ n,x (1, •) ≤ C Ω,T rLϕ n -λ n L 2 (Q T )
, so that ϕ n ∈ Φ. Then, using [START_REF] Periago | Optimal shape and position of the support for the internal exact control of a string[END_REF], we get

rLϕ n -λ n L 2 (Q T ) ≤ C Ω,T ϕ n,x (1, •) L 2 (0,T ) .
Then, from [START_REF] Pedregal | A numerical method of local energy decay for the boundary controllability of time-reversible distributed parameter systems[END_REF], we conclude that lim n→+∞ λ n L 2 (Q T ) = 0 leading to a contradiction and to the strong ellipticity of the operator A r . 2 The introduction of the operator A r is motivated by the following proposition : Proposition 2.2 For any r¿0, let ϕ 0 ∈ Φ be the unique solution of

a r (ϕ 0 , ϕ) = l(ϕ), ∀ϕ ∈ Φ and let J ⋆⋆ : L 2 (Q T ) → L 2 (Q T ) be the functional defined by J ⋆⋆ (λ) = 1 2 Q T (A r λ) λ dx dt -b(ϕ 0 , λ).
The following equality holds :

sup λ∈L 2 (Q T ) inf ϕ∈Φ L r (ϕ, λ) = -inf λ∈L 2 (Q T ) J ⋆⋆ (λ) + L r (ϕ 0 , 0). Proof-For any λ ∈ L 2 (Q T ), let us denote by ϕ λ ∈ Φ the minimizer of ϕ → L r (ϕ, λ); ϕ λ satisfies the equation a r (ϕ λ , ϕ) + b(ϕ, λ) = l(ϕ), ∀ϕ ∈ Φ
and can be decomposed as follows :

ϕ λ = ψ λ + ϕ 0 where ψ λ ∈ Φ solves a r (ψ λ , ϕ) + b(ϕ, λ) = 0, ∀ϕ ∈ Φ.
We then have

inf ϕ∈Φ L r (ϕ, λ) = L r (ϕ λ , λ) = L r (ψ λ + ϕ 0 , λ) = 1 2 a r (ψ λ + ϕ 0 , ψ λ + ϕ 0 ) + b(ψ λ + ϕ 0 , λ) -l(ψ λ + ϕ 0 ) := X 1 + X 2 + X 3 with      X 1 = 1 2 a r (ψ λ , ψ λ ) + b(ψ λ , λ) + b(ϕ 0 , λ) X 2 = a r (ψ λ , ϕ 0 ) -l(ψ λ ), X 3 = 1 2 a r (ϕ 0 , ϕ 0 ) -l(ϕ 0 ).
From the definition of ϕ 0 , X 2 = 0 while X 3 = L r (ϕ 0 , 0). Eventually, from the definition of ψ λ ,

X 1 = - 1 2 a r (ψ λ , ψ λ ) + b(ϕ 0 , λ) = - 1 2 Q T (A r λ) λ dx dt + b(ϕ 0 , λ)
and the result follows.

2 From the ellipticity of the operator A r , the minimization of the functional J ⋆⋆ over L 2 (Q T ) is well-posed. It is interesting to note that with this extremal problem involving only λ, we are coming to the primal variable, controlled solution of (1) (see Theorem 2.1, (iii)). Due to the constraint (4), the direct minimization of problem [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF] with respect to the controlled state is usually avoided in practice. Here, any constraint equality is assigned to the variable λ.

From the symmetry and ellipticity of the operator A r , the conjugate gradient algorithm is very appropriate to minimize J ⋆⋆ , and consequently to solve the mixed formulation [START_REF] Glowinski | Exact and approximate controllability for distributed parameter systems[END_REF]. The conjugate gradient algorithm reads as follows :

(i) Let λ 0 ∈ L 2 (Q T ) be a given function. (ii) Compute ϕ 0 ∈ Φ solution to a r (ϕ 0 , ϕ) + b(ϕ, λ 0 ) = l(ϕ), ∀ϕ ∈ Φ and g 0 = Lϕ 0 then set w 0 = g 0 .
(iii) For n ≥ 0, assuming that λ n , g n and w n are known, compute ϕ n ∈ Φ solution to a r (ϕ n , ϕ) = b(ϕ, g n ), ∀ϕ ∈ Φ and g n = Lϕ n and then

ρ n = g n 2 L 2 (Q T ) / Q T g n w n dxdt.
Update λ n and g n by

λ n+1 = λ n -ρ n w n , g n+1 = g n -ρ n g n . If g n+1 L 2 (Q T ) / g 0 L 2 (Q T ) ≤ ε, take λ = λ n+1 . Else, compute γ n = g n+1 2 L 2 (Q T ) / g n 2 L 2 (Q T )
and update w n via w n+1 = g n+1 + γ n w n .

Do n = n + 1 and return to step (iii).

As mentioned in [START_REF] Glowinski | Handbook of numerical analysis[END_REF] where this approach is discussed in length for Stokes and Navier-Stokes system, this algorithm can be viewed as a sophisticated version of Uzawa type algorithm.

Concerning the speed of convergence of the conjugate gradient algorithm (i)-(iii), it follows, for instance, from [START_REF] Daniel | The approximate minimization of functionals[END_REF] that

λ n -λ L 2 (Q T ) ≤ 2 ν(A r ) ν(A r ) -1 ν(A r ) + 1 n λ 0 -λ L 2 (Q T ) , ∀n ≥ 1 where λ minimizes J ⋆⋆ . ν(A r ) = A r A -1 r
denotes the condition number of the operator A r . Eventually, once the above algorithm has converged we can compute ϕ ∈ Φ as solution of

a r (ϕ, ϕ) + b(ϕ, λ) = l(ϕ), ∀ϕ ∈ Φ.

Mixed formulation for the distributed case

The mixed approach may be also used to address the inner situation, the main difference being the regularity of the initial data to be controlled. Let ω be a open and non empty subset of (0, 1) and 1 ω its characteristic function. We set q T = ω × (0, T ) and recall that Σ T = {0, 1} × (0, T ). For any initial data (y 0 , y 1 ) ∈ H 1 0 (0, 1) × L 2 (0, 1) and any v ∈ L 2 (q T ), the boundary value problem

     Ly = v 1 ω in Q T , y = 0 on Σ T , (y(•, 0), y t (•, 0)) = (y 0 , y 1 ) in Ω (33) 
is well-posed and the solution y enjoys the regularity y ∈ C 0 ([0, T ]; H 1 0 (0, 1)) ∩ C 1 ([0, T ]; L 2 (0, 1)). Again, the controllability problem for [START_REF] Yao | On the observability inequalities for exact controllability of wave equations with variable coefficients[END_REF] consists in finding a control function v ∈ L 2 (q T ) such that (4) holds.

The dual formulation associated to the control of minimal L 2 -norm for (33) is min (ϕ0,ϕ1)∈L 2 (0,1)×H -1 (0,1)

J ⋆ (ϕ 0 , ϕ 1 ) = 1 2 q T |ϕ| 2 dx dt+ < ϕ 1 , y 0 > H -1 (0,1),H 1 0 (0,1) - Ω ϕ 0 y 1 dx
where the adjoint solution solves again the homogeneous adjoint equation [START_REF] Castro | Controllability of the linear wave equation with moving inner actions[END_REF]. The dual formulation is well-posed as soon as T is large enough: this is given by the inner version of the estimate [START_REF] Castro | Numerical approximation of the boundary control for the wave equation with mixed finite elements in a square[END_REF] (see [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF]) :

∃k T > 0 such that ϕ(•, 0), ϕ t (•, 0) L 2 ×H -1 ≤ k T ϕ L 2 (q T ) , ∀(ϕ 0 , ϕ 1 ) ∈ L 2 (0, 1) × H -1 (0, 1)
where ϕ solves [START_REF] Castro | Controllability of the linear wave equation with moving inner actions[END_REF]. As in the case of boundary control, since the solution of the adjoint system is completely determined by the initial data (ϕ 0 , ϕ 1 ), we keep ϕ as the minimization variable and consider the extremal problem

min ϕ∈W Ĵ⋆ (ϕ) = 1 2 q T |ϕ| 2 dx dt+ < ϕ t (•, 0), y 0 > H -1 (0,1),H 1 0 (0,1) - Ω ϕ(•, 0) y 1 dx, (34) 
where

W = ϕ ∈ L 2 (q T ), ϕ = 0 on Σ T such that Lϕ = 0 ∈ L 2 (0, T ; H -1 (0, 1)) .
Following the lines of Section 2.1, W is a Hilbert space endowed with the inner product

(ϕ, ϕ) W = q T ϕ(x, t)ϕ(x, t) dx dt + η T 0 < Lϕ, Lϕ > H -1 (0,1),H -1 (0,1) dt,
for any fixed η > 0. We define Φ = ϕ ∈ L 2 (q T ), ϕ = 0 on Σ T such that Lϕ ∈ L 2 (0, T ; H -1 (0, 1))

and consider the following mixed formulation : find (ϕ, λ) ∈ Φ × L 2 (0, T ; H 1 0 (0, 1)) solution of

a(ϕ, ϕ) + b(ϕ, λ) = l(ϕ), ∀ϕ ∈ Φ b(ϕ, λ) = 0, ∀λ ∈ L 2 (0, T ; H 1 0 (0, 1)), (35) 
where

a : Φ × Φ → R, a(ϕ, ϕ) = q T ϕ(x, t)ϕ(x, t) dx dt b : Φ × L 2 (0, T ; H 1 0 (0, 1)) → R, b(ϕ, λ) = T 0 < Lϕ, λ > H -1 ,H 1 0 dt l : Φ → R, l(ϕ) = -< ϕ t (•, 0), y 0 > H -1 (0,1),H 1 0 (0,1) + 1 0 ϕ(•, 0) y 1 dx.
In the remaining part of this section we assume that ω, T and the wave operator L are such that the following holds : there exists a constant C 0 (depending on ω, T and the wave operator L) such that

ϕ(•, 0), ϕ t (•, 0) 2 L 2 ×H -1 ≤ C 0 Lϕ 2 L 2 (0,T ;H -1 (0,1)) + ϕ 2 L 2 (q T ) , ∀ϕ ∈ Φ. ( 36 
)
This estimate can be proved using Carleman estimates (see [START_REF] Lasiecka | Exact controllability for second-order hyperbolic equations with variable coefficient-principal part and first-order terms[END_REF][START_REF] Zhang | Explicit observability estimate for the wave equation with potential and its application[END_REF]) or by the means of multipliers method (see [START_REF] Komornik | Exact controllability and stabilization[END_REF]). We refer to [START_REF] Castro | Controllability of the linear wave equation with moving inner actions[END_REF] for a proof in the more general case where the subset ω depends on the time variable. Inequality (36) is the main ingredient to prove an equivalent result to Theorem 2.1 in the case of distributed control. (ii) The unique solution (ϕ, λ) ∈ Φ × L 2 (0, T ; H -1 (0, 1)) is the unique saddle-point of the Lagrangian

L : Φ × L 2 (0, T ; H -1 (0, 1)) → R defined by L(ϕ, λ) = 1 2 a(ϕ, ϕ) + b(ϕ, λ) -l(ϕ).
(iii) The optimal function ϕ is the minimizer of Ĵ⋆ , defined by [START_REF] Zhang | Explicit observability estimate for the wave equation with potential and its application[END_REF], over Φ while the optimal function λ ∈ L 2 (Q T ) is the state of the controlled wave equation (1) in the weak sense.

Since we assume that (36) holds, the proof of Theorem (3.1) is similar to the one of Theorem 2.1, and all the methodology described in Section 2 applies to approximate the distributed control of minimal L 2 (q T )-norm. We omit the details and refer to [START_REF] Castro | Controllability of the linear wave equation with moving inner actions[END_REF] for a more general situation. Numerical results for the approximation of distributed control of minimal L 2 -norm are discussed at the end of Section 4.

Remark 2

The result of this section remains true if we define the space W such that Lϕ belongs to L 2 (Q T ). This allows to avoid scalar product over H -1 . The estimate (36) still holds and the multiplier λ is now only in L 2 (Q T ) and is a controlled solution of [START_REF] Yao | On the observability inequalities for exact controllability of wave equations with variable coefficients[END_REF] in the sense of the transposition. As for the boundary situation, we may also work with (ϕ(•, 0); ϕ t (•, 0)) in H 1 0 (0, 1) × L 2 (0, 1) leading naturally to Lϕ = 0 as an L 2 (Q T ) function: however, the controls we then get are only in H -1 (q T ) (see [27, Chapter 7, Section 2]).

Numerical approximation and experiments 4.1 Discretization

We now turn to the discretization of the mixed formulation (20) assuming r > 0.

Let then Φ h and M h be two finite dimensional spaces parametrized by the variable h such that

Φ h ⊂ Φ, M h ⊂ L 2 (Q T ), ∀h > 0.
Then, we can introduce the following approximated problems : find

(ϕ h , λ h ) ∈ Φ h × M h solution of a r (ϕ h , ϕ h ) + b(ϕ h , λ h ) = l(ϕ h ), ∀ϕ h ∈ Φ h b(ϕ h , λ h ) = 0, ∀λ h ∈ M h . (37) 
The well-posedness of this mixed formulation is again a consequence of two properties : the coercivity of the bilinear form a r on the subset

N h (b) = {ϕ h ∈ Φ h ; b(ϕ h , λ h ) = 0 ∀λ h ∈ M h }. Actually, from the relation a r (ϕ, ϕ) ≥ r η ϕ 2 Φ , ∀ϕ ∈ Φ
the form a r is coercive on the full space Φ, and so a fortiori on N h (b) ⊂ Φ h ⊂ Φ. The second property is a discrete inf-sup condition : there exists δ h > 0 such that inf

λ h ∈M h sup ϕ h ∈Φ h b(ϕ h , λ h ) ϕ h Φ h λ h M h ≥ δ h . (38) 
For any fixed h, the spaces M h and Φ h are of finite dimension so that the infimum and supremum in (38) are reached: moreover, from the property of the bilinear form a r , it is standard to prove that δ h is strictly positive (see Section 4.2). Consequently, for any fixed h > 0, there exists a unique couple (ϕ h , λ h ) solution of (37). On the other hand, the property inf h δ h > 0 is in general difficult to prove and depends strongly on the choice made for the approximated spaces M h and Φ h . We shall analyze numerically this property in Section 4.2.

As in [START_REF] Cîndea | Numerical controllability of the wave equation through primal methods and Carleman estimates[END_REF], the finite dimensional and conformal space Φ h must be chosen such that Lϕ h belongs to L 2 (Q T ) for any ϕ h ∈ Φ h . This is guaranteed as soon as ϕ h possesses second-order derivatives in L 2 loc (Q T ). Therefore, a conformal approximation based on standard triangulation of Q T requires spaces of functions continuously differentiable with respect to both variables x and t.

We introduce a triangulation T h such that Q T = ∪ K∈T h K and we assume that {T h } h>0 is a regular family. Then, we introduce the space Φ h as follows :

Φ h = {ϕ h ∈ C 1 (Q T ) : ϕ h | K ∈ P(K) ∀K ∈ T h , ϕ h = 0 on Σ T }
where P(K) denotes an appropriate space of polynomial functions in x and t. In this work, we consider the following two choices for P(K):

(i) The Bogner-Fox-Schmit (BFS for short) C 1 element defined for rectangles. It involves [START_REF] Fernández-Cara | Strong convergence approximations of null controls for the 1D heat equation[END_REF] degrees of freedom, namely the values of ϕ h , ϕ h,x , ϕ h,t , ϕ h,xt on the four vertices of each rectangle K. Therefore P(K) = P 3,x ⊗ P 3,t where P r,ξ is by definition the space of polynomial functions of order r in the variable ξ. We refer to [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF] page 76;

(ii) The reduced Hsieh-Clough-Tocher (HCT for short) C 1 element defined for triangles. This is a so-called composite finite element and involves 9 degrees of freedom, namely the values of ϕ h , ϕ h,x , ϕ h,t on the three vertices of each triangle K. We refer to [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF] page 356 and to [START_REF] Bernadou | Basis functions for general Hsieh-Clough-Tocher triangles, complete or reduced[END_REF][START_REF] Meyer | A simplified calculation of reduced hct-basis functions in a finite element context[END_REF] where the implementation is discussed.

We also define the finite dimensional space

M h = {λ h ∈ C 0 (Q T ) : λ h | K ∈ Q(K) ∀K ∈ T h },
where Q(K) denotes the space of affine functions both in x and t on the element K. For any h > 0, we have Φ h ⊂ Φ and

M h ⊂ L 2 (Q T ). Let n h = dim Φ h , m h = dim M h and let the real matrices A r,h ∈ R n h ,n h , B h ∈ R m h ,n h , J h ∈ R m h ,m h and L h ∈ R n h be defined by                a r (ϕ h , ϕ h ) =< A r,h {ϕ h }, {ϕ h } > R n h ,R n h , ∀ϕ h , ϕ h ∈ Φ h , b(ϕ h , λ h ) =< B h {ϕ h }, {λ h } > R m h ,R m h , ∀ϕ h ∈ Φ h , ∀λ h ∈ M h , Q T λ h λ h dx dt =< J h {λ h }, {λ h } > R m h ,R m h , ∀λ h , λ h ∈ M h , l(ϕ h ) =< L h , {ϕ h } >, ∀ϕ h ∈ Φ h
where {ϕ h } ∈ R n h ,1 denotes the vector associated to ϕ h and < •, • > R n h ,R n h the usual scalar product over R n h . With these notations, the problem (37) reads as follows : find

{ϕ h } ∈ R n h and {λ h } ∈ R m h such that A r,h B T h B h 0 R n h +m h ,n h +m h {ϕ h } {λ h } R n h +m h = L h 0 R n h +m h . ( 39 
)
The matrix A r,h as well as the mass matrix J h are symmetric and positive definite for any h > 0 and any r > 0. On the other hand, the matrix of order m h + n h in (39) is symmetric but not positive definite. We use exact integration methods developed in [START_REF] Dunavant | High degree efficient symmetrical Gaussian quadrature rules for the triangle[END_REF] for the evaluation of the coefficients of the matrices. The system (39) is solved using the direct LU decomposition method.

Let us also mention that for r = 0, althought the formulation (20) is well-posed, numerically, the corresponding matrix A 0,h is not invertible. In the sequel, we shall consider strictly positive values for r.

Once an approximation ϕ h is obtained, the relation [START_REF] Fortin | Augmented Lagrangian methods[END_REF] leads to an approximation v h of the control v: precisely, we define

v h = c(1)π ∆t (ϕ h,x (1, •)) in (0, T ) ( 40 
)
where π ∆t denotes the projection operator on the space of piecewise affine time function: v h is piecewise linear and coincides at each node (of the mesh T h ) that belongs to the boundary {1} × (0, T ), with c(1)ϕ h,x (1, •). Note that in view of the definition of the space Φ h , the derivative with respect to x of ϕ h is a degree of freedom of {ϕ h }: hence, the computation of v h does not require any additional calculus. The corresponding controlled state y h may be obtained by solving [START_REF] Asch | Geometrical aspects of exact boundary controllability for the wave equation-a numerical study[END_REF] with standard forward approximation (we refer to [START_REF] Cîndea | Numerical controllability of the wave equation through primal methods and Carleman estimates[END_REF], Section 4 where this is detailed). Here, since the controlled state is directly given by the multiplier λ, we simply use λ h as an approximation of y and we do not report here the computation of y h .

Let us now comment on the meshes we use in the next section.

For the Bogner-Fox-Schmidt (BFS) finite element, we use uniform rectangular meshes. Each element is a rectangle of lengths ∆x and ∆t; ∆x > 0 and ∆t > 0 denote as usual the discretization parameters in space and time respectively. In the numerical experiments, we shall consider five levels of meshes , that is we consider (∆x, ∆t) = (1/N, 1/N ) for N = 10, 20, 40, 80 and N = 160.

For the Hsieh-Clough-Tocher (HCT), we use two types of meshes :

• Uniform triangular meshes obtained from the previous one by dividing each rectangle into two: thus, all the elements are rectangular triangles of the same shape and size, determined by ∆x and ∆t.

• Non uniform but regular triangular meshes obtained by Delaunay triangulation. Each triangle of the mesh touching the boundaries (0, 1) × {0, T } has the side on the boundary of length ∆x; similarly, each triangle touching the boundaries {0, 1} × (0, T ) has the side on that boundary of length ∆t. We note

h := max{diam(K), K ∈ T h }
where diam(K) denotes the diameter of K ; the parameter h decreases as the parameter N , defining the fineness of the mesh, increases. 

The discrete inf-sup test

Before to give and discuss some numerical experiments, we first test numerically the discrete infsup condition (38). Taking η = r > 0 so that a r (ϕ, ϕ) = (ϕ, ϕ) Φ exactly for all ϕ, ϕ ∈ Φ, it is readily seen (see for instance [START_REF] Chapelle | The inf-sup test[END_REF]) that the discrete inf-sup constant satisfies

δ h = inf √ δ : B h A -1 r,h B T h {λ h } = δ J h {λ h }, ∀ {λ h } ∈ R m h \ {0} . (41) 
The matrix B h A -1 r,h B T h enjoys the same properties than the matrix A r,h : it is symmetric and positive definite so that the scalar δ h defined in term of the (generalized) eigenvalue problem (41) is strictly positive. This eigenvalue problem is solved using the power iteration algorithm (assuming that the lowest eigenvalue is simple): for any {v 0

h } ∈ R n h such that {v 0 h } 2 = 1, compute for any n ≥ 0, {ϕ n h } ∈ R n h , {λ n h } ∈ R m h and {v n+1 h } ∈ R m h iteratively as follows : A r,h {ϕ n h } + B T h {λ n h } = 0 B h {ϕ n h } = -J h {v n h } , {v n+1 h } = {λ n h } {λ n h } 2 .
The scalar δ h defined by ( 41) is then given by : δ h = lim n→∞ ( {λ n h } 2 ) -1/2 . We now give some numerical values of δ h with respect to N (equivalently with respect to h) for the two C 1 finite elements introduced in Section 4.1. We take here for simplicity c := 1 and d := 0 so that L ϕ := ϕ ttϕ xx . Values of c and d do not affect qualitatively the results.

Table 2 is concerned with the BFS element and T = 2. Table 3 is concerned with the HCT element for uniform meshes. Table 4 is concerned with the HCT element for non uniform meshes.

As expected, we check that δ h decreases as h → 0 and increases as r → 0. More importantly, we observe that for any r, the value of δ h does not seem to be bounded by below with respect to the discretization parameter: for low values of r, the decrease of δ h as h → 0 seems however very slow (see first row of Table 2 and Figure 2). We recall that the scalars r, η are arbitrary as long as they are strictly positive, so that the form a r defines a scalar product over Φ. In the first two cases where the meshes are uniform (that is ∆t = ∆x), it is worth to note that we obtain the same behavior when ∆x = ∆t.

We may conclude that the two finite elements considered here do not "pass" the discrete inf-sup test. As we shall see in the next section, this interesting fact does not prevent the convergence of the sequence ϕ h and λ h , at least for the cases we have considered. Interestingly, we also observe that the discrete inf-sup constant δ h remains bounded with respect to h when the parameter r depends appropriately on h (last row of Tables 2,3,4 2) for r = 10 -4 (<), r = 10 -3 (⋆), r = 10 -2 (•) and r = 10 

Numerical experiments: the boundary case

We first address the boundary case for three initial data with various regularity and for which we know explicitly the control v of minimal L2 -norm. This allows to evaluate precisely the error v-v h L 2 (0,T ) with respect to h and confirm the relevance of the method. For these three examples, we take c := 1 and d := 0. For any m ∈ N, let us first consider the initial condition (EX1) y 0 (x) = sin(mπx), y 1 (x) = 0, T = 2 for which the control of minimal L 2 -norm is given by v(t) =1 2 (-1) m+1 sin(mπt) on [0, T ] while the adjoint state ϕ ∈ Φ, minimizer of the conjugate functional Ĵ⋆ (see [START_REF] Glowinski | Handbook of numerical analysis[END_REF]) has the expression ϕ(x, t) = -1 2mπ sin(mπt) sin(mπx) in Q T . We have v L 2 (0,T ) = 1/2. We take m = 3. We first give some numerical values obtained with the BFS element. Tables 5 and6 collect some numerical values for r = 10 -2 and r = 1 respectively. Values corresponding to r = 10 -4 , h 2 and r = 10 2 are reported in the Appendix, Table 21,[START_REF] Ju | Approximation of exact boundary controllability problems for the 1-D wave equation by optimization-based methods[END_REF][START_REF] Komornik | Exact controllability and stabilization[END_REF] In the Tables, κ denotes the condition number associated to (39), independent of the initial data (y 0 , y 1 ) 1 .

The convergence of ϕ -

ϕ h L 2 (Q T ) , v -v h L 2 (0,T ) and Lϕ h L 2 (Q T )
toward zero as h → 0 is observed. We observe that, as soon as h is small enough, the value of the positive parameter r > 0 has a reduced impact on the results.

We observe that a low value of r, for instance r = 10 -4 , (providing a "better" inf-sup constant δ h ) leads to a faster convergence of the Lagrangian variable λ h than the value r = 1. This is in agreement with the classical estimates for mixed finite element approximation. Note that the phenomenon is however restricted here. On the other hand, a larger value of r allows a faster convergence of the dual variable ϕ h , since the constraint is better represented (observe the locking phenomenon for r = 10 -2 when h is large, Table 23). The case r = h 2 (Table 22) offers an interesting compromise, although quite large values for Lϕ h L 2 (Q T ) . Moreover, this case provides the lowest values for κ. Finally, in every case, the condition number behaves polynomially with respect to h. Tables 7 and8 report the result obtained for the HCT element on uniform meshes for r = 1 and r = 10 -2 respectively. For this element, we observe that the value of r has a deeper impact on the quality of the result. The convergence observed for r = 10 w.r.t. h is very slow (see Table 24 in the appendix). A better convergence is observed for lower values (r = 1, 10 -2 and lower). We compute that :

We compute

r = 1 : ϕ -ϕ h L 2 (Q T ) ≈ O(h 3.9 ), v -v h L 2 (0,T ) ≈ O(h 3.5 ), Lϕ h L 2 (Q T ) ≈ O(h 1.96 ), r = 10 -2 : ϕ -ϕ h L 2 (Q T ) ≈ O(h 3 ), v -v h L 2 (0,T ) ≈ O(h 2. ), Lϕ h L 2 (Q T ) ≈ O(h
r = 1 : ϕ -ϕ h L 2 (Q T ) ≈ O(h 1.13 ), v -v h L 2 (0,T ) ≈ O(h 1.15 ) r = 10 -2 : ϕ -ϕ h L 2 (Q T ) ≈ O(h 2.21 ), v -v h L 2 (0,T ) ≈ O(h 2.08 ).
The rates of convergence for the HCT element-uniform mesh are significantly reduced with respect to the rates obtained for the BFS element: as a possible explanation, we emphasize that the BFS element is slightly richer since he contains in addition the cross derivative ϕ h,xt as degree of freedom. We also observe that the influence of the parameter r is even more important for non uniform mesh when the HCT element is used (see Tables 27,28), so that this element seems more sensitive to the lack of uniform inf-sup property discussed in Section 4.2. In this respect, when r behaves like h 2 , we observe in both cases a very good convergence of the variable ϕ h and λ h together with a significant reduction of the condition number κ (see Table 25). Again, this condition number increases polynomially as h goes to 0. We recall that the condition number of the discrete HUM operator blows up exponentially w.r.t. h when a non uniformly controllable approximation is used (see [START_REF] Münch | A uniformly controllable and implicit scheme for the 1-D wave equation[END_REF]).

The second initial data corresponds to a continuous but not C 1 (0, 1) initial position :

(EX2) y 0 (x) = 16x 3 1 (0,1/2) (x) + 16(1 -x) 3 1 (1/2,1) (x), y 1 (x) = 0, T = 2
for which the control of minimal L 2 -norm is given by leading to v L 2 (0,T ) = √ 14/7 ≈ 0.53452. Tables 9 and10 collect some values for r = 1 and r = 10 -2 respectively when the BFS finite element is used. Again, the influence of the value of r is weak. For this set of data, less regular than the previous one, we observe a lower rate of convergence with respect to h : Tables 11 and12 correspond to r = 1 and r = 10 -2 respectively when the HCT element with non uniform meshes is used. We obtain again a slightly lower rate of convergence :

v(t) = 8t 3 1 (0,1/2) (t) + 8(1 -t) 3 1 (1/2,3/2) (t) -8(2 -t) 3 1 (3/2,2) (t), t ∈ (0, T ) h 1.41 × 10 -1 7.01 × 10 -2 3.53 × 10 -2 1.76 × 10 -2 8.83 × 10 -3 ϕ -ϕ h L 2 (Q T ) 2.71 × 10 -2 1.99 × 10 -2 8.75 × 10 -3 2.6 × 10 -3 7.08 × 10 -4 v -v h L 2 (0,T ) 3.79 × 10 -1 2.66 × 10 -1 1.1 × 10 -1 3.5 × 10 -2 9.3 × 10 -3 v h L 2 (0,
r = 1 : v -v h L 2 (0,T ) ≈ e -0.71 h 0.93 , Lϕ h L 2 (Q T ) ≈ e -0.54 h 0.96 , r = 10 -2 : v -v h L 2 (0,T ) ≈ e -1.28 h 0.78 , Lϕ h L 2 (Q T ) ≈ e 3.
r = 1 : v -v h L 2 (0,T ) ≈ e 0.01 h 0.71 , Lϕ h L 2 (Q T ) ≈ e -0.32 h 0.56 , r = 10 -2 : v -v h L 2 (0,T ) ≈ e -1.06 h 0.84 , Lϕ h L 2 (Q T ) ≈ e 2.97 h 1.09 .
The third example is much stiffer in the sense that the initial position belongs to L 2 (0, 1) but is discontinuous:

(EX3) y 0 (x) = 4x 1 (0,1/2) (x), y 1 (x) = 0, T = 2.4.
The corresponding control of minimal L 2 -norm, discontinuous, is given by v(t) = 2(1-t) 1 (1/2,3/2) (t), t ∈ (0, T ) so that v L 2 (0,T ) = 1/ √ 3 ≈ 0.5773. When the classical dual method (that is, the minimization of a discrete conjugate functional with respect to the initial data of the adjoint solution) is employed, adapted schemes are needed to obtain convergent results (we refer to [START_REF] Münch | A uniformly controllable and implicit scheme for the 1-D wave equation[END_REF] and the references therein). 

v -v h L 2 (0,T ) 1.86 × 10 -1 1.15 × 10 -1 7.1 × 10 -2 4.29 × 10 -2 2.57 × 10 -2 λ h L 2 (Q T )
0.5461 0.5336 0.5327 0.5334 0.534

Lϕ h L 2 (Q T ) 1.49 × 10 -1 1.25 × 10 -1 8.81 × 10 -2 5.84 × 10 -2 3.75 × 10 -2
Table 11: Example EX2 -HCT element -Non uniform mesh -r = 1.

Table 13 collects some values for r = 1 when the BFS finite element is used (the case r = 10 -2 gives very closed results and is reported in Table 31, see the appendix). We observe the following rate of convergence with respect to h :

r = 1 : v -v h L 2 (0,T ) ≈ e -0.37 h 0.45 , Lϕ h L 2 (Q T ) ≈ e -1.57 h 0.37 , r = 10 -2 : v -v h L 2 (0,T ) ≈ e -0.09 h 0.52 , Lϕ h L 2 (Q T ) ≈ e 2.46 h 0.72 .
It is interesting to note, as in the previous examples, that a rather good approximation v h of the control is obtained with a quite large value of the L 2 -norm of Lϕ h . Table 13 also indicates that the H -1 (Q T )-norm of Lϕ h is almost zero. This is due to the fact that the variable ϕ h ∈ Φ h satisfies b(ϕ h , λ h ) = 0 for all λ h ∈ M h , that M h is also a conformal approximation of H 1 (0, 1) and that Lϕ h H -1 (0,1) = sup l∈H 1 (0,1), l H 1 =1 |b(ϕ h , l)|. For any h and any r, the adjoint variable ϕ h satisfies the wave equation in a weak sense. This phenomenon is highlighted in Table 14: small values of r (for instance r = 10 -6 , h being fixed) leads to large values of Lϕ h L 2 (0,1) but to good approximations λ h and v h of the controlled solution and of the control respectively. Tables 15 and16 provide the results for r = 1 obtained with the reduced HCT for uniform and non-uniform meshes respectively :

r = 1 -HCT uniform mesh : v -v h L 2 (0,T ) ≈ e -0.86 h 0.22 , Lϕ h L 2 (Q T ) ≈ e -0.91 h 0.32 , r = 1 -HCT non uniform mesh : v -v h L 2 (0,T ) ≈ e -1.03 h 0.25 , Lϕ h L 2 (Q T ) ≈ e -0.55 h 0.46 .
Figure 3 depicts the evolution of the error vv h L 2 (0,T ) w.r.t. h for the BFS and HCT element. Closed results are observed for r = 10 -2 , reported Tables 32 and33 in the appendix. Figure 4 depicts the corresponding approximation v h of the HUM control on (0, T ) and confirm the remarkable approximation we get in this stiff case. Figures 5 and6 depict the variable ϕ h ⊂ Φ h and the multiplier λ h ⊂ M h in Q T respectively. These figures are obtained with a mesh T h composed of 9 088 triangles and for which h = 2.46 × 10 -2 . In agreement with Theorem 2.1, item (iii), λ h is an approximation of the controlled solution for (1). We have used here r = 10 -2 .

We also emphasize that this variational method which requires a finite element discretization of the time-space Q T is particularly well-adapted to mesh optimization. Still for the example EX3, Figure 7 depicts a sequence of five distinct meshes of Q T = (0, 1) × (0, T ): the sequence is initiated with a coarse and regularly distributed mesh, corresponding to N = 5. The four other meshes are successively obtained by local refinement based on the norm of the gradient of λ h on each triangle of T h . As expected, the refinement is concentrated around the lines of discontinuity of λ h (see Figure 9) traveling in Q T , generated by the discontinuity of the initial position y 0 . The five meshes h 9.02 × 10 -2 4.51 × 10 -2 2.55 × 10 -2 1.13 × 10 -2 5.6 × 10 -3 v h L 2 (0,T ) 0.5543 0.5395 0.5356 0.5347 0.5345 vv h L 2 (0,T ) 4.78 × 10 -2 2.56 × 10 -2 1.32 × 10 -2 7.69 × 10 -3 4.56 × 10 -3 λ h L 2 (Q T ) 0.5607 0.5417 0.5364 0.535 0.5346

Lϕ h L 2 (Q T )
1.6996 6.22 × 10 -1 2.63 × 10 -1 1.36 × 10 -1 7.81 × 10 -2 

v -v h L 2 (0,T ) 1.116 × 10 -1 1.114 × 10 -1 1.079 × 10 -1 1.087 × 10 -1 1.211 × 10 -1 Lϕ h L 2 (Q T )
5.6 × 10 3 5.6 × 10 1 6.13 × 10 -1 4.56 × 10 -2 1.75 × 10 -2 Lϕ h H -1 (Q T )

6.85 × 10 -14 5.88 × 10 -15 6.17 × 10 -15 6.06 × 10 -15 6.33 × 10 -15 

v -v h L 2 (Q T ) 2.78 × 10 -1 2.3 × 10 -1 2.01 × 10 -1 1.72 × 10 -1 1.47 × 10 -1 λ h L 2 (Q T ) 0.5987 0.5799 0.5744 0.5727 0.5728 Lϕ h L 2 (Q T ) 2.2 × 10 -1 1.8 × 10 -1 1.37 × 10 -1 1.11 × 10 -1 9.07 × 10 -2
v -v h L 2 (0,T ) 2.35 × 10 -1 1.92 × 10 -1 1.61 × 10 -1 1.4 × 10 -1 1.19 × 10 -1 λ h L 2 (Q T )
0.5979 0.5809 0.5748 0.5729 0.5728

Lϕ h L 2 (Q T )
1.9 × 10 -1 1.42 × 10 -1 1.12 × 10 -1 9.07 × 10 -2 7.5 × 10 -2

Table 16: Example EX3 -HCT element -Non uniform mesh -r = 1.
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*+,) -./)0123456 -./)141)0123456 contain 142, 412, 1 154, 2 556 and 4 750 triangles respectively. The number of nodes in these five meshes is 87, 231, 614, 1 324 and 2 429 respectively. The errors vv h L 2 (0,T ) corresponding to each of the five meshes (sorted by number of triangles) are : 2.67 × 10 -1 , 2.51 × 10 -1 , 1.31 × 10 -1 , 8.36 × 10 -2 and 8.11 × 10 -2 respectively.

As a partial conclusion, this direct method offers very good approximations of the control of minimal square-integrable norm, even in singular situations for which classical methods generally fail. It is important to note that the lack of uniform property we have suspected (for r fixed and large enough) from the experiences reported in Section 4.2 does not seem to have a significant influence on the behavior of the method w.r.t. h. For any r > 0, the convergence of the approximation is observed as h tends to 0. An intermediate value of r, around 10 -2 , offers a good compromise between the convergence of the primal variable λ h and of the dual one ϕ h . In this respect, the parameter r may not be seen as an augmentation parameter for the Lagrangian L, but rather as a regularization parameter for the variable ϕ h (this enforces Lϕ h ∈ L 2 (Q T ) uniformly). This also suggests that the constraint Lϕ ∈ L 2 (Q T ) we have settled in the definition of the space W (see 18) may possibly be weakened.

Conjugate gradient for J ⋆⋆

We illustrate here the Section 2.2: we minimize the functional J ⋆⋆ : L 2 (Q T ) → R with respect to the variable λ. We recall that this minimization corresponds exactly to the resolution of the mixed formulation ( 20) by an iterative Uzawa type procedure. The conjugate gradient algorithm is given at the end of Section 2.2. In practice, each iteration amounts to solve a linear system involving the matrix A r,h of size n h = 4m h (see (39)) which is sparse, symmetric and positive definite. We use the Cholesky method.

We consider the singular situation given by the example EX3. We take ε = 10 -10 as a stopping threshold for the algorithm (that is the algorithm is stopped as soon as the norm of the residue g n at the iterate n satisfies g n L 2 (Q T ) ≤ 10 -10 g 0 L 2 (Q T ) ). The algorithm is initiated with λ 0 = 0 in Q T .

We discuss only some results obtained with the BFS finite element (the HCT finite element leads to very similar results) and consider uniform meshes with ∆t = 1.2∆x (in order to emphasize that, in this finite element framework, it is absolutely not necessary to consider ∆t ≤ ∆x when the velocity c of the waves equals one). Tables 17,[START_REF] Glowinski | Handbook of numerical analysis[END_REF] and 19 display the result for r = 10 -2 , 1 and r = 10 2 respectively. We recall that the norm of the control is v L 2 (0,T ) ≈ 0.5773.

We first check that this iterative method gives exactly the same approximation λ h than the previous direct method (where (39) is solved directly), since problem [START_REF] Glowinski | Exact and approximate controllability for distributed parameter systems[END_REF] coincides with the minimization of J ⋆⋆ in the sense given by Proposition 2.2 for r > 0. Then, we observe that the number of iterates is sub-linear with respect to h, precisely with respect to the dimension m h = card({λ h }) of the approximated problem. Once again, this is in contrast with the behavior of the conjugate gradient algorithm when this latter is used to minimize J ⋆ with respect to (ϕ 0 , ϕ 1 ) (see [START_REF] Münch | A uniformly controllable and implicit scheme for the 1-D wave equation[END_REF]). Finally, as for the direct method, the influence of the parameter r remains limited. Since the gradient of J ⋆⋆ is given by ∇J ⋆⋆ (λ) = Lϕ 0 -A r λ := Lϕ, a larger r reduces the number of iterates. From this perspective, r can be seen, here, as an augmentation parameter for the constraint Lϕ = 0. On the other hand, a larger r reduces the convergence of the primal variable, that is λ h , and therefore of the control, defined here as the trace λ h (1, •). For r = 1 and the discretization corresponding to h = 9.99 × 10 -3 (that is ∆x = 6.25 × 10 -2 , ∆t = 7.79 × 10 -2 ), Figure 10 depicts the evolution of the ratio g n L 2 (Q T ) / g 0 L 2 (Q T ) with respect to the iterates and illustrates the remarkable robustness of the method. 

Numerical experiments: the inner case

We illustrate numerically the Section 3 which concerns the distributed controllability. Following Remark 2 and in order to avoid scalar product over H -1 , we solve the mixed formulation (35) and look for ϕ such that Lϕ belongs to L 2 (Q T ). In this case, the numerical implementation of the distributed case is very similar to the boundary one : the term T 0 c(1)ϕ x (1, •)ϕ x (1, •) dt is simply replaced by the term q T ϕ ϕ dx dt. The other difference appears in the linear right hand side term of the mixed formulation due to the change of regularity of the initial data.

We consider the following data (see [START_REF] Cîndea | Numerical controllability of the wave equation through primal methods and Carleman estimates[END_REF], Section 4.5):

(EX4)

y 0 (x) = e -500(x-0.2) 2 , y 1 (x) = 0, T = 2.2, ω = (0.2, 0.4) and a non-constant function c = c(x) ∈ C 1 ([0, 1]) with c(x) =      1.
x ∈ [0, 0.45] ∈ [1., 5.] (a ′ (x) > 0), x ∈ (0.45, 0.55)

5.

x ∈ [0.55, 1].

(42)

We refine iteratively the mesh, using as before a criterion based on the gradient of λ h . Figure 11 (left) depicts the mesh obtained after 3 iterations. Again, the characteristic lines, starting from x = 0.2 (where the initial position y 0 is mainly concentrated), may be observed on the figure. The corresponding approximation λ h is represented on Figure 11 (right). For this simulation we have used r = 2 × 10 -3 . Table 20 gathers some informations on the successive meshes. 

Concluding remarks and perspectives

The mixed formulation we have introduced here in order to address the null controllability of the wave equation seems original. This formulation is nothing else than the Euler system associated to the conjugate functional and depends on both the dual adjoint variable and a Lagrange multiplier, which turns out to be the primal state of the wave equation to be controlled. The approach, recently used in a different way in [START_REF] Cîndea | Numerical controllability of the wave equation through primal methods and Carleman estimates[END_REF], leads to a variational problem defined over time-space functional Hilbert spaces, without distinction between the time and the space variable. The main ingredients allowing to prove the well-posedness of the mixed formulation are an observability inequality, assuming here that T is large enough, and a direct inequality (also called the hidden regularity inequality). For these reasons, the mixed reformulation may also be employed to any other controllable systems for which such inequalities are available : we mention notably the parabolic case (in particular [START_REF] Fernández-Cara | Strong convergence approximations of null controls for the 1D heat equation[END_REF] where a variational approach is used for the heat equation), usually badly conditioned and for which direct robust methods are certainly very advantageous.

At the practical level, the discrete mixed time-space formulation is solved in a systematic way in the framework of the finite element theory: in contrast to the classical approach initially developed in [START_REF] Glowinski | Exact and approximate controllability for distributed parameter systems[END_REF], there is no need to take care of the time discretization nor of the stability of the resulting scheme, which is often a delicate issue. The resolution amounts to solve a sparse symmetric linear system : the corresponding matrix can be preconditioned if necessary, and may be computed once for all as it does not depend on the initial data to be controlled. Eventually, the space-time discretization of the domain allows an adaptation of the mesh so as to reduce the computational cost and capture the main features of the solutions.

For this reason, it is also worthwhile to remark that the variational approach developed here based on a space-time formulation allows to consider in a systematic way the case where the support of inner controls evolves in time. We refer to the work [START_REF] Castro | Exact controllability of the 1-D wave equation from a moving interior point[END_REF] where observability and controllability results are obtained for point-wise moving controls. Actually, using results from [START_REF] Castro | Exact controllability of the 1-D wave equation from a moving interior point[END_REF], we may extend the mixed formulation (35) and in particular prove, assuming T large enough, that the generalized observability inequality (36) also holds for control support of the form

q T := {(x, t) ∈ Q T ; γ(t) -γ 1 (t) < x < γ(t) + γ 2 (t), t ∈ (0, T )}
where γ denotes any curve in the appropriate class defined in [START_REF] Castro | Exact controllability of the 1-D wave equation from a moving interior point[END_REF] and γ 1 , γ 2 any functions in C([0, T ], R + ⋆ ). This issue as well as the optimization of the domain q T (leading to the control of minimal L 2 (q T )-norm, in the spirit of the work [START_REF] Periago | Optimal shape and position of the support for the internal exact control of a string[END_REF]) is fully discussed in [START_REF] Castro | Controllability of the linear wave equation with moving inner actions[END_REF].

Eventually, let us mention that upon classical conditions on the support of the control (distributed or located on a part of the boundary) and on the controllability time as discussed in [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF][START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF], the approach developed in this work remains valid in any dimension in space.

A Appendix: Numerical tables 

Theorem 2 . 1

 21 (i) The mixed formulation (20) is well-posed.

Theorem 3 . 1

 31 (i) The mixed formulation (35) is well-posed.

Figure 1 :

 1 Figure1: Meshes for N = 10. From left to right : a rectangular mesh used for BFS, a triangular uniform mesh and a triangular non-uniform mesh used for HCT.

Figure 2 :

 2 Figure 2: BFS finite element -Evolution of the inf-sup constante δ h with respect to h (see Table2) for r = 10 -4 (<), r = 10 -3 (⋆), r = 10 -2 (•) and r = 10 -1 ( ).

h 1 .

 1 41 × 10 -1 7.01 × 10 -2 3.53 × 10 -2

Figure 3 :Figure 4 :Figure 5 :Figure 6 :

 3456 Figure 3: Example EX3; Evolution of vv h L 2 (0,T ) w.r.t. h for BFS finite element (⋆), HCTuniform mesh (•) and HCT-non uniform mesh ( ); r = 1.

Figure 7 :Figure 8 :

 78 Figure 7: Example EX3 -Iterative refinement of the triangular mesh over Q T with respect to the variable λ h : 142, 412, 1 154, 2 556, 4 750 triangles; r = 2 × 10 -3 .

Figure 9 :

 9 Figure 9: Example EX3 : The primal variable λ h in Q T corresponding to the finer mesh of Figure 7.

Figure 10 :

 10 Figure 10: Example EX3 : Evolution of g n L 2 (Q T ) / g 0 L 2 (Q T ) w.r.t. the iterate n; r = 1; h = 9.99 × 10 -3 .

Figure 11 :

 11 Figure 11: Example EX4 : Left : Triangular mesh of q T and of Q T . Right : The primal variable λ h in Q T .

h 1 .

 1 41 × 10 -1 7.01 × 10 -2 3.53 × 10 -2 1.76 × 10 -2 8.83 × 10 -3 ϕϕ h L 2 (Q T ) 3.69 × 10 -3 1.07 × 10 -3 4.33 × 10 -4 1.91 × 10 -4 3.79 × 10 -4 vv h L 2 (0,T ) 5.26 × 10 -2 2.24 × 10 -2 9.23 × 10 -3 3.76 × 10 -3

Table 1 :

 1 Table 1 reports for T = 2 the corresponding number of elements and nodes with respect to N . 10 -1 7.01 × 10 -2 3.53 × 10 -2 1.76 × 10 -2 8.83 × 10 -3 h -HCT non uniform 9.02 × 10 -2 4.51 × 10 -2 2.55 × 10 -2 1.13 × 10 -2 5.6 × 10 -3 Number of elements (rectangle for BFS and triangle for HCT), number of nodes and value of h for each type of meshes w.r.t. to the integer N -T = 2.

	N	10	20	40	80	160
	card(T h ) -BFS	200	800	3 200	12 800	51 200
	card (T h ) -HCT uniform	400	1 600	6 400	25 600	102 400
	card(T h ) -HCT non uniform	568	2 272	9 088	36 452	145 408
	♯ nodes -BFS/HCT uniform	231	861	3 321	13 041	56 681
	♯ nodes -HCT non uniform	688	2 752	11 008	44 032	176 128
	h -BFS/HCT uniform	1.41 ×				

Table 2 :

 2 ). δ h w.r.t. r and h -T = 2. for the BFS element.

	h r = 1	1.41 × 10 -1 7.01 × 10 -2 3.53 × 10 -2 1.76 × 10 -2 8.83 × 10 -3 0.466 0.253 0.123 0.060 0.030
	r = 10 -2	1.474	1.427	1.178	0.599	0.300
	r = 10 -4	3.364	2.247	1.729	1.524	1.451
	r = h 2	1.474	1.483	1.486	1.489	1.497

Table 3 :

 3 -1 ( ). h 1.41 × 10 -1 7.01 × 10 -2 3.53 × 10 -2 1.76 × 10 -2 8.83 × 10 -3 δ h w.r.t. r and h -T = 2. for the HCT element and uniform mesh.

	r = 1	0.3593	0.2519	0.1782	0.1263	0.0886
	r = 10 -2	1.6626	1.4717	1.4173	1.1939	0.8521
	r = 10 -4	8.7279	4.4403	2.5027	1.74	1.4992
	r = h	1.0939	1.0791	1.0764	1.0769	1.0438
	r = h 2	1.6625	1.6532	1.6416	1.6310	1.6214
	h r = 1	9.02 × 10 -2 4.51 × 10 -2 2.55 × 10 -2 1.13 × 10 -2 5.6 × 10 -3 0.4029 0.2841 0.1885 0.1211 0.0782
	r = 10 -2	1.623	1.4602	1.4149	1.1925	0.7807
	r = 10 -4	7.9374	4.059	2.3286	1.6749	1.4797
	r = h	1.2637	1.2424	1.1679	1.0705	0.9805
	r = h 2	1.623	1.6132	1.5998	1.5867	1.5752

Table 4 :

 4 

δ h w.r.t. r and h -T = 2. for the HCT element and non uniform mesh.

  1.92 ). h1.41 × 10 -1 7.01 × 10 -2 3.53 × 10 -2 1.76 × 10 -2 8.83 × 10 -3 ϕϕ h L 2 (Q T ) 2.63 × 10 -3 2.88 × 10 -4 3.68 × 10 -5 4.82 × 10 -6 6.08 × 10 -7 vv h L 2 (0,T ) 5.32 × 10 -21.3 × 10 -2 3.29 × 10 -3 8.01 × 10 -4 1.98 × 10 -4 Lϕ h L 2 (Q T ) 1.371 × 10 0 2.69 × 10 -1 6.24 × 10 -2 2.05 × 10 -2 6.33 × 10 -3 λ h L 2 (Q T ) 10 10 4.63 × 10 11 1.08 × 10 13

	v h L 2 (0,T )	0.499	0.501	0.5	0.5	0.5
		0.498	0.499	0.499	0.5	0.5
	κ	9.42 × 10 7	9.67 × 10 8	1.97 ×		

Table 5 :

 5 Example EX1 -BFS element -r = 10 -2 . h 1.41 × 10 -1 7.01 × 10 -2 3.53 × 10 -2 1.76 × 10 -2 8.83 × 10 -3 ϕϕ h L 2 (Q T ) 2.68 × 10 -3 2.13 × 10 -4 1.39 × 10 -5 8.81 × 10 -7 5.53 × 10 -8 vv h L 2 (Q T ) 3.87 × 10 -2 2.92 × 10 -3 1.95 × 10 -4 1.68 × 10 -5 2.75 × 10 -6

	v h L 2 (0,T )	0.457	0.496	0.4998	0.4999	0.5
	Lϕ h L 2 (Q T ) λ h L 2 (Q T )	1.38 × 10 -1 0.484	3.8 × 10 -2 0.498	9.7 × 10 -3 0.4999	2.44 × 10 -3 6.14 × 10 -4 0.4999 0.5
	κ	1.52 × 10 8	4.42 × 10			

9 

1.19 × 10 11 7.33 × 10 12 4.55 × 10 14

Table 6 :

 6 

Example EX1 -BFS element -r = 1.

Table 7 :

 7 Example EX1 -HCT element -Uniform mesh -r = 1. h 1.41 × 10 -1 7.01 × 10 -2 3.53 × 10 -2 1.76 × 10 -2 8.83 × 10 -3 ϕϕ h L 2 (Q T ) 3.69 × 10 -3 4.81 × 10 -4 1.13 × 10 -4 2.85 × 10 -5 7.17 × 10 -6 vv h L 2 (0,T ) 5.26 × 10 -2 1.21 × 10 -2 3.02 × 10 -3 7.19 × 10 -4 1.61 × 10 -4

	v h L 2 (0,T )	0.4773	0.4939	0.4984	0.4996	0.4999
	Lϕ h L 2 (Q T ) λ h L 2 (Q T )	1.7803 0.4938	6.16 × 10 -1 2.85 × 10 -1 0.4986 0.4997	1.4 × 10 -1 0.4999	6.96 × 10 -2 0.5
	κ	2.85 × 10 5	2.53 × 10 6	3.66 × 10 7	6.19 × 10 8	3.03 × 10 10

Table 8 :

 8 Example EX1 -HCT element -Uniform mesh -r = 10 -2 .

  66 h1.56 . v h L 2 (0,T ) 7.62 × 10 -2 4.19 × 10 -2 2.20 × 10 -2 1.13 × 10 -2 5.76 × 10 -3 λ h L 2 (Q T )

						-3
	v h L 2 (0,T )	0.5291	0.5325	0.5339	0.5343	0.5344
	v 0.541	0.536	0.5349	0.5346	0.5345
	Lϕ h L 2 (Q					

h 1.41 × 10 -1 7.01 × 10 -2 3.53 × 10 -2 1.76 × 10 -2 8.83 × 10 T ) 8.53 × 10 -2 4.52 × 10 -2 2.31 × 10 -2 1.17 × 10 -2 5.88 × 10 -3

Table 9 :

 9 Example EX2 -BFS element -r = 1.

  1.76 × 10 -2 8.83 × 10 -3 v h L 2 (0,T ) v h L 2 (0,T ) 4.34 × 10 -2 2.06 × 10 -2 9.47 × 10 -3 4.3 × 10 -3 2.02 × 10 -3 λ h L 2 (Q T )

		0.5467	0.5375	0.5352	0.5347	0.5345
	v 0.5469	0.5377	0.5353	0.5347	0.5346
	Lϕ h L 2 (Q T )	1.85 × 10 0	6.18 × 10 -1 2.01 × 10 -1	6.7 × 10 -2	2.49 × 10 -2

Table 10 :

 10 Example EX2 -BFS element -r = 10 -2 .

	h v h L 2 (0,T )	9.02 × 10 -2 4.51 × 10 -2 2.55 × 10 -2 1.13 × 10 -2 0.4794 0.4976 0.5167 0.5268	5.6 × 10 -3 0.5313

Table 12 :

 12 Example EX2 -HCT element -Non uniform mesh -r = 10 -2 . Lϕ h H -1 (Q T ) 1.92 × 10 -16 3.83 × 10 -16 7.46 × 10 -16 1.51 × 10 -15 2.81 × 10 -15

	h v h L 2 (0,T )	1.41 × 10 -1 0.6003	7.01 × 10 -2 0.5850	3.53 × 10 -2 0.5776	1.76 × 10 -2 0.5752	8.83 × 10 -3 0.5747
	v -v h L 2 (0,T ) 2.87 × 10 -1 λ h L 2 (Q T ) 0.62	2.05 × 10 -1 0.598	1.47 × 10 -1 0.586	1.08 × 10 -1 0.581	8.18 × 10 -2 0.578
	Lϕ h L 2 (Q T )	1.02 × 10 -1	7.53 × 10 -2	5.8 × 10 -2	4.55 × 10 -2	3.6 × 10 -2

Table 13 :

 13 Example EX3 -BFS element -r = 1.

	r	10 -6	10 -4	10 -2	1	10
	κ v h L 2 (0,T )	4.52 × 10 12 0.5829	3.71 × 10 11 2.5827	6.05 × 10 11 0.5816	7.38 × 10 12 0.5752	7.26 × 10 14 0.569
	λ h (1, •) L 2 (0,T )	0.5848	2.5848	0.5831	0.5759	0.5696

Table 14 :

 14 Example EX3 -BFS element -h = 1.76 × 10 -2 .

	-3

h 1.56 × 10 -1 7.81 × 10 -2 3.90 × 10 -2 1.95 × 10 -2 9.76 × 10

Table 15 :

 15 Example EX3 -HCT element -Uniform mesh -r = 1.

	h v h L 2 (0,T )	9.87 × 10 -2 4.93 × 10 -2 2.46 × 10 -2 1.23 × 10 -2 6.17 × 10 -3 0.5191 0.5359 0.5451 0.5523 0.5582

Table 17 :

 17 λ h (1, •) L 2 (0,T ) 2.87 × 10 -1 1.85 × 10 -1 1.25 × 10 -1 8.43 × 10 -2 6.02 × 10 -2 λ h L 2 (Q T ) Example EX3 -BFS element -Conjugate gradient algorithm -r = 10 -2 .h1.56 × 10 -1 7.92 × 10 -2 3.99 × 10 -2 1.99 × 10 -2 9.99 × 10 -3 •) L 2 (0,T ) 2.41 × 10 -1 1.68 × 10 -1 1.28 × 10 -1 9.69 × 10 -2 7.62 × 10 -2 λ h L 2 (Q T )

	1.99 × 10 -2 9.99 × 10 -3

Table 18 :

 18 Example EX3 -BFS element -Conjugate gradient algorithm -r = 1. h 1.56 × 10 -1 7.92 × 10 -2 3.99 × 10 -2 1.99 × 10 -2 9.99 × 10 -3 λ h (1, •) L 2 (0,T ) 2.9 × 10 -1 2.18 × 10 -1 1.78 × 10 -1 1.43 × 10 -1 1.14 × 10 -1 λ h L 2 (Q T )

	♯ iterates	15	20	23	32	44
	0.4929 v 0.5957 λ h (1, •) L 2 (0,T )	0.5365 0.5858	0.5486 0.5797	0.5577 0.5773	0.5638 0.5763

Table 19 :

 19 Example EX3 -BFS element -Conjugate gradient algorithm -r = 10 2 .

  h1.41 × 10 -1 7.01 × 10 -2 3.53 × 10 -2 1.76 × 10 -2 8.83× 10 -3 ϕϕ h L 2 (Q T ) 1.92 × 10 -1 1.71 × 10 -2 2.12 × 10 -32.8 × 10 -4 3.78 × 10 -5 vv h L 2 (0,T ) 2.09 × 10 -1 7.19 × 10 -2 2.84 × 10 -2 1.05 × 10 -2 3.71 × 10 -3

	v h L 2 (0,T )	0.508	0.501	0.5	0.5	0.5
	Lϕ h L 2 (Q T ) λ h L 2 (Q T )	1.3 × 10 2 0.498	2.3 × 10 1 0.5	5.4 × 10 0 0.5	1.53 × 10 0 0.5	4.66 × 10 -1 0.5
	ϕ h Φ	1.39	0.55	0.503	0.5	0.5
	κ	4.28 × 10 8	2.64 × 10 9	2.5 × 10 10	3.7 × 10 11	6.91 × 10 12

Table 21 :

 21 Example EX1 -BFS element -r = 10 -4 . h 1.41 × 10 -1 7.01 × 10 -2 3.53 × 10 -2 1.76 × 10 -2 8.83 × 10 -3 ϕϕ h L 2 (Q T )2.6 × 10 -3 9.39 × 10 -3 4.08 × 10 -4 1.86 × 10 -4 8.86 × 10 -5 vv h L 2 (0,T ) 5.32 × 10 -2 3.28 × 10 -2 1.88 × 10 -2 9.6 × 10 -3 4.48 × 10 -3 v h L 2 (0,T ) 10 7 9.64 × 10 8 1.81 × 10 10 3.56 × 10 11 7.19 × 10 12

		0.4998	0.5	0.5	0.5	0.5
	Lϕ h L 2 (Q T )	1.37	0.981	0.9042	0.9922	1.17
	λ h L 2 (Q T )	0.4969	0.4997	0.4999	0.4999	0.5
	ϕ h Φ	0.5182	0.5026	0.5	0.5	0.5
	κ	5.47 ×				

Table 22 :

 22 Example EX1 -BFS element -r = h 2 . h 1.41 × 10 -1 7.01 × 10 -2 3.53 × 10 -2 1.76 × 10 -2 8.83 × 10 -3 ϕϕ h L 2 (Q T ) 2.11 × 10 -2 1.35 × 10 -2 1.35 × 10 -3 8.86 × 10 -5 5.60 × 10 -6 vv h L 2 (Q T ) 4.18 × 10 -1 1.83 × 10 -1 1.81 × 10 -2 1.18 × 10 -3 7.47 × 10 -5 v h L 2 (Q T )10 11 1.57 × 10 13 1.06 × 10 15 6.92 × 10 16 4.44 × 10 18

		0.049	0.312	0.481	0.498	0.5
	Lϕ h L 2 (Q T ) λ h L 2 (Q T )	1.49 × 10 -2 0.408	2.4 × 10 -2 0.446	9.3 × 10 -3 0.493	2.4 × 10 -3 0.499	6.1 × 10 -4 0.5
	ϕ h Φ	0.157	0.395	0.493	0.499	0.5
	κ	2.92 ×				

Table 23 :

 23 Example EX1 -BFS element -r = 10 2 . h 1.41 × 10 -1 7.01 × 10 -2 3.53 × 10 -2 1.76 × 10 -2 8.83 × 10 -3 ϕϕ h L 2 (Q T ) 3.2 × 10 -2 3.34 × 10 -2 2.8 × 10 -2 1.62 × 10 -2 6.06 × 10 -3 vv h L 2 (0,T ) 4.5 × 10 -1 4.53 × 10 -1 3.75 × 10 -1 2.8 × 10 -1 8.06 × 10 -2 v h L 2 (0,T ) Lϕ h L 2 (Q T ) 2.21 × 10 -2 4.16 × 10 -2 6.8 × 10 -2 7.8 × 10 -2 5.81 × 10 -2 λ h L 2 (Q T ) 10 10 4.92 × 10 11 1.38 × 10 13 4.06 × 10 14 1.46 × 10 19

		0.01	0.03	0.12	0.2824	0.4192
		0.443	0.44	0.435	0.4459	0.4753
	κ	2.17 ×			

Table 24 :

 24 Example EX1 -HCT element -Uniform mesh -r = 10.

Table 25 :

 25 1.56 × 10 -3 v h L 2 (0,T ) Example EX1 -HCT element -Uniform mesh -r = h 2 . h 1.41 × 10 -1 7.01 × 10 -2 3.53 × 10 -2 1.76 × 10 -2 8.83 × 10 -3 ϕϕ h L 2 (Q T ) 2.18 × 10 -1 2.13 × 10 -2 2.43 × 10 -3 2.94 × 10 -4 3.56 × 10 -5 vv h L 2 (0,T ) 1.77 × 10 -1 3.08 × 10 -2 1.05 × 10 -2 3.87 × 10 -3 1.42 × 10 -3 v h L 2 (0,T )

		0.4773	0.4988	0.4999	0.5	0.5
	Lϕ h L 2 (Q T )	1.78	0.1424	0.9347	0.9784	4.9939
	λ h L 2 (Q T )	0.4938	0.5003	0.5002	0.5	0.5
	κ	2.85 × 10 5	1.83 × 10 6	1.57 × 10 7	1.08 × 10 8	9.43 × 10 8

Table 26 :

 26 Example EX1 -HCT element -Uniform mesh -r = 10 -4 .h 9.02 × 10 -2 4.51 × 10 -2 2.55 × 10 -2 1.13 × 10 -2 5.6 × 10 -3 ϕϕ h L 2 (Q T ) 2.15 × 10 -2 9.8 × 10 -3 2.93 × 10 -3 7.64 × 10 -4 1.93 × 10 -4 vv h L 2 (0,T ) 2.75 × 10 -1 1.24 × 10 -1 3.74 × 10 -2 1.006 × 10 -2 2.71 × 10 -3 v h L 2 (0,T )10 9 4.15 × 10 10 1.25 × 10 12 5 × 10 13 1.28 × 10 15

		0.1898	0.3674	0.461	0.4899	0.4974
	Lϕ h L 2 (Q T )	0.2421	0.2204	0.1339	0.0701	0.0353
	λ h L 2 (Q T )	0.4317	0.4687	0.4894	0.4971	0.4992
	κ	1.45 ×				

Table 27 :

 27 Example EX1 -HCT element -Non uniform mesh -r = 1.h 9.02 × 10 -2 4.51 × 10 -2 2.55 × 10 -2 1.13 × 10 -2 5.6 × 10 -3 ϕϕ h L 2 (Q T ) 1.24 × 10 -3 1.69 × 10 -4 3.47 × 10 -5 8.07 × 10 -6 1.98 × 10 -6 vv h L 2 (0,T ) 3.79 × 10 -2 1.02 × 10 -2 2.59 × 10 -3 6.47 × 10 -4 1.53 × 10 -4v h L 2 (0,T )

		0.4915	0.4981	0.4996	0.4999	0.5
	Lϕ h L 2 (Q T )	1.2064	0.3612	0.1536	0.0729	0.0357
	λ h L 2 (Q T )	0.4981	0.4996	0.4999	0.5	0.5
	κ	2.76 × 10 6	3.28 × 10 7	4.12 × 10 8	8.78 × 10 9	1.77 × 10 11

Table 28 :

 28 Example EX1 -HCT element -Non uniform mesh -r = 10 -2 . h 1.41 × 10 -1 7.01 × 10 -2 3.53 × 10 -2 1.76 × 10 -2 8.83× 10 -3 v h L 2 (0,T ) v h L 2 (0,T ) 2.31 × 10 -1 1.71 × 10 -1 1.06 × 10 -1 6.48 × 10 -2 3.91 × 10 -2 λ h L 2 (Q T ) Lϕ h L 2 (Q T )1.52 × 10 -1 1.4 × 10 -1 1.18 × 10 -1 8.34 × 10 -2 5.51 × 10 -2

	0.4551	0.4723	0.4982	0.5177	0.5274
	v 0.5331	0.5232	0.5254	0.5299	0.5325

Table 29 :

 29 Example EX2 -HCT element -Uniform mesh -r = 1. h 1.41 × 10 -1 7.01 × 10 -2 3.53 × 10 -2 1.76 × 10 -2 8.83 × 10 -3 v h L 2 (0,T ) v h L 2 (0,T ) 5.05 × 10 -2 2.73 × 10 -2 1.69 × 10 -2 1.09 × 10 -2 6.8 × 10 -3 λ h L 2 (Q T ) Lϕ h L 2 (Q T )2.0168 7.53 × 10 -1 3.53 × 10 -1 1.97 × 10 -1 1.16 × 10 -1

	0.5496	0.537	0.5345	0.5342	0.5344
	v 0.5557	0.5407	0.5361	0.5349	0.5346

Table 30 :

 30 Example EX2 -HCT element -Uniform mesh -r = 10 -2 . h 1.41 × 10 -1 7.01 × 10 -2 3.53 × 10 -2 1.76 × 10 -2 8.83 × 10 -3 v h L 2 (0,T ) v h L 2 (0,T ) 3.2 × 10 -1 2.26 × 10 -1 1.56 × 10 -1 1.07 × 10 -1 7.49 × 10 -2 λ h L 2 (Q T ) Lϕ h L 2 (Q T )2.83 × 10 0 1.71 × 10 0 1.02 × 10 0 6.13 × 10 -1 3.82 × 10 -1

	0.626	0.600	0.587	0.581	0.578
	v 0.626	0.601	0.588	0.582	0.579

Table 31 :

 31 Example EX3 -BFS element -r = 10 -2 . h 1.56 × 10 -1 7.81 × 10 -2 3.90 × 10 -2 1.95 × 10 -2 9.76 × 10 -3 v h L 2 (0,T ) v h L 2 (Q T ) 2.55 × 10 -1 1.3 × 10 -1 8.7 × 10 -2 7.81 × 10 -2 7.27 × 10 -2 λ h L 2 (Q T )

		0.6044	0.5864	0.576	0.5595	0.5716
	v 0.619	0.5955	0.5806	0.5722	0.5774
	Lϕ h L 2 (Q T )	2.7028	1.6157	1.0384	7.3 × 10 -1	5.77 × 10 -1

Table 32 :

 32 Example EX3 -HCT element -Uniform mesh -r = 10 -2 . h 9.87 × 10 -2 4.93 × 10 -2 2.46 × 10 -2 1.23 × 10 -2 6.17× 10 -3 v h L 2 (0,T ) v h L 2 (0,T ) 2.45 × 10 -1 1.57 × 10 -1 1.15 × 10 -1 1.08 × 10 -1 8.84 × 10 -2 λ h L 2 (Q T ) 10 -1 6.43 × 10 -1 4.68 × 10 -1

		0.612	0.584	0.5746	0.5715	0.5713
	v 0.6203	0.5976	0.5857	0.5802	0.5779
	Lϕ h L 2 (Q T )	2.8835	1.6143	9.71 ×	

Table 33 :

 33 Example EX3 -HCT element -Non uniform mesh -r = 10 -2 .

The condition number κ(M h ) of any square matrix M h is defined by κ(M h ) = |||M h |||

|||M -1 h ||| 2 where the norm |||M h ||| 2 stands for the largest singular value of M h .