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Abstract

This paper deals with the numerical computation of null controls for the wave equation

with a potential. The goal is to compute approximations of controls that drive the solu-

tion from a prescribed initial state to zero at a large enough controllability time. In [Cin-

dea, Fernandez-Cara & Münch, Numerical controllability of the wave equation through primal

methods and Carleman estimates, 2013 ], a so called primal method is described leading to

a strongly convergent approximation of boundary controls : the controls minimize quadratic

weighted functionals involving both the control and the state and are obtained by solving

the corresponding optimality condition. In this work, we adapt the method to approximate

the control of minimal square-integrable norm. The optimality conditions of the problem

are reformulated as a mixed formulation involving both the state and his adjoint. We prove

the well-posedeness of the mixed formulation (in particular the inf-sup condition) then dis-

cuss several numerical experiments. The approach covers both the boundary and the inner

controllability. For simplicity, we present the approach in the one dimensional case.
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1 Introduction. The null controllability problem

We are concerned in this work with the null controllability for the 1D wave equation with a

potential. Let us explain our motivation for the boundary case for which the state equation is the

following:







ytt − (c(x)yx)x + d(x, t)y = 0, (x, t) ∈ (0, 1) × (0, T )

y(0, t) = 0, y(1, t) = v(t), t ∈ (0, T )

y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, 1).

(1)

Here, T > 0 and we assume that c ∈ C3([0, 1]) with c(x) ≥ c0 > 0 in [0, 1], d ∈ L∞((0, 1) ×
(0, T )), y0 ∈ L2(0, 1) and y1 ∈ H−1(0, 1); v = v(t) is the control (a function in L2(0, T )) and

y = y(x, t) is the associated state.

In the sequel, for any τ > 0 we denote by Qτ and Στ the sets (0, 1)× (0, τ) and {0, 1} × (0, τ),

respectively. We also use the following notation:

Ly := ytt − (c(x)yx)x + d(x, t)y. (2)

For any (y0, y1) ∈ Y := L2(0, 1) × H−1(0, 1) and any v ∈ L2(0, T ), there exists exactly one

solution y to (1), with the following regularity:

y ∈ C0([0, T ];L2(0, 1)) ∩ C1([0, T ];H−1(0, 1)) (3)

(see for instance [27]). The null controllability problem for (1) at time T is the following: for each

(y0, y1) ∈ Y , find v ∈ L2(0, T ) such that the corresponding solution to (1) satisfies

y(· , T ) = 0, yt(· , T ) = 0 in (0, 1). (4)

It is well known that (1) is null-controllable at any large time T > T ⋆ for some T ⋆ that depends

on c (for instance, see [2, 27] for c ≡ 1 and d ≡ 0 leading to T ⋆ = 2 and see [33] for a general

situation). Moreover, as a consequence of the Hilbert Uniqueness Method of J.-L. Lions [27], the

null controllability of (1) is equivalent to an observability inequality for the associated adjoint

problem.

In the last two decades, a large number of works has been concerned with the (numerical)

approximation of null controls for wave type equations. Since controllability holds in L2, the

approximation of the minimal L2-norm control (refereed by some authors as the HUM control) has

focused most of the attention : the problem reads











Minimize J(y, v) =
1

2

∫ T

0

|v(t)|2 dt

Subject to (y, v) ∈ C(y0, y1;T )

(5)

where C(y0, y1;T ) denotes the linear manifold

C(y0, y1;T ) = { (y, v) : v ∈ L2(0, T ), y solves (1) and satisfies (4) }.

The earlier contribution is due to Glowinski and Lions in [19] (updated in [20]) and relies on

duality arguments. Duality allows to replace the original constrained minimization problem by an
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unconstrained and a priori easier minimization (dual) problem. We define V = H1
0 (0, 1)×L2(0, 1).

The dual problem associated with (5) is :

min
(ϕ0,ϕ1)∈V

J⋆(ϕ0, ϕ1) =
1

2

∫ T

0

|c(1)ϕx(1, t)|2dt+

∫ 1

0

y0(x)ϕt(x, 0)dx− 〈y1, ϕ(·, 0)〉H−1,H1
0

(6)

where the variable ϕ solves the backward wave equation :

Lϕ = 0 in QT , ϕ = 0 on ΣT ; (ϕ(·, T ), ϕt(·, T )) = (ϕ0, ϕ1). (7)

The coercivity of J⋆ - called the conjugate functional of J - is the consequence of the following

estimate : there exists kT > 0 such that

‖ϕ(·, 0), ϕt(·, 0)‖2
V

≤ kT ‖c(1)ϕx(1, ·)‖2
L2(0,T ), ∀(ϕ0, ϕ1) ∈ V (8)

where (ϕ0, ϕ1, ϕ) solves (7). This estimate, refereed in the literature as an observability inequality,

holds true if T is large enough.

At the level of the approximation, the minimization of J⋆ requires to find a finite dimensional

and conformal approximation of V such that the corresponding discrete adjoint solution satisfies

(7), which is in general impossible for polynomial piecewise approximation. In practice, the trick

initially described in [19], consists first to introduce a discrete and consistent approximation of

(1) and then minimize the corresponding discrete conjugate functional. But this requires to prove

uniform discrete observability inequalities that turn out to be not satisfied when very standard

approximations (for instance based on finite differences on uniform meshes) are used. This is due

to some spurious high frequencies components generated by the approximation which can not be

controlled in a uniform time (with respect to the discretization parameters). This observation has

raised many developments in order to get so-called uniform observable (or equivalently controllable)

approximation. We mention the references [8, 15, 21, 22, 24, 28, 30] and we refer to [1, 4, 26] for some

numerical realizations in 2D based on spectral methods. As far as we know, the determination of

discrete observability inequalities is still open in the general case (non uniform mesh, wave equation

with non constant coefficient, etc).

In contrast to these works where solutions of the discrete wave equations are exactly controlled

to zero, we mention [12, 31] based on Russell’s approach where convergent approximations of an

exact control (not necessarily the HUM control) are build.

In [11], a different - so-called primal approach - allowing more general results has been used

and consists to solve directly optimality conditions: specifically, the following general extremal

problem is considered










Minimize J(y, v) =
1

2

∫∫

QT

ρ2|y|2 dx dt+
1

2

∫ T

0

ρ2
0|v|2 dt

Subject to (y, v) ∈ C(y0, y1;T ).

(9)

The weights ρ and ρ0 are strictly positive, continuous and uniformly bounded from below by a

positive constant in QT and (0, T ), respectively. For c in the class A(x0, c0) and T large enough,

greater than T ⋆(c) (both defined in Section 2), the extremal problem (9) is well-posed. Moreover,

defining the Hilbert space P as the completion of the linear space P0 = {q ∈ C∞(QT ) : q =

0 on ΣT } with respect to the scalar product

(p, q)P :=

∫∫

QT

ρ−2LpLq dx dt+

∫ T

0

ρ−2
0 c(1)2 px(1, t) qx(1, t) dt, (10)

we may obtain the following characterization of the optimal pair (y, v) in term of an additional

variable p ∈ P as follows:

y = −ρ−2Lp in QT , v = −(c(x)ρ−2
0 px)

∣

∣

x=1
in (0, T ); (11)
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p ∈ P is the unique solution to the following variational equality:

(p, q)P =

∫ 1

0

y0(x) qt(x, 0) dx− 〈y1, q(·, 0)〉H−1,H1
0
, ∀q ∈ P. (12)

Here and in the sequel, we use the following duality pairing:

〈y1, q(·, 0)〉H−1,H1
0

=

∫ 1

0

∂

∂x
((−∆)−1y1)(x) qx(x, 0) dx,

where −∆ is the Dirichlet Laplacian in (0, 1). We refer the reader to [11] for the details. The search

of a control v in the manifold C(y0, y1, T ) is reduced to solve the (elliptic) variational formulation

(12). The approximation of the solution of (12) is performed in the framework of the finite element

theory through a discretization of the space-time domain QT . In practice, an approximation ph

of p is obtained in a direct way by inverting a symmetric positive definite matrix, in contrast

with the iterative (and possibly divergent) methods used within dual methods. Moreover, a major

advantage of this approach is that a conformal approximation, say Ph of P , leads to the strong

convergence of ph toward p in P , and consequently from (11), to a strong convergence in L2 of

vh := −(c(x)ρ−2
0 ph,x)

∣

∣

x=1
toward v, a null control for (1). It is worth to mention that, for any

h > 0, as in the works [12, 31] mentioned earlier, vh is not a priori an exact control for any finite

dimensional system but an approximation for the L2-norm of the control v.

The variational formulation (12) derived from the optimality conditions (11) is obtained as-

suming that the weights ρ and ρ0 are strictly positive in QT and (0, T ) respectively. In particular,

this approach does not apply for the control of minimal L2-norm, for which simply ρ := 0 and

ρ0 := 1. The main reason of the present work is to adapt this approach to cover the case ρ := 0 and

therefore obtain directly a strong convergent approximation vh of the control of minimal L2-norm.

The paper is organized as follows. In Section 2, we recall the definition of the admissible set

A(x0, c0) for the function c and of the minimal time T ⋆(c) determined in [11] then we associate

to the dual problem (6) an equivalent mixed formulation which relies on the optimality conditions

associated to the problem (5). We then show the well-posedness of this mixed formulation, in

particular we check the inf-sup condition. The mixed formulation allows to approximate simul-

taneously the dual variable and the primal one, controlled solution of (1). Interestingly, we also

derive an extremal problem in the primal variable y only. Section 3 is devoted to the distributed

case for which the strategy also applies. Section 4 is devoted to the numerical approximation of the

mixed formulation as well as numerical experiments, both in the boundary and inner case. Even-

tually, Section 5 concludes with some perspectives : in particular, we highlight that the variational

approach is very appropriate to consider inner control distributed on time dependent support, an

issue recently considered in [6].

2 Control of minimal L
2-norm: a mixed reformulation

We present in this section a mixed formulation based on the optimality conditions associated to

the extremal problem (5). The starting point is the dual problem recalled in the introduction.

Preliminary, we precise the minimal controllability time T ⋆.

We introduce the set

A(x0, c0) =

{

c ∈ C3([0, 1]) : c(x) ≥ c0>0,

− min
[0,1]

(

c(x) + (x− x0)cx(x)
)

< min
[0,1]

(

c(x) +
1

2
(x− x0)cx(x)

)

}

,
(13)

where x0 < 0 and c0 is a positive constant. This set is non empty and contains in particular the

constant function c := c0. The following result holds.
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Proposition 2.1 ([11]) Let us assume that x0 < 0, c0 > 0 and c ∈ A(x0, c0). Let β > 0 be a

positive number with

−min
[0,1]

(

c(x) + (x− x0)cx(x)
)

< β < min
[0,1]

(

c(x) +
1

2
(x− x0)cx(x)

)

and let us consider the function φ(x, t) := |x− x0|2 − βt2 +M0 where M0 is such that φ(x, t) ≥ 1

for all (x, t) ∈ (0, 1) × (−T, T ). Then, for any λ > 0 we set g(x, t) := eλφ(x,t). Finally, let us

assume that

T >
1

β
max
[0,1]

c(x)1/2(x− x0). (14)

Then there exist positive constants s0 and M , only depending on x0, c0, ‖c‖C3([0,1]), ‖d‖L∞(QT )

and T , such that, for all s > s0, one has

s

∫ T

−T

∫ 1

0

e2sg
(

|wt|2 + |wx|2
)

dx dt+ s3
∫ T

−T

∫ 1

0

e2sg|w|2 dx dt

≤M

∫ T

−T

∫ 1

0

e2sg|Lw|2 dx dt+Ms

∫ T

−T

e2sg|wx(1, t)|2 dt
(15)

for any w ∈ L2(−T, T ;H1
0 (0, 1)) satisfying Lw ∈ L2((0, 1) × (−T, T )) and wx(1, ·) ∈ L2(−T, T ).

Then, for any c ∈ A(x0, c0), we define T ⋆(c) as follows :

T ⋆(c) :=
2

β
max
[0,1]

c(x)1/2(x− x0). (16)

with β as in Proposition 2.1.

Proposition 2.1 allows to show in particular that for any c ∈ A and any T > T ⋆(c), there exists

a positive constant kT = kT (c) such that the estimate (8) holds. We refer to [11] for details. The

minimization of J⋆ is then well-posed and if (ϕ̂0, ϕ̂1) denotes the minimizer of J⋆, the control of

minimal L2-norm is given by

v = c(1)ϕ̂x(1, ·) in (0, T ). (17)

The extremal problem min(ϕ0,ϕ1)∈V J⋆(ϕ0, ϕ1) is usually called the dual problem associated to (5).

Remark 1 The inequality (8) can also be obtained directly by the multiplier method (see [33])

and requires T to be large enough. Note that, when c(x) ≡ c0, the assumption (14) simply reads

T > 2(1−x0)√
c0

> 2√
c0

which is optimal. 2

2.1 Mixed reformulation of the controllability problem

In order to avoid the minimization of the functional J⋆ with respect to the initial data (ϕ0, ϕ1),

we now present a direct way to approximate the HUM control, in the spirit of the primal approach

recalled in the introduction and developed in [11].

Since the variable ϕ, solution of (7), is completely and uniquely determined by the data (ϕ0, ϕ1),

the main idea of the reformulation is to keep ϕ as main variable and consider the following extremal

problem:

min
ϕ∈W

Ĵ⋆(ϕ) =
1

2

∫ T

0

|c(1)ϕx(1, t)|2dt+

∫ 1

0

y0(x)ϕt(x, 0)dx− 〈y1, ϕ(·, 0)〉H−1,H1
0
, (18)

where

W =
{

ϕ ∈ L2(QT ), ϕ = 0 on ΣT such that Lϕ = 0 ∈ L2(QT ) and ϕx(1, ·) ∈ L2(0, T )
}

.
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W is an Hilbert space endowed with the inner product

(ϕ,ϕ)W =

∫ T

0

c(1)ϕx(1, t)ϕx(1, t) dt+ η

∫∫

QT

LϕLϕdx dt, ∀ϕ,ϕ ∈W,

for any fixed η > 0. We denote ‖ · ‖W the associated norm such that

‖ϕ‖2
W =

∫ T

0

|c(1)ϕx(1, t)|2dt+ η‖Lϕ‖2
L2(QT ), ∀ϕ ∈W. (19)

The minimization of Ĵ⋆ is evidently equivalent to the minimization of J⋆ over V . Remark that

from (8) the property ϕ ∈ W implies that (ϕ(·, 0), ϕt(·, 0)) ∈ V , so that the functional Ĵ⋆ is

well-defined over W .

The main variable is now ϕ submitted to the constraint equality (in L2(QT )) Lϕ = 0. This

constraint is addressed by introducing a mixed formulation. We define the space Φ larger than W

by

Φ =
{

ϕ ∈ L2(QT ), ϕ = 0 on ΣT such that Lϕ ∈ L2(QT ) and ϕx(1, ·) ∈ L2(0, T )
}

.

Φ is endowed with the same norm than W .

Then, we consider the following mixed formulation : find (ϕ, λ) ∈ Φ × L2(QT ) solution of

{

a(ϕ,ϕ) + b(ϕ, λ) = l(ϕ), ∀ϕ ∈ Φ

b(ϕ, λ) = 0, ∀λ ∈ L2(QT ),
(20)

where

a : Φ × Φ → R, a(ϕ,ϕ) =

∫ T

0

c(1)ϕx(1, t)ϕx(1, t)dt (21)

b : Φ × L2(QT ) → R, b(ϕ, λ) =

∫∫

QT

Lϕ(x, t)λ(x, t)dxdt (22)

l : Φ → R, l(ϕ) = −
∫ 1

0

y0(x)ϕt(x, 0)dx+ 〈y1, ϕ(·, 0)〉H−1,H1
0
. (23)

We have the following result :

Theorem 2.1 (i) The mixed formulation (20) is well-posed.

(ii) The unique solution (ϕ, λ) ∈ Φ × L2(QT ) is the unique saddle-point of the Lagrangian

L : Φ × L2(QT ) → R defined by

L(ϕ, λ) =
1

2
a(ϕ,ϕ) + b(ϕ, λ) − l(ϕ). (24)

(iii) The optimal function ϕ is the minimizer of Ĵ⋆ over Φ while the optimal function λ ∈ L2(QT )

is the state of the controlled wave equation (1) in the weak sense.

Proof - We easily check that the bilinear form a is continuous over Φ×Φ, symmetric and positive

and that the bilinear form b is continuous over Φ × L2(QT ). Furthermore, assuming c ∈ A and

T > T ⋆(c), the continuity of the linear form l over Φ is a direct consequence of the Carleman

estimate (15) given by Proposition 2.1. Precisely, using the fact that the weight e2gs (see (15)) is

bounded and uniformly positive, we deduce from (15) that there exists a constant C0 > 0 such

that

‖ϕ(·, 0), ϕt(·, 0)‖2
H1

0
×L2 ≤ C0

(

‖Lϕ‖2
L2(QT ) + ‖c(1)ϕx(1, ·)‖2

L2(0,T )

)

, ∀ϕ ∈ Φ. (25)

Therefore, the well-posedness of the mixed formulation is a consequence of the following two

properties (see [5]):
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• a is coercive on N (b), where N (b) denotes the kernel of b :

N (b) = {ϕ ∈ Φ such that b(ϕ, λ) = 0 for every λ ∈ L2(QT )}.

• b satisfies the usual ”inf-sup” condition over Φ × L2(QT ): there exists δ > 0 such that

inf
λ∈L2(QT )

sup
ϕ∈Φ

b(ϕ, λ)

‖ϕ‖Φ‖λ‖L2(QT )
≥ δ. (26)

From the definition of a, the first point is clear : for all ϕ ∈ N (b) = W , a(ϕ,ϕ) = ‖ϕ‖2
W . Let

us check the inf-sup condition. For any fixed λ0 ∈ L2(QT ), we define the (unique) element ϕ0

such that Lϕ0 = λ0 and such that ϕ(·, 0) = 0 in H1
0 (0, 1) and ϕt(·, 0) = 0 in L2(0, 1). ϕ0 is

therefore solution of the wave equation with source term λ0 ∈ L2(QT ), null Dirichlet boundary

condition and zero initial state. Since λ0 ∈ L2(QT ), then ϕ0,x(1, ·) ∈ L2(0, T ): precisely, using the

multipliers method (see, for instance, Chapter 1 in [27]), there exists a constant CΩ,T > 0 such

that the solution ϕ0 of the wave equation with source term λ0 satisfies the so-called direct equality
∫ T

0

|c(1)ϕ0,x(1, t)|2dt ≤ CΩ,T c
2(1)‖λ0‖2

L2(QT ). (27)

Consequently, ϕ0 ∈ Φ. In particular, we have b(ϕ0, λ0) = ‖λ0‖2
L2(QT ) and

sup
ϕ∈Φ

b(ϕ, λ0)

‖ϕ‖Φ‖λ0‖L2(QT )
≥ b(ϕ0, λ0)

‖ϕ0‖Φ‖λ0‖L2(QT )
=

‖λ‖2
L2(QT )

(

∫ T

0
|c(1)ϕx(1, t)|2dt+ η‖λ0‖2

L2(QT )

)
1
2 ‖λ0‖L2(QT )

.

Combining the above two inequalities, we obtain

sup
ϕ0∈Φ

b(ϕ0, λ0)

‖ϕ0‖Φ‖λ0‖L2(QT )
≥ 1

√

CΩ,T c2(1) + η

and, hence, (26) holds with δ =
(

CΩ,T c
2(1) + η

)− 1
2 .

The point (ii) is due to the symmetry and to the positivity of the bilinear form a. (iii). The

equality b(ϕ, λ) = 0 for all λ ∈ L2(QT ) implies that Lϕ = 0 as an L2(QT ) function, so that if

(ϕ, λ) ∈ Φ × L2(QT ) solves the mixed formulation, then ϕ ∈W and L(ϕ, λ) = Ĵ⋆(ϕ). Finally, the

first equation of the mixed formulation reads as follows :
∫ T

0

c(1)ϕx(1, t)ϕx(1, t)dt+

∫∫

QT

Lϕ(x, t)λ(x, t) dx dt = l(ϕ), ∀ϕ ∈ Φ,

or equivalently, since the control is given by v = c(1)ϕx(1, ·),
∫ T

0

v(t)ϕx(1, t)dt+

∫∫

QT

Lϕ(x, t)λ(x, t) dx dt = l(ϕ), ∀ϕ ∈ Φ.

But this means that λ ∈ L2(QT ) is solution of the wave equation in the transposition sense. Since

(y0, y1) ∈ L2(0, 1) × H−1(0, 1) and v ∈ L2(0, T ), λ must coincide with the unique weak solution

to (1). 2

Therefore, Theorem 2.1 reduces the search of the HUM control to the resolution of the mixed

formulation (20), or equivalently the search of the saddle point for L. In general, it is very

convenient (actually in the case considered here, it is necessary) to ”augment” the Lagrangien (see

[17]), and consider instead the Lagrangien Lr defined for any r > 0 by














Lr(ϕ, λ) =
1

2
ar(ϕ,ϕ) + b(ϕ, λ) − l(ϕ),

ar(ϕ,ϕ) = a(ϕ,ϕ) + r

∫∫

QT

|Lϕ|2 dx dt.

Since a(ϕ,ϕ) = ar(ϕ,ϕ) on W , the lagrangian L and Lr share the same saddle-point.
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2.2 Dual problem of the extremal problem (18)

The mixed formulation allows to solve simultaneously the dual variable ϕ, argument of the conju-

gate functional (18), and the Lagrange multiplier λ. Since λ turns out to be the controlled state

of (1), we may qualify λ as the primal variable of the problem. We derive in this section the

corresponding extremal problem involving only that variable λ.

For any r > 0, let us define the linear operator Ar from L2(QT ) into L2(QT ) by

Arλ := Lϕ, ∀λ ∈ L2(QT )

where ϕ ∈ Φ is the unique solution to

ar(ϕ,ϕ) = b(ϕ, λ), ∀ϕ ∈ Φ. (28)

Notice that the assumption r > 0 is necessary here in order to guarantee the well-posedness of

(28). Precisely, for any r > 0, the form ar defines a norm equivalent to the norm on Φ (see (19)).

We have the following important lemma :

Lemma 2.1 For any r > 0, the operator Ar is a strongly elliptic, symmetric isomorphism from

L2(QT ) into L2(QT ).

Proof- From the definition of ar, we easily get that ‖Arλ‖L2(QT ) ≤ r−1‖λ‖L2(QT ) and the conti-

nuity of Ar. Next, consider any λ′ ∈ L2(QT ) and denote by ϕ′ the corresponding unique solution

of (28) so that Arλ
′ := Lϕ′. Relation (28) with ϕ = ϕ′ then implies that

∫∫

QT

(Arλ
′)λ dx dt = ar(ϕ,ϕ

′) (29)

and therefore the symmetry and positivity of Ar. The last relation with λ′ = λ and the Carleman

estimate (25) imply that Ar is also positive definite.

Finally, let us check the strong ellipticity of Ar, equivalently that the bilinear functional

(λ, λ′) →
∫∫

QT
(Arλ)λ′ dx dt is L2(QT )-elliptic. Thus we want to show that

∫∫

QT

(Arλ)λ dx dt ≥ C‖λ‖2
L2(QT ), ∀λ ∈ L2(QT ) (30)

for some positive constant C. Suppose that (30) does not hold; there exists then a sequence

{λn}n≥0 of L2(QT ) such that

‖λn‖L2(QT ) = 1, ∀n ≥ 0, lim
n→∞

∫∫

QT

(Arλn)λn dx dt = 0.

Let us denote by ϕn the solution of (28) corresponding to λn. From (29), we then obtain that

lim
n→∞

‖Lϕn‖L2(QT ) = 0, lim
n→∞

‖ϕn,x(1, ·)‖L2(0,T ) = 0 (31)

and thus limn→∞
∫∫

QT
Lϕλn dx dt = 0 for all ϕ ∈ Φ (and so the L2(QT )-weak-convergence of λn

toward 0).

From (28) with ϕ = ϕn and λn, we have

∫∫

QT

(rLϕn − λn)Lϕdx dt+

∫ T

0

c(1)ϕn,x(1, ·)ϕx(1, ·) dt = 0, ∀ϕ ∈ Φ. (32)

We define the sequence {ϕn}n≥0 as follows :











Lϕn = r Lϕn − λn, in QT ,

ϕn(0, ·) = ϕn(1, ·) = 0, in (0, T ),

ϕn(·, 0) = ϕn,t(·, 0) = 0, in (0, 1),
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so that, for all n, ϕn is the solution of the wave equation with zero initial data and source term

r Lϕn − λn in L2(QT ). Using again (27), we get ‖ϕn,x(1, ·)‖ ≤ CΩ,T ‖rLϕn − λn‖L2(QT ), so that

ϕn ∈ Φ. Then, using (32), we get

‖rLϕn − λn‖L2(QT ) ≤ CΩ,T ‖ϕn,x(1, ·)‖L2(0,T ).

Then, from (31), we conclude that limn→+∞ ‖λn‖L2(QT ) = 0 leading to a contradiction and to the

strong ellipticity of the operator Ar. 2

The introduction of the operator Ar is motivated by the following proposition :

Proposition 2.2 For any r¿0, let ϕ0 ∈ Φ be the unique solution of

ar(ϕ0, ϕ) = l(ϕ), ∀ϕ ∈ Φ

and let J⋆⋆ : L2(QT ) → L2(QT ) be the functional defined by

J⋆⋆(λ) =
1

2

∫∫

QT

(Arλ)λ dx dt− b(ϕ0, λ).

The following equality holds :

sup
λ∈L2(QT )

inf
ϕ∈Φ

Lr(ϕ, λ) = − inf
λ∈L2(QT )

J⋆⋆(λ) + Lr(ϕ0, 0).

Proof- For any λ ∈ L2(QT ), let us denote by ϕλ ∈ Φ the minimizer of ϕ→ Lr(ϕ, λ); ϕλ satisfies

the equation

ar(ϕλ, ϕ) + b(ϕ, λ) = l(ϕ), ∀ϕ ∈ Φ

and can be decomposed as follows : ϕλ = ψλ + ϕ0 where ψλ ∈ Φ solves

ar(ψλ, ϕ) + b(ϕ, λ) = 0, ∀ϕ ∈ Φ.

We then have

inf
ϕ∈Φ

Lr(ϕ, λ) = Lr(ϕλ, λ) = Lr(ψλ + ϕ0, λ)

=
1

2
ar(ψλ + ϕ0, ψλ + ϕ0) + b(ψλ + ϕ0, λ) − l(ψλ + ϕ0)

:= X1 +X2 +X3

with










X1 =
1

2
ar(ψλ, ψλ) + b(ψλ, λ) + b(ϕ0, λ)

X2 = ar(ψλ, ϕ0) − l(ψλ), X3 =
1

2
ar(ϕ0, ϕ0) − l(ϕ0).

From the definition of ϕ0, X2 = 0 while X3 = Lr(ϕ0, 0). Eventually, from the definition of ψλ,

X1 = −1

2
ar(ψλ, ψλ) + b(ϕ0, λ) = −1

2

∫∫

QT

(Arλ)λ dx dt+ b(ϕ0, λ)

and the result follows. 2

From the ellipticity of the operator Ar, the minimization of the functional J⋆⋆ over L2(QT ) is

well-posed. It is interesting to note that with this extremal problem involving only λ, we are coming

to the primal variable, controlled solution of (1) (see Theorem 2.1, (iii)). Due to the constraint

(4), the direct minimization of problem (5) with respect to the controlled state is usually avoided

in practice. Here, any constraint equality is assigned to the variable λ.

From the symmetry and ellipticity of the operator Ar, the conjugate gradient algorithm is very

appropriate to minimize J⋆⋆, and consequently to solve the mixed formulation (20). The conjugate

gradient algorithm reads as follows :
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(i) Let λ0 ∈ L2(QT ) be a given function.

(ii) Compute ϕ0 ∈ Φ solution to

ar(ϕ
0, ϕ) + b(ϕ, λ0) = l(ϕ), ∀ϕ ∈ Φ

and g0 = Lϕ0 then set w0 = g0.

(iii) For n ≥ 0, assuming that λn, gn and wn are known, compute ϕn ∈ Φ solution to

ar(ϕ
n, ϕ) = b(ϕ, gn), ∀ϕ ∈ Φ

and gn = Lϕn and then

ρn = ‖gn‖2
L2(QT )/

∫∫

QT

gnwndxdt.

Update λn and gn by

λn+1 = λn − ρnw
n, gn+1 = gn − ρngn.

If ‖gn+1‖L2(QT )/‖g0‖L2(QT ) ≤ ε, take λ = λn+1. Else, compute

γn = ‖gn+1‖2
L2(QT )/‖gn‖2

L2(QT )

and update wn via

wn+1 = gn+1 + γnw
n.

Do n = n+ 1 and return to step (iii).

As mentioned in [18] where this approach is discussed in length for Stokes and Navier-Stokes

system, this algorithm can be viewed as a sophisticated version of Uzawa type algorithm.

Concerning the speed of convergence of the conjugate gradient algorithm (i)-(iii), it follows, for

instance, from [13] that

‖λn − λ‖L2(QT ) ≤ 2
√

ν(Ar)

(

√

ν(Ar) − 1
√

ν(Ar) + 1

)n

‖λ0 − λ‖L2(QT ), ∀n ≥ 1

where λ minimizes J⋆⋆. ν(Ar) = ‖Ar‖‖A−1
r ‖ denotes the condition number of the operator Ar.

Eventually, once the above algorithm has converged we can compute ϕ ∈ Φ as solution of

ar(ϕ,ϕ) + b(ϕ, λ) = l(ϕ), ∀ϕ ∈ Φ.

3 Mixed formulation for the distributed case

The mixed approach may be also used to address the inner situation, the main difference being

the regularity of the initial data to be controlled. Let ω be a open and non empty subset of (0, 1)

and 1ω its characteristic function. We set qT = ω× (0, T ) and recall that ΣT = {0, 1}× (0, T ). For

any initial data (y0, y1) ∈ H1
0 (0, 1) × L2(0, 1) and any v ∈ L2(qT ), the boundary value problem











Ly = v 1ω in QT ,

y = 0 on ΣT ,

(y(·, 0), yt(·, 0)) = (y0, y1) in Ω

(33)

is well-posed and the solution y enjoys the regularity y ∈ C0([0, T ];H1
0 (0, 1))∩C1([0, T ];L2(0, 1)).

Again, the controllability problem for (33) consists in finding a control function v ∈ L2(qT ) such

that (4) holds.
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The dual formulation associated to the control of minimal L2-norm for (33) is

min
(ϕ0,ϕ1)∈L2(0,1)×H−1(0,1)

J⋆(ϕ0, ϕ1) =
1

2

∫∫

qT

|ϕ|2 dx dt+ < ϕ1, y0 >H−1(0,1),H1
0
(0,1) −

∫

Ω

ϕ0 y1 dx

where the adjoint solution solves again the homogeneous adjoint equation (7). The dual formulation

is well-posed as soon as T is large enough: this is given by the inner version of the estimate (8)

(see [27]) :

∃kT > 0 such that ‖ϕ(·, 0), ϕt(·, 0)‖L2×H−1 ≤ kT ‖ϕ‖L2(qT ), ∀(ϕ0, ϕ1) ∈ L2(0, 1) ×H−1(0, 1)

where ϕ solves (7). As in the case of boundary control, since the solution of the adjoint system

is completely determined by the initial data (ϕ0, ϕ1), we keep ϕ as the minimization variable and

consider the extremal problem

min
ϕ∈W

Ĵ⋆(ϕ) =
1

2

∫∫

qT

|ϕ|2 dx dt+ < ϕt(·, 0), y0 >H−1(0,1),H1
0
(0,1) −

∫

Ω

ϕ(·, 0) y1 dx, (34)

where

W =
{

ϕ ∈ L2(qT ), ϕ = 0 on ΣT such that Lϕ = 0 ∈ L2(0, T ;H−1(0, 1))
}

.

Following the lines of Section 2.1, W is a Hilbert space endowed with the inner product

(ϕ,ϕ)W =

∫∫

qT

ϕ(x, t)ϕ(x, t) dx dt+ η

∫ T

0

< Lϕ,Lϕ >H−1(0,1),H−1(0,1) dt,

for any fixed η > 0. We define

Φ =
{

ϕ ∈ L2(qT ), ϕ = 0 on ΣT such that Lϕ ∈ L2(0, T ;H−1(0, 1))
}

and consider the following mixed formulation : find (ϕ, λ) ∈ Φ × L2(0, T ;H1
0 (0, 1)) solution of

{

a(ϕ,ϕ) + b(ϕ, λ) = l(ϕ), ∀ϕ ∈ Φ

b(ϕ, λ) = 0, ∀λ ∈ L2(0, T ;H1
0 (0, 1)),

(35)

where

a : Φ × Φ → R, a(ϕ,ϕ) =

∫∫

qT

ϕ(x, t)ϕ(x, t) dx dt

b : Φ × L2(0, T ;H1
0 (0, 1)) → R, b(ϕ, λ) =

∫ T

0

< Lϕ, λ >H−1,H1
0
dt

l : Φ → R, l(ϕ) = − < ϕt(·, 0), y0 >H−1(0,1),H1
0
(0,1) +

∫ 1

0

ϕ(·, 0) y1 dx.

In the remaining part of this section we assume that ω, T and the wave operator L are such that

the following holds : there exists a constant C0 (depending on ω, T and the wave operator L) such

that

‖ϕ(·, 0), ϕt(·, 0)‖2
L2×H−1 ≤ C0

(

‖Lϕ‖2
L2(0,T ;H−1(0,1)) + ‖ϕ‖2

L2(qT )

)

, ∀ϕ ∈ Φ. (36)

This estimate can be proved using Carleman estimates (see [25, 34]) or by the means of multipliers

method (see [23]). We refer to [7] for a proof in the more general case where the subset ω depends on

the time variable. Inequality (36) is the main ingredient to prove an equivalent result to Theorem

2.1 in the case of distributed control.

Theorem 3.1 (i) The mixed formulation (35) is well-posed.
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(ii) The unique solution (ϕ, λ) ∈ Φ × L2(0, T ;H−1(0, 1)) is the unique saddle-point of the La-

grangian L : Φ × L2(0, T ;H−1(0, 1)) → R defined by L(ϕ, λ) = 1
2a(ϕ,ϕ) + b(ϕ, λ) − l(ϕ).

(iii) The optimal function ϕ is the minimizer of Ĵ⋆, defined by (34), over Φ while the optimal

function λ ∈ L2(QT ) is the state of the controlled wave equation (1) in the weak sense.

Since we assume that (36) holds, the proof of Theorem (3.1) is similar to the one of Theorem 2.1,

and all the methodology described in Section 2 applies to approximate the distributed control of

minimal L2(qT )-norm. We omit the details and refer to [7] for a more general situation. Numerical

results for the approximation of distributed control of minimal L2-norm are discussed at the end

of Section 4.

Remark 2 The result of this section remains true if we define the space W such that Lϕ belongs

to L2(QT ). This allows to avoid scalar product over H−1. The estimate (36) still holds and

the multiplier λ is now only in L2(QT ) and is a controlled solution of (33) in the sense of the

transposition. As for the boundary situation, we may also work with (ϕ(·, 0);ϕt(·, 0)) in H1
0 (0, 1)×

L2(0, 1) leading naturally to Lϕ = 0 as an L2(QT ) function: however, the controls we then get are

only in H−1(qT ) (see [27, Chapter 7, Section 2]).

4 Numerical approximation and experiments

4.1 Discretization

We now turn to the discretization of the mixed formulation (20) assuming r > 0.

Let then Φh and Mh be two finite dimensional spaces parametrized by the variable h such that

Φh ⊂ Φ, Mh ⊂ L2(QT ), ∀h > 0.

Then, we can introduce the following approximated problems : find (ϕh, λh) ∈ Φh ×Mh solution

of
{

ar(ϕh, ϕh) + b(ϕh, λh) = l(ϕh), ∀ϕh ∈ Φh

b(ϕh, λh) = 0, ∀λh ∈Mh.
(37)

The well-posedness of this mixed formulation is again a consequence of two properties : the

coercivity of the bilinear form ar on the subset Nh(b) = {ϕh ∈ Φh; b(ϕh, λh) = 0 ∀λh ∈ Mh}.
Actually, from the relation

ar(ϕ,ϕ) ≥ r

η
‖ϕ‖2

Φ, ∀ϕ ∈ Φ

the form ar is coercive on the full space Φ, and so a fortiori on Nh(b) ⊂ Φh ⊂ Φ. The second

property is a discrete inf-sup condition : there exists δh > 0 such that

inf
λh∈Mh

sup
ϕh∈Φh

b(ϕh, λh)

‖ϕh‖Φh
‖λh‖Mh

≥ δh. (38)

For any fixed h, the spaces Mh and Φh are of finite dimension so that the infimum and supremum

in (38) are reached: moreover, from the property of the bilinear form ar, it is standard to prove

that δh is strictly positive (see Section 4.2). Consequently, for any fixed h > 0, there exists a

unique couple (ϕh, λh) solution of (37). On the other hand, the property infh δh > 0 is in general

difficult to prove and depends strongly on the choice made for the approximated spaces Mh and

Φh. We shall analyze numerically this property in Section 4.2.

As in [11], the finite dimensional and conformal space Φh must be chosen such that Lϕh belongs

to L2(QT ) for any ϕh ∈ Φh. This is guaranteed as soon as ϕh possesses second-order derivatives in
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L2
loc(QT ). Therefore, a conformal approximation based on standard triangulation of QT requires

spaces of functions continuously differentiable with respect to both variables x and t.

We introduce a triangulation Th such that QT = ∪K∈Th
K and we assume that {Th}h>0 is a

regular family. Then, we introduce the space Φh as follows :

Φh = {ϕh ∈ C1(QT ) : ϕh|K ∈ P(K) ∀K ∈ Th, ϕh = 0 on ΣT }

where P(K) denotes an appropriate space of polynomial functions in x and t. In this work, we

consider the following two choices for P(K):

(i) The Bogner-Fox-Schmit (BFS for short) C1 element defined for rectangles. It involves 16

degrees of freedom, namely the values of ϕh, ϕh,x, ϕh,t, ϕh,xt on the four vertices of each

rectangle K. Therefore P(K) = P3,x⊗P3,t where Pr,ξ is by definition the space of polynomial

functions of order r in the variable ξ. We refer to [10] page 76;

(ii) The reduced Hsieh-Clough-Tocher (HCT for short) C1 element defined for triangles. This

is a so-called composite finite element and involves 9 degrees of freedom, namely the values

of ϕh, ϕh,x, ϕh,t on the three vertices of each triangle K. We refer to [10] page 356 and to

[3, 29] where the implementation is discussed.

We also define the finite dimensional space

Mh = {λh ∈ C0(QT ) : λh|K ∈ Q(K) ∀K ∈ Th},

where Q(K) denotes the space of affine functions both in x and t on the element K. For any h > 0,

we have Φh ⊂ Φ and Mh ⊂ L2(QT ).

Let nh = dim Φh,mh = dimMh and let the real matrices Ar,h ∈ Rnh,nh , Bh ∈ Rmh,nh ,

Jh ∈ Rmh,mh and Lh ∈ Rnh be defined by































ar(ϕh, ϕh) =< Ar,h{ϕh}, {ϕh} >R
nh ,Rnh , ∀ϕh, ϕh ∈ Φh,

b(ϕh, λh) =< Bh{ϕh}, {λh} >R
mh ,Rmh , ∀ϕh ∈ Φh,∀λh ∈Mh,

∫ ∫

QT

λhλh dx dt =< Jh{λh}, {λh} >R
mh ,Rmh , ∀λh, λh ∈Mh,

l(ϕh) =< Lh, {ϕh} >, ∀ϕh ∈ Φh

where {ϕh} ∈ Rnh,1 denotes the vector associated to ϕh and < ·, · >R
nh ,Rnh the usual scalar

product over Rnh . With these notations, the problem (37) reads as follows : find {ϕh} ∈ Rnh and

{λh} ∈ Rmh such that

(

Ar,h BT
h

Bh 0

)

R
nh+mh,nh+mh

( {ϕh}
{λh}

)

R
nh+mh

=

(

Lh

0

)

R
nh+mh

. (39)

The matrix Ar,h as well as the mass matrix Jh are symmetric and positive definite for any h > 0

and any r > 0. On the other hand, the matrix of order mh + nh in (39) is symmetric but not

positive definite. We use exact integration methods developed in [14] for the evaluation of the

coefficients of the matrices. The system (39) is solved using the direct LU decomposition method.

Let us also mention that for r = 0, althought the formulation (20) is well-posed, numerically,

the corresponding matrix A0,h is not invertible. In the sequel, we shall consider strictly positive

values for r.

Once an approximation ϕh is obtained, the relation (17) leads to an approximation vh of the

control v: precisely, we define

vh = c(1)π∆t(ϕh,x(1, ·)) in (0, T ) (40)



4 NUMERICAL APPROXIMATION AND EXPERIMENTS 14

where π∆t denotes the projection operator on the space of piecewise affine time function: vh

is piecewise linear and coincides at each node (of the mesh Th) that belongs to the boundary

{1}× (0, T ), with c(1)ϕh,x(1, ·). Note that in view of the definition of the space Φh, the derivative

with respect to x of ϕh is a degree of freedom of {ϕh}: hence, the computation of vh does not

require any additional calculus. The corresponding controlled state yh may be obtained by solving

(1) with standard forward approximation (we refer to [11], Section 4 where this is detailed). Here,

since the controlled state is directly given by the multiplier λ, we simply use λh as an approximation

of y and we do not report here the computation of yh.

Let us now comment on the meshes we use in the next section.

For the Bogner-Fox-Schmidt (BFS) finite element, we use uniform rectangular meshes. Each

element is a rectangle of lengths ∆x and ∆t; ∆x > 0 and ∆t > 0 denote as usual the discretization

parameters in space and time respectively. In the numerical experiments, we shall consider five

levels of meshes , that is we consider (∆x,∆t) = (1/N, 1/N) for N = 10, 20, 40, 80 and N = 160.

For the Hsieh-Clough-Tocher (HCT), we use two types of meshes :

• Uniform triangular meshes obtained from the previous one by dividing each rectangle into

two: thus, all the elements are rectangular triangles of the same shape and size, determined

by ∆x and ∆t.

• Non uniform but regular triangular meshes obtained by Delaunay triangulation. Each tri-

angle of the mesh touching the boundaries (0, 1) × {0, T} has the side on the boundary of

length ∆x; similarly, each triangle touching the boundaries {0, 1} × (0, T ) has the side on

that boundary of length ∆t.

Again, for the HCT element, we shall consider five levels of meshes: (∆x,∆t) = (1/N, T/(2N)) for

N = 10, 20, 40, 80 and N = 160. As an example, Figure 1 displays uniform rectangular, uniform

and non-uniform triangular meshes of QT for N = 10 and T = 2.
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1

1.5

2

x

t

0 0.5 1

0

0.5

1

1.5
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x

t

0 0.5 1

0

0.5

1

1.5

2

x

t

Figure 1: Meshes for N = 10. From left to right : a rectangular mesh used for BFS, a triangular

uniform mesh and a triangular non-uniform mesh used for HCT.

We note

h := max{diam(K),K ∈ Th}
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where diam(K) denotes the diameter ofK ; the parameter h decreases as the parameter N , defining

the fineness of the mesh, increases. Table 1 reports for T = 2 the corresponding number of elements

and nodes with respect to N .

N 10 20 40 80 160

card(Th) - BFS 200 800 3 200 12 800 51 200

card (Th) - HCT uniform 400 1 600 6 400 25 600 102 400

card(Th) - HCT non uniform 568 2 272 9 088 36 452 145 408

♯ nodes -BFS/HCT uniform 231 861 3 321 13 041 56 681

♯ nodes -HCT non uniform 688 2 752 11 008 44 032 176 128

h - BFS/HCT uniform 1.41 × 10−1 7.01 × 10−2 3.53 × 10−2 1.76 × 10−2 8.83 × 10−3

h - HCT non uniform 9.02 × 10−2 4.51 × 10−2 2.55 × 10−2 1.13 × 10−2 5.6 × 10−3

Table 1: Number of elements (rectangle for BFS and triangle for HCT), number of nodes and

value of h for each type of meshes w.r.t. to the integer N - T = 2.

4.2 The discrete inf-sup test

Before to give and discuss some numerical experiments, we first test numerically the discrete inf-

sup condition (38). Taking η = r > 0 so that ar(ϕ,ϕ) = (ϕ,ϕ)Φ exactly for all ϕ,ϕ ∈ Φ, it is

readily seen (see for instance [9]) that the discrete inf-sup constant satisfies

δh = inf

{√
δ : BhA

−1
r,hB

T
h {λh} = δ Jh{λh}, ∀ {λh} ∈ Rmh \ {0}

}

. (41)

The matrix BhA
−1
r,hB

T
h enjoys the same properties than the matrix Ar,h: it is symmetric and

positive definite so that the scalar δh defined in term of the (generalized) eigenvalue problem (41)

is strictly positive. This eigenvalue problem is solved using the power iteration algorithm (assuming

that the lowest eigenvalue is simple): for any {v0
h} ∈ Rnh such that ‖{v0

h}‖2 = 1, compute for any

n ≥ 0, {ϕn
h} ∈ Rnh , {λn

h} ∈ Rmh and {vn+1
h } ∈ Rmh iteratively as follows :

{

Ar,h{ϕn
h} +BT

h {λn
h} = 0

Bh{ϕn
h} = −Jh{vn

h}
, {vn+1

h } =
{λn

h}
‖{λn

h}‖2
.

The scalar δh defined by (41) is then given by : δh = limn→∞(‖{λn
h}‖2)

−1/2.

We now give some numerical values of δh with respect to N (equivalently with respect to h)

for the two C1 finite elements introduced in Section 4.1. We take here for simplicity c := 1 and

d := 0 so that Lϕ := ϕtt − ϕxx. Values of c and d do not affect qualitatively the results.

Table 2 is concerned with the BFS element and T = 2. Table 3 is concerned with the HCT

element for uniform meshes. Table 4 is concerned with the HCT element for non uniform meshes.

As expected, we check that δh decreases as h → 0 and increases as r → 0. More importantly,

we observe that for any r, the value of δh does not seem to be bounded by below with respect to

the discretization parameter: for low values of r, the decrease of δh as h → 0 seems however very

slow (see first row of Table 2 and Figure 2). We recall that the scalars r, η are arbitrary as long

as they are strictly positive, so that the form ar defines a scalar product over Φ. In the first two

cases where the meshes are uniform (that is ∆t = ∆x), it is worth to note that we obtain the same

behavior when ∆x 6= ∆t.

We may conclude that the two finite elements considered here do not ”pass” the discrete inf-sup

test. As we shall see in the next section, this interesting fact does not prevent the convergence of

the sequence ϕh and λh, at least for the cases we have considered. Interestingly, we also observe

that the discrete inf-sup constant δh remains bounded with respect to h when the parameter r

depends appropriately on h (last row of Tables 2, 3, 4).
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h 1.41 × 10−1 7.01 × 10−2 3.53 × 10−2 1.76 × 10−2 8.83 × 10−3

r = 1 0.466 0.253 0.123 0.060 0.030

r = 10−2 1.474 1.427 1.178 0.599 0.300

r = 10−4 3.364 2.247 1.729 1.524 1.451

r = h2 1.474 1.483 1.486 1.489 1.497

Table 2: δh w.r.t. r and h - T = 2. for the BFS element.
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Figure 2: BFS finite element - Evolution of the inf-sup constante δh with respect to h (see Table

2) for r = 10−4 (<), r = 10−3 (⋆), r = 10−2 (◦) and r = 10−1 (�).
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h 1.41 × 10−1 7.01 × 10−2 3.53 × 10−2 1.76 × 10−2 8.83 × 10−3

r = 1 0.3593 0.2519 0.1782 0.1263 0.0886

r = 10−2 1.6626 1.4717 1.4173 1.1939 0.8521

r = 10−4 8.7279 4.4403 2.5027 1.74 1.4992

r = h 1.0939 1.0791 1.0764 1.0769 1.0438

r = h2 1.6625 1.6532 1.6416 1.6310 1.6214

Table 3: δh w.r.t. r and h - T = 2. for the HCT element and uniform mesh.

h 9.02 × 10−2 4.51 × 10−2 2.55 × 10−2 1.13 × 10−2 5.6 × 10−3

r = 1 0.4029 0.2841 0.1885 0.1211 0.0782

r = 10−2 1.623 1.4602 1.4149 1.1925 0.7807

r = 10−4 7.9374 4.059 2.3286 1.6749 1.4797

r = h 1.2637 1.2424 1.1679 1.0705 0.9805

r = h2 1.623 1.6132 1.5998 1.5867 1.5752

Table 4: δh w.r.t. r and h - T = 2. for the HCT element and non uniform mesh.

4.3 Numerical experiments: the boundary case

We first address the boundary case for three initial data with various regularity and for which

we know explicitly the control v of minimal L2-norm. This allows to evaluate precisely the error

‖v−vh‖L2(0,T ) with respect to h and confirm the relevance of the method. For these three examples,

we take c := 1 and d := 0.

For any m ∈ N, let us first consider the initial condition

(EX1) y0(x) = sin(mπx), y1(x) = 0, T = 2

for which the control of minimal L2-norm is given by v(t) = 1
2 (−1)m+1 sin(mπt) on [0, T ] while

the adjoint state ϕ ∈ Φ, minimizer of the conjugate functional Ĵ⋆ (see (18)) has the expression

ϕ(x, t) = − 1
2mπ sin(mπt) sin(mπx) in QT . We have ‖v‖L2(0,T ) = 1/2.

We take m = 3. We first give some numerical values obtained with the BFS element. Tables 5

and 6 collect some numerical values for r = 10−2 and r = 1 respectively. Values corresponding to

r = 10−4, h2 and r = 102 are reported in the Appendix, Table 21, 22, 23.

In the Tables, κ denotes the condition number associated to (39), independent of the initial

data (y0, y1)
1.

The convergence of ‖ϕ− ϕh‖L2(QT ), ‖v − vh‖L2(0,T ) and ‖Lϕh‖L2(QT ) toward zero as h→ 0 is

observed. We observe that, as soon as h is small enough, the value of the positive parameter r > 0

has a reduced impact on the results.

We observe that a low value of r, for instance r = 10−4, (providing a ”better” inf-sup constant

δh) leads to a faster convergence of the Lagrangian variable λh than the value r = 1. This is

in agreement with the classical estimates for mixed finite element approximation. Note that the

phenomenon is however restricted here. On the other hand, a larger value of r allows a faster

convergence of the dual variable ϕh, since the constraint is better represented (observe the locking

phenomenon for r = 10−2 when h is large, Table 23). The case r = h2 (Table 22) offers an

interesting compromise, although quite large values for ‖Lϕh‖L2(QT ). Moreover, this case provides

the lowest values for κ. Finally, in every case, the condition number behaves polynomially with

respect to h.

1The condition number κ(Mh) of any square matrix Mh is defined by κ(Mh) = |||Mh|||2|||M
−1

h
|||2 where the

norm |||Mh|||2 stands for the largest singular value of Mh.
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We compute

r = 1 : ‖ϕ− ϕh‖L2(QT ) ≈ O(h3.9), ‖v − vh‖L2(0,T ) ≈ O(h3.5), ‖Lϕh‖L2(QT ) ≈ O(h1.96),

r = 10−2 : ‖ϕ− ϕh‖L2(QT ) ≈ O(h3), ‖v − vh‖L2(0,T ) ≈ O(h2.), ‖Lϕh‖L2(QT ) ≈ O(h1.92).

h 1.41 × 10−1 7.01 × 10−2 3.53 × 10−2 1.76 × 10−2 8.83 × 10−3

‖ϕ− ϕh‖L2(QT ) 2.63 × 10−3 2.88 × 10−4 3.68 × 10−5 4.82 × 10−6 6.08 × 10−7

‖v − vh‖L2(0,T ) 5.32 × 10−2 1.3 × 10−2 3.29 × 10−3 8.01 × 10−4 1.98 × 10−4

‖vh‖L2(0,T ) 0.499 0.501 0.5 0.5 0.5

‖Lϕh‖L2(QT ) 1.371 × 100 2.69 × 10−1 6.24 × 10−2 2.05 × 10−2 6.33 × 10−3

‖λh‖L2(QT ) 0.498 0.499 0.499 0.5 0.5

κ 9.42 × 107 9.67 × 108 1.97 × 1010 4.63 × 1011 1.08 × 1013

Table 5: Example EX1 - BFS element - r = 10−2.

h 1.41 × 10−1 7.01 × 10−2 3.53 × 10−2 1.76 × 10−2 8.83 × 10−3

‖ϕ− ϕh‖L2(QT ) 2.68 × 10−3 2.13 × 10−4 1.39 × 10−5 8.81 × 10−7 5.53 × 10−8

‖v − vh‖L2(QT ) 3.87 × 10−2 2.92 × 10−3 1.95 × 10−4 1.68 × 10−5 2.75 × 10−6

‖vh‖L2(0,T ) 0.457 0.496 0.4998 0.4999 0.5

‖Lϕh‖L2(QT ) 1.38 × 10−1 3.8 × 10−2 9.7 × 10−3 2.44 × 10−3 6.14 × 10−4

‖λh‖L2(QT ) 0.484 0.498 0.4999 0.4999 0.5

κ 1.52 × 108 4.42 × 109 1.19 × 1011 7.33 × 1012 4.55 × 1014

Table 6: Example EX1 - BFS element - r = 1.

Tables 7 and 8 report the result obtained for the HCT element on uniform meshes for r = 1

and r = 10−2 respectively. For this element, we observe that the value of r has a deeper impact on

the quality of the result. The convergence observed for r = 10 w.r.t. h is very slow (see Table 24

in the appendix). A better convergence is observed for lower values (r = 1, 10−2 and lower). We

compute that :

r = 1 : ‖ϕ− ϕh‖L2(QT ) ≈ O(h1.13), ‖v − vh‖L2(0,T ) ≈ O(h1.15)

r = 10−2 : ‖ϕ− ϕh‖L2(QT ) ≈ O(h2.21), ‖v − vh‖L2(0,T ) ≈ O(h2.08).

The rates of convergence for the HCT element-uniform mesh are significantly reduced with respect

to the rates obtained for the BFS element: as a possible explanation, we emphasize that the

BFS element is slightly richer since he contains in addition the cross derivative ϕh,xt as degree

of freedom. We also observe that the influence of the parameter r is even more important for

non uniform mesh when the HCT element is used (see Tables 27, 28), so that this element seems

more sensitive to the lack of uniform inf-sup property discussed in Section 4.2. In this respect,

when r behaves like h2, we observe in both cases a very good convergence of the variable ϕh and

λh together with a significant reduction of the condition number κ (see Table 25). Again, this

condition number increases polynomially as h goes to 0. We recall that the condition number of

the discrete HUM operator blows up exponentially w.r.t. h when a non uniformly controllable

approximation is used (see [30]).

The second initial data corresponds to a continuous but not C1(0, 1) initial position :

(EX2) y0(x) = 16x3 1(0,1/2)(x) + 16(1 − x)3 1(1/2,1)(x), y1(x) = 0, T = 2

for which the control of minimal L2-norm is given by

v(t) = 8t3 1(0,1/2)(t) + 8(1 − t)3 1(1/2,3/2)(t) − 8(2 − t)3 1(3/2,2)(t), t ∈ (0, T )
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h 1.41 × 10−1 7.01 × 10−2 3.53 × 10−2 1.76 × 10−2 8.83 × 10−3

‖ϕ− ϕh‖L2(QT ) 2.71 × 10−2 1.99 × 10−2 8.75 × 10−3 2.6 × 10−3 7.08 × 10−4

‖v − vh‖L2(0,T ) 3.79 × 10−1 2.66 × 10−1 1.1 × 10−1 3.5 × 10−2 9.3 × 10−3

‖vh‖L2(0,T ) 0.08 0.2239 0.3822 0.4642 0.4905

‖Lϕh‖L2(QT ) 1.87 × 10−1 2.4 × 10−1 2.1 × 10−1 1.28 × 10−1 6.8 × 10−2

‖λh‖L2(QT ) 0.4368 0.4392 0.4658 0.4885 0.4968

κ 2.24 × 108 5.05 × 109 1.4 × 1011 5.88 × 1012 5.57 × 1016

Table 7: Example EX1 - HCT element - Uniform mesh - r = 1.

h 1.41 × 10−1 7.01 × 10−2 3.53 × 10−2 1.76 × 10−2 8.83 × 10−3

‖ϕ− ϕh‖L2(QT ) 3.69 × 10−3 4.81 × 10−4 1.13 × 10−4 2.85 × 10−5 7.17 × 10−6

‖v − vh‖L2(0,T ) 5.26 × 10−2 1.21 × 10−2 3.02 × 10−3 7.19 × 10−4 1.61 × 10−4

‖vh‖L2(0,T ) 0.4773 0.4939 0.4984 0.4996 0.4999

‖Lϕh‖L2(QT ) 1.7803 6.16 × 10−1 2.85 × 10−1 1.4 × 10−1 6.96 × 10−2

‖λh‖L2(QT ) 0.4938 0.4986 0.4997 0.4999 0.5

κ 2.85 × 105 2.53 × 106 3.66 × 107 6.19 × 108 3.03 × 1010

Table 8: Example EX1 - HCT element - Uniform mesh - r = 10−2.

leading to ‖v‖L2(0,T ) =
√

14/7 ≈ 0.53452.

Tables 9 and 10 collect some values for r = 1 and r = 10−2 respectively when the BFS finite

element is used. Again, the influence of the value of r is weak. For this set of data, less regular

than the previous one, we observe a lower rate of convergence with respect to h :

r = 1 : ‖v − vh‖L2(0,T ) ≈ e−0.71h0.93, ‖Lϕh‖L2(QT ) ≈ e−0.54h0.96,

r = 10−2 : ‖v − vh‖L2(0,T ) ≈ e−1.28h0.78, ‖Lϕh‖L2(QT ) ≈ e3.66h1.56.

h 1.41 × 10−1 7.01 × 10−2 3.53 × 10−2 1.76 × 10−2 8.83 × 10−3

‖vh‖L2(0,T ) 0.5291 0.5325 0.5339 0.5343 0.5344

‖v − vh‖L2(0,T ) 7.62 × 10−2 4.19 × 10−2 2.20 × 10−2 1.13 × 10−2 5.76 × 10−3

‖λh‖L2(QT ) 0.541 0.536 0.5349 0.5346 0.5345

‖Lϕh‖L2(QT ) 8.53 × 10−2 4.52 × 10−2 2.31 × 10−2 1.17 × 10−2 5.88 × 10−3

Table 9: Example EX2 - BFS element - r = 1.

Tables 11 and 12 correspond to r = 1 and r = 10−2 respectively when the HCT element with

non uniform meshes is used. We obtain again a slightly lower rate of convergence :

r = 1 : ‖v − vh‖L2(0,T ) ≈ e0.01h0.71, ‖Lϕh‖L2(QT ) ≈ e−0.32h0.56,

r = 10−2 : ‖v − vh‖L2(0,T ) ≈ e−1.06h0.84, ‖Lϕh‖L2(QT ) ≈ e2.97h1.09.

The third example is much stiffer in the sense that the initial position belongs to L2(0, 1) but

is discontinuous:

(EX3) y0(x) = 4x 1(0,1/2)(x), y1(x) = 0, T = 2.4.

The corresponding control of minimal L2-norm, discontinuous, is given by v(t) = 2(1−t) 1(1/2,3/2)(t),

t ∈ (0, T ) so that ‖v‖L2(0,T ) = 1/
√

3 ≈ 0.5773. When the classical dual method (that is, the mini-

mization of a discrete conjugate functional with respect to the initial data of the adjoint solution)

is employed, adapted schemes are needed to obtain convergent results (we refer to [30] and the

references therein).
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h 1.41 × 10−1 7.01 × 10−2 3.53 × 10−2 1.76 × 10−2 8.83 × 10−3

‖vh‖L2(0,T ) 0.5467 0.5375 0.5352 0.5347 0.5345

‖v − vh‖L2(0,T ) 4.34 × 10−2 2.06 × 10−2 9.47 × 10−3 4.3 × 10−3 2.02 × 10−3

‖λh‖L2(QT ) 0.5469 0.5377 0.5353 0.5347 0.5346

‖Lϕh‖L2(QT ) 1.85 × 100 6.18 × 10−1 2.01 × 10−1 6.7 × 10−2 2.49 × 10−2

Table 10: Example EX2 - BFS element - r = 10−2.

h 9.02 × 10−2 4.51 × 10−2 2.55 × 10−2 1.13 × 10−2 5.6 × 10−3

‖vh‖L2(0,T ) 0.4794 0.4976 0.5167 0.5268 0.5313

‖v − vh‖L2(0,T ) 1.86 × 10−1 1.15 × 10−1 7.1 × 10−2 4.29 × 10−2 2.57 × 10−2

‖λh‖L2(QT ) 0.5461 0.5336 0.5327 0.5334 0.534

‖Lϕh‖L2(QT ) 1.49 × 10−1 1.25 × 10−1 8.81 × 10−2 5.84 × 10−2 3.75 × 10−2

Table 11: Example EX2 - HCT element - Non uniform mesh - r = 1.

Table 13 collects some values for r = 1 when the BFS finite element is used (the case r = 10−2

gives very closed results and is reported in Table 31, see the appendix). We observe the following

rate of convergence with respect to h :

r = 1 : ‖v − vh‖L2(0,T ) ≈ e−0.37h0.45, ‖Lϕh‖L2(QT ) ≈ e−1.57h0.37,

r = 10−2 : ‖v − vh‖L2(0,T ) ≈ e−0.09h0.52, ‖Lϕh‖L2(QT ) ≈ e2.46h0.72.

It is interesting to note, as in the previous examples, that a rather good approximation vh of the

control is obtained with a quite large value of the L2-norm of Lϕh. Table 13 also indicates that

the H−1(QT )-norm of Lϕh is almost zero. This is due to the fact that the variable ϕh ∈ Φh

satisfies b(ϕh, λh) = 0 for all λh ∈Mh, that Mh is also a conformal approximation of H1(0, 1) and

that ‖Lϕh‖H−1(0,1) = supl∈H1(0,1),‖l‖
H1=1 |b(ϕh, l)|. For any h and any r, the adjoint variable ϕh

satisfies the wave equation in a weak sense. This phenomenon is highlighted in Table 14: small

values of r (for instance r = 10−6, h being fixed) leads to large values of ‖Lϕh‖L2(0,1) but to good

approximations λh and vh of the controlled solution and of the control respectively.

Tables 15 and 16 provide the results for r = 1 obtained with the reduced HCT for uniform and

non-uniform meshes respectively :

r = 1 − HCT uniform mesh : ‖v − vh‖L2(0,T ) ≈ e−0.86h0.22, ‖Lϕh‖L2(QT ) ≈ e−0.91h0.32,

r = 1 − HCT non uniform mesh : ‖v − vh‖L2(0,T ) ≈ e−1.03h0.25, ‖Lϕh‖L2(QT ) ≈ e−0.55h0.46.

Figure 3 depicts the evolution of the error ‖v− vh‖L2(0,T ) w.r.t. h for the BFS and HCT element.

Closed results are observed for r = 10−2, reported Tables 32 and 33 in the appendix.

Figure 4 depicts the corresponding approximation vh of the HUM control on (0, T ) and confirm

the remarkable approximation we get in this stiff case. Figures 5 and 6 depict the variable ϕh ⊂ Φh

and the multiplier λh ⊂ Mh in QT respectively. These figures are obtained with a mesh Th

composed of 9 088 triangles and for which h = 2.46× 10−2. In agreement with Theorem 2.1, item

(iii), λh is an approximation of the controlled solution for (1). We have used here r = 10−2.

We also emphasize that this variational method which requires a finite element discretization of

the time-space QT is particularly well-adapted to mesh optimization. Still for the example EX3,

Figure 7 depicts a sequence of five distinct meshes of QT = (0, 1)× (0, T ): the sequence is initiated

with a coarse and regularly distributed mesh, corresponding to N = 5. The four other meshes are

successively obtained by local refinement based on the norm of the gradient of λh on each triangle

of Th. As expected, the refinement is concentrated around the lines of discontinuity of λh (see

Figure 9) traveling in QT , generated by the discontinuity of the initial position y0. The five meshes
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h 9.02 × 10−2 4.51 × 10−2 2.55 × 10−2 1.13 × 10−2 5.6 × 10−3

‖vh‖L2(0,T ) 0.5543 0.5395 0.5356 0.5347 0.5345

‖v − vh‖L2(0,T ) 4.78 × 10−2 2.56 × 10−2 1.32 × 10−2 7.69 × 10−3 4.56 × 10−3

‖λh‖L2(QT ) 0.5607 0.5417 0.5364 0.535 0.5346

‖Lϕh‖L2(QT ) 1.6996 6.22 × 10−1 2.63 × 10−1 1.36 × 10−1 7.81 × 10−2

Table 12: Example EX2 - HCT element - Non uniform mesh - r = 10−2.

h 1.41 × 10−1 7.01 × 10−2 3.53 × 10−2 1.76 × 10−2 8.83 × 10−3

‖vh‖L2(0,T ) 0.6003 0.5850 0.5776 0.5752 0.5747

‖v − vh‖L2(0,T ) 2.87 × 10−1 2.05 × 10−1 1.47 × 10−1 1.08 × 10−1 8.18 × 10−2

‖λh‖L2(QT ) 0.62 0.598 0.586 0.581 0.578

‖Lϕh‖L2(QT ) 1.02 × 10−1 7.53 × 10−2 5.8 × 10−2 4.55 × 10−2 3.6 × 10−2

‖Lϕh‖H−1(QT ) 1.92 × 10−16 3.83 × 10−16 7.46 × 10−16 1.51 × 10−15 2.81 × 10−15

Table 13: Example EX3 - BFS element - r = 1.

r 10−6 10−4 10−2 1 10

κ 4.52 × 1012 3.71 × 1011 6.05 × 1011 7.38 × 1012 7.26 × 1014

‖vh‖L2(0,T ) 0.5829 2.5827 0.5816 0.5752 0.569

‖λh(1, ·)‖L2(0,T ) 0.5848 2.5848 0.5831 0.5759 0.5696

‖v − vh‖L2(0,T ) 1.116 × 10−1 1.114 × 10−1 1.079 × 10−1 1.087 × 10−1 1.211 × 10−1

‖Lϕh‖L2(QT ) 5.6 × 103 5.6 × 101 6.13 × 10−1 4.56 × 10−2 1.75 × 10−2

‖Lϕh‖H−1(QT ) 6.85 × 10−14 5.88 × 10−15 6.17 × 10−15 6.06 × 10−15 6.33 × 10−15

Table 14: Example EX3 - BFS element - h = 1.76 × 10−2.

h 1.56 × 10−1 7.81 × 10−2 3.90 × 10−2 1.95 × 10−2 9.76 × 10−3

‖vh‖L2(0,T ) 0.4571 0.4923 0.5194 0.5354 0.5467

‖v − vh‖L2(QT ) 2.78 × 10−1 2.3 × 10−1 2.01 × 10−1 1.72 × 10−1 1.47 × 10−1

‖λh‖L2(QT ) 0.5987 0.5799 0.5744 0.5727 0.5728

‖Lϕh‖L2(QT ) 2.2 × 10−1 1.8 × 10−1 1.37 × 10−1 1.11 × 10−1 9.07 × 10−2

Table 15: Example EX3 - HCT element - Uniform mesh - r = 1.

h 9.87 × 10−2 4.93 × 10−2 2.46 × 10−2 1.23 × 10−2 6.17 × 10−3

‖vh‖L2(0,T ) 0.5191 0.5359 0.5451 0.5523 0.5582

‖v − vh‖L2(0,T ) 2.35 × 10−1 1.92 × 10−1 1.61 × 10−1 1.4 × 10−1 1.19 × 10−1

‖λh‖L2(QT ) 0.5979 0.5809 0.5748 0.5729 0.5728

‖Lϕh‖L2(QT ) 1.9 × 10−1 1.42 × 10−1 1.12 × 10−1 9.07 × 10−2 7.5 × 10−2

Table 16: Example EX3 - HCT element - Non uniform mesh - r = 1.
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Figure 3: Example EX3; Evolution of ‖v − vh‖L2(0,T ) w.r.t. h for BFS finite element (⋆), HCT-

uniform mesh (◦) and HCT- non uniform mesh (�); r = 1.
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Figure 4: Control of minimal L2-norm v and its approximation vh on (0, T ).
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Figure 5: Example EX3 : The dual variable ϕh in QT ; h = 2.46 × 10−2; r = 10−2.
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Figure 6: Example EX3 : The primal variable λh in QT ; h = 2.46 × 10−2; r = 10−2.
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contain 142, 412, 1 154, 2 556 and 4 750 triangles respectively. The number of nodes in these five

meshes is 87, 231, 614, 1 324 and 2 429 respectively. The errors ‖v − vh‖L2(0,T ) corresponding to

each of the five meshes (sorted by number of triangles) are : 2.67× 10−1, 2.51× 10−1, 1.31× 10−1,

8.36 × 10−2 and 8.11 × 10−2 respectively.

As a partial conclusion, this direct method offers very good approximations of the control of

minimal square-integrable norm, even in singular situations for which classical methods generally

fail. It is important to note that the lack of uniform property we have suspected (for r fixed and

large enough) from the experiences reported in Section 4.2 does not seem to have a significant influ-

ence on the behavior of the method w.r.t. h. For any r > 0, the convergence of the approximation

is observed as h tends to 0. An intermediate value of r, around 10−2, offers a good compromise

between the convergence of the primal variable λh and of the dual one ϕh. In this respect, the

parameter r may not be seen as an augmentation parameter for the Lagrangian L, but rather as

a regularization parameter for the variable ϕh (this enforces Lϕh ∈ L2(QT ) uniformly). This also

suggests that the constraint Lϕ ∈ L2(QT ) we have settled in the definition of the space W (see

18) may possibly be weakened.

4.4 Conjugate gradient for J
⋆⋆

We illustrate here the Section 2.2: we minimize the functional J⋆⋆ : L2(QT ) → R with respect to

the variable λ. We recall that this minimization corresponds exactly to the resolution of the mixed

formulation (20) by an iterative Uzawa type procedure. The conjugate gradient algorithm is given

at the end of Section 2.2. In practice, each iteration amounts to solve a linear system involving

the matrix Ar,h of size nh = 4mh (see (39)) which is sparse, symmetric and positive definite. We

use the Cholesky method.

We consider the singular situation given by the example EX3. We take ε = 10−10 as a stopping

threshold for the algorithm (that is the algorithm is stopped as soon as the norm of the residue gn

at the iterate n satisfies ‖gn‖L2(QT ) ≤ 10−10‖g0‖L2(QT )). The algorithm is initiated with λ0 = 0

in QT .

We discuss only some results obtained with the BFS finite element (the HCT finite element

leads to very similar results) and consider uniform meshes with ∆t = 1.2∆x (in order to emphasize

that, in this finite element framework, it is absolutely not necessary to consider ∆t ≤ ∆x when

the velocity c of the waves equals one). Tables 17, 18 and 19 display the result for r = 10−2, 1 and

r = 102 respectively. We recall that the norm of the control is ‖v‖L2(0,T ) ≈ 0.5773.

We first check that this iterative method gives exactly the same approximation λh than the

previous direct method (where (39) is solved directly), since problem (20) coincides with the

minimization of J⋆⋆ in the sense given by Proposition 2.2 for r > 0. Then, we observe that

the number of iterates is sub-linear with respect to h, precisely with respect to the dimension

mh = card({λh}) of the approximated problem. Once again, this is in contrast with the behavior

of the conjugate gradient algorithm when this latter is used to minimize J⋆ with respect to (ϕ0, ϕ1)

(see [30]). Finally, as for the direct method, the influence of the parameter r remains limited.

Since the gradient of J⋆⋆ is given by ∇J⋆⋆(λ) = Lϕ0 −Arλ := Lϕ, a larger r reduces the number

of iterates. From this perspective, r can be seen, here, as an augmentation parameter for the

constraint Lϕ = 0. On the other hand, a larger r reduces the convergence of the primal variable,

that is λh, and therefore of the control, defined here as the trace λh(1, ·). For r = 1 and the

discretization corresponding to h = 9.99 × 10−3 (that is ∆x = 6.25 × 10−2, ∆t = 7.79 × 10−2),

Figure 10 depicts the evolution of the ratio ‖gn‖L2(QT )/‖g0‖L2(QT ) with respect to the iterates and

illustrates the remarkable robustness of the method.
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Figure 7: Example EX3 - Iterative refinement of the triangular mesh over QT with respect to the

variable λh: 142, 412, 1 154, 2 556, 4 750 triangles; r = 2 × 10−3.
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Figure 8: Example EX3 : The dual variable ϕh in QT corresponding to the finer mesh of Figure

7; r = 2 × 10−3.
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Figure 9: Example EX3 : The primal variable λh in QT corresponding to the finer mesh of Figure

7.

h 1.56 × 10−1 7.92 × 10−2 3.99 × 10−2 1.99 × 10−2 9.99 × 10−3

♯ iterates 37 62 83 101 105

mh = card({λh}) 231 840 3 198 12 555 49 749

‖λh(1, ·)‖L2(0,T ) 0.6452 0.6075 0.5902 0.5824 0.5790

‖v − λh(1, ·)‖L2(0,T ) 2.87 × 10−1 1.85 × 10−1 1.25 × 10−1 8.43 × 10−2 6.02 × 10−2

‖λh‖L2(QT ) 0.6241 0.6001 0.5880 0.5822 0.5794

Table 17: Example EX3 - BFS element - Conjugate gradient algorithm - r = 10−2.
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h 1.56 × 10−1 7.92 × 10−2 3.99 × 10−2 1.99 × 10−2 9.99 × 10−3

♯ iterates 19 25 30 43 59

‖λh(1, ·)‖L2(0,T ) 0.6089 0.5867 0.5857 0.5806 0.5784

‖v − λh(1, ·)‖L2(0,T ) 2.41 × 10−1 1.68 × 10−1 1.28 × 10−1 9.69 × 10−2 7.62 × 10−2

‖λh‖L2(QT ) 0.6178 0.5963 0.5857 0.5806 0.5784

Table 18: Example EX3 - BFS element - Conjugate gradient algorithm - r = 1.

h 1.56 × 10−1 7.92 × 10−2 3.99 × 10−2 1.99 × 10−2 9.99 × 10−3

♯ iterates 15 20 23 32 44

‖λh(1, ·)‖L2(0,T ) 0.4929 0.5365 0.5486 0.5577 0.5638

‖v − λh(1, ·)‖L2(0,T ) 2.9 × 10−1 2.18 × 10−1 1.78 × 10−1 1.43 × 10−1 1.14 × 10−1

‖λh‖L2(QT ) 0.5957 0.5858 0.5797 0.5773 0.5763

Table 19: Example EX3 - BFS element - Conjugate gradient algorithm - r = 102.
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Figure 10: Example EX3 : Evolution of ‖gn‖L2(QT )/‖g0‖L2(QT ) w.r.t. the iterate n; r = 1;

h = 9.99 × 10−3.
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4.5 Numerical experiments: the inner case

We illustrate numerically the Section 3 which concerns the distributed controllability. Following

Remark 2 and in order to avoid scalar product over H−1, we solve the mixed formulation (35) and

look for ϕ such that Lϕ belongs to L2(QT ). In this case, the numerical implementation of the

distributed case is very similar to the boundary one : the term
∫ T

0
c(1)ϕx(1, ·)ϕx(1, ·) dt is simply

replaced by the term
∫∫

qT
ϕϕdx dt. The other difference appears in the linear right hand side term

of the mixed formulation due to the change of regularity of the initial data.

We consider the following data (see [11], Section 4.5):

(EX4) y0(x) = e−500(x−0.2)2 , y1(x) = 0, T = 2.2, ω = (0.2, 0.4)

and a non-constant function c = c(x) ∈ C1([0, 1]) with

c(x) =











1. x ∈ [0, 0.45]

∈ [1., 5.] (a′(x) > 0), x ∈ (0.45, 0.55)

5. x ∈ [0.55, 1].

(42)

We refine iteratively the mesh, using as before a criterion based on the gradient of λh. Figure

11 (left) depicts the mesh obtained after 3 iterations. Again, the characteristic lines, starting from

x = 0.2 (where the initial position y0 is mainly concentrated), may be observed on the figure. The

corresponding approximation λh is represented on Figure 11 (right). For this simulation we have

used r = 2 × 10−3. Table 20 gathers some informations on the successive meshes.
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Figure 11: Example EX4 : Left : Triangular mesh of qT and of QT . Right : The primal

variable λh in QT .
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Iteration 0 1 2 3

♯ triangles 207 772 2 508 7 284

♯ points 120 415 1 300 3 710

‖vh‖L2(qT ) 0.3703 0.3004 0.3573 0.4328

Table 20: Example EX3 - Information on the successive meshes : the iterate 3 corresponds to the

mesh of Figure 11.

5 Concluding remarks and perspectives

The mixed formulation we have introduced here in order to address the null controllability of the

wave equation seems original. This formulation is nothing else than the Euler system associated to

the conjugate functional and depends on both the dual adjoint variable and a Lagrange multiplier,

which turns out to be the primal state of the wave equation to be controlled. The approach,

recently used in a different way in [11], leads to a variational problem defined over time-space

functional Hilbert spaces, without distinction between the time and the space variable. The main

ingredients allowing to prove the well-posedness of the mixed formulation are an observability

inequality, assuming here that T is large enough, and a direct inequality (also called the hidden

regularity inequality). For these reasons, the mixed reformulation may also be employed to any

other controllable systems for which such inequalities are available : we mention notably the

parabolic case (in particular [16] where a variational approach is used for the heat equation),

usually badly conditioned and for which direct robust methods are certainly very advantageous.

At the practical level, the discrete mixed time-space formulation is solved in a systematic way in

the framework of the finite element theory: in contrast to the classical approach initially developed

in [19], there is no need to take care of the time discretization nor of the stability of the resulting

scheme, which is often a delicate issue. The resolution amounts to solve a sparse symmetric linear

system : the corresponding matrix can be preconditioned if necessary, and may be computed

once for all as it does not depend on the initial data to be controlled. Eventually, the space-time

discretization of the domain allows an adaptation of the mesh so as to reduce the computational

cost and capture the main features of the solutions.

For this reason, it is also worthwhile to remark that the variational approach developed here

based on a space-time formulation allows to consider in a systematic way the case where the support

of inner controls evolves in time. We refer to the work [6] where observability and controllability

results are obtained for point-wise moving controls. Actually, using results from [6], we may extend

the mixed formulation (35) and in particular prove, assuming T large enough, that the generalized

observability inequality (36) also holds for control support of the form

qT := {(x, t) ∈ QT ; γ(t) − γ1(t) < x < γ(t) + γ2(t), t ∈ (0, T )}

where γ denotes any curve in the appropriate class defined in [6] and γ1, γ2 any functions in

C([0, T ],R+
⋆ ). This issue as well as the optimization of the domain qT (leading to the control of

minimal L2(qT )-norm, in the spirit of the work [32]) is fully discussed in [7].

Eventually, let us mention that upon classical conditions on the support of the control (dis-

tributed or located on a part of the boundary) and on the controllability time as discussed in

[2, 27], the approach developed in this work remains valid in any dimension in space.

A Appendix: Numerical tables
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h 1.41 × 10−1 7.01 × 10−2 3.53 × 10−2 1.76 × 10−2 8.83 × 10−3

‖ϕ− ϕh‖L2(QT ) 1.92 × 10−1 1.71 × 10−2 2.12 × 10−3 2.8 × 10−4 3.78 × 10−5

‖v − vh‖L2(0,T ) 2.09 × 10−1 7.19 × 10−2 2.84 × 10−2 1.05 × 10−2 3.71 × 10−3

‖vh‖L2(0,T ) 0.508 0.501 0.5 0.5 0.5

‖Lϕh‖L2(QT ) 1.3 × 102 2.3 × 101 5.4 × 100 1.53 × 100 4.66 × 10−1

‖λh‖L2(QT ) 0.498 0.5 0.5 0.5 0.5

‖ϕh‖Φ 1.39 0.55 0.503 0.5 0.5

κ 4.28 × 108 2.64 × 109 2.5 × 1010 3.7 × 1011 6.91 × 1012

Table 21: Example EX1 - BFS element - r = 10−4.

h 1.41 × 10−1 7.01 × 10−2 3.53 × 10−2 1.76 × 10−2 8.83 × 10−3

‖ϕ− ϕh‖L2(QT ) 2.6 × 10−3 9.39 × 10−3 4.08 × 10−4 1.86 × 10−4 8.86 × 10−5

‖v − vh‖L2(0,T ) 5.32 × 10−2 3.28 × 10−2 1.88 × 10−2 9.6 × 10−3 4.48 × 10−3

‖vh‖L2(0,T ) 0.4998 0.5 0.5 0.5 0.5

‖Lϕh‖L2(QT ) 1.37 0.981 0.9042 0.9922 1.17

‖λh‖L2(QT ) 0.4969 0.4997 0.4999 0.4999 0.5

‖ϕh‖Φ 0.5182 0.5026 0.5 0.5 0.5

κ 5.47 × 107 9.64 × 108 1.81 × 1010 3.56 × 1011 7.19 × 1012

Table 22: Example EX1 - BFS element - r = h2.

h 1.41 × 10−1 7.01 × 10−2 3.53 × 10−2 1.76 × 10−2 8.83 × 10−3

‖ϕ− ϕh‖L2(QT ) 2.11 × 10−2 1.35 × 10−2 1.35 × 10−3 8.86 × 10−5 5.60 × 10−6

‖v − vh‖L2(QT ) 4.18 × 10−1 1.83 × 10−1 1.81 × 10−2 1.18 × 10−3 7.47 × 10−5

‖vh‖L2(QT ) 0.049 0.312 0.481 0.498 0.5

‖Lϕh‖L2(QT ) 1.49 × 10−2 2.4 × 10−2 9.3 × 10−3 2.4 × 10−3 6.1 × 10−4

‖λh‖L2(QT ) 0.408 0.446 0.493 0.499 0.5

‖ϕh‖Φ 0.157 0.395 0.493 0.499 0.5

κ 2.92 × 1011 1.57 × 1013 1.06 × 1015 6.92 × 1016 4.44 × 1018

Table 23: Example EX1 - BFS element - r = 102.

h 1.41 × 10−1 7.01 × 10−2 3.53 × 10−2 1.76 × 10−2 8.83 × 10−3

‖ϕ− ϕh‖L2(QT ) 3.2 × 10−2 3.34 × 10−2 2.8 × 10−2 1.62 × 10−2 6.06 × 10−3

‖v − vh‖L2(0,T ) 4.5 × 10−1 4.53 × 10−1 3.75 × 10−1 2.8 × 10−1 8.06 × 10−2

‖vh‖L2(0,T ) 0.01 0.03 0.12 0.2824 0.4192

‖Lϕh‖L2(QT ) 2.21 × 10−2 4.16 × 10−2 6.8 × 10−2 7.8 × 10−2 5.81 × 10−2

‖λh‖L2(QT ) 0.443 0.44 0.435 0.4459 0.4753

κ 2.17 × 1010 4.92 × 1011 1.38 × 1013 4.06 × 1014 1.46 × 1019

Table 24: Example EX1 - HCT element - Uniform mesh - r = 10.

h 1.41 × 10−1 7.01 × 10−2 3.53 × 10−2 1.76 × 10−2 8.83 × 10−3

‖ϕ− ϕh‖L2(QT ) 3.69 × 10−3 1.07 × 10−3 4.33 × 10−4 1.91 × 10−4 3.79 × 10−4

‖v − vh‖L2(0,T ) 5.26 × 10−2 2.24 × 10−2 9.23 × 10−3 3.76 × 10−3 1.56 × 10−3

‖vh‖L2(0,T ) 0.4773 0.4988 0.4999 0.5 0.5

‖Lϕh‖L2(QT ) 1.78 0.1424 0.9347 0.9784 4.9939

‖λh‖L2(QT ) 0.4938 0.5003 0.5002 0.5 0.5

κ 2.85 × 105 1.83 × 106 1.57 × 107 1.08 × 108 9.43 × 108

Table 25: Example EX1 - HCT element - Uniform mesh - r = h2.
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h 1.41 × 10−1 7.01 × 10−2 3.53 × 10−2 1.76 × 10−2 8.83 × 10−3

‖ϕ− ϕh‖L2(QT ) 2.18 × 10−1 2.13 × 10−2 2.43 × 10−3 2.94 × 10−4 3.56 × 10−5

‖v − vh‖L2(0,T ) 1.77 × 10−1 3.08 × 10−2 1.05 × 10−2 3.87 × 10−3 1.42 × 10−3

‖vh‖L2(0,T ) 0.5273 0.5007 0.5001 0.5 0.5

‖Lϕh‖L2(QT ) 131.39 24.11 5.51 1.52 4.49 × 10−1

‖λh‖L2(QT ) 0.5046 0.5005 0.5002 0.5001 0.5

κ 7.22 × 105 2.76 × 106 1.53 × 107 1.12 × 108 8.87 × 108

Table 26: Example EX1 - HCT element - Uniform mesh - r = 10−4.

h 9.02 × 10−2 4.51 × 10−2 2.55 × 10−2 1.13 × 10−2 5.6 × 10−3

‖ϕ− ϕh‖L2(QT ) 2.15 × 10−2 9.8 × 10−3 2.93 × 10−3 7.64 × 10−4 1.93 × 10−4

‖v − vh‖L2(0,T ) 2.75 × 10−1 1.24 × 10−1 3.74 × 10−2 1.006 × 10−2 2.71 × 10−3

‖vh‖L2(0,T ) 0.1898 0.3674 0.461 0.4899 0.4974

‖Lϕh‖L2(QT ) 0.2421 0.2204 0.1339 0.0701 0.0353

‖λh‖L2(QT ) 0.4317 0.4687 0.4894 0.4971 0.4992

κ 1.45 × 109 4.15 × 1010 1.25 × 1012 5 × 1013 1.28 × 1015

Table 27: Example EX1 - HCT element - Non uniform mesh - r = 1.

h 9.02 × 10−2 4.51 × 10−2 2.55 × 10−2 1.13 × 10−2 5.6 × 10−3

‖ϕ− ϕh‖L2(QT ) 1.24 × 10−3 1.69 × 10−4 3.47 × 10−5 8.07 × 10−6 1.98 × 10−6

‖v − vh‖L2(0,T ) 3.79 × 10−2 1.02 × 10−2 2.59 × 10−3 6.47 × 10−4 1.53 × 10−4

‖vh‖L2(0,T ) 0.4915 0.4981 0.4996 0.4999 0.5

‖Lϕh‖L2(QT ) 1.2064 0.3612 0.1536 0.0729 0.0357

‖λh‖L2(QT ) 0.4981 0.4996 0.4999 0.5 0.5

κ 2.76 × 106 3.28 × 107 4.12 × 108 8.78 × 109 1.77 × 1011

Table 28: Example EX1 - HCT element - Non uniform mesh - r = 10−2.

h 1.41 × 10−1 7.01 × 10−2 3.53 × 10−2 1.76 × 10−2 8.83 × 10−3

‖vh‖L2(0,T ) 0.4551 0.4723 0.4982 0.5177 0.5274

‖v − vh‖L2(0,T ) 2.31 × 10−1 1.71 × 10−1 1.06 × 10−1 6.48 × 10−2 3.91 × 10−2

‖λh‖L2(QT ) 0.5331 0.5232 0.5254 0.5299 0.5325

‖Lϕh‖L2(QT ) 1.52 × 10−1 1.4 × 10−1 1.18 × 10−1 8.34 × 10−2 5.51 × 10−2

Table 29: Example EX2 - HCT element - Uniform mesh - r = 1.

h 1.41 × 10−1 7.01 × 10−2 3.53 × 10−2 1.76 × 10−2 8.83 × 10−3

‖vh‖L2(0,T ) 0.5496 0.537 0.5345 0.5342 0.5344

‖v − vh‖L2(0,T ) 5.05 × 10−2 2.73 × 10−2 1.69 × 10−2 1.09 × 10−2 6.8 × 10−3

‖λh‖L2(QT ) 0.5557 0.5407 0.5361 0.5349 0.5346

‖Lϕh‖L2(QT ) 2.0168 7.53 × 10−1 3.53 × 10−1 1.97 × 10−1 1.16 × 10−1

Table 30: Example EX2 - HCT element - Uniform mesh - r = 10−2.

h 1.41 × 10−1 7.01 × 10−2 3.53 × 10−2 1.76 × 10−2 8.83 × 10−3

‖vh‖L2(0,T ) 0.626 0.600 0.587 0.581 0.578

‖v − vh‖L2(0,T ) 3.2 × 10−1 2.26 × 10−1 1.56 × 10−1 1.07 × 10−1 7.49 × 10−2

‖λh‖L2(QT ) 0.626 0.601 0.588 0.582 0.579

‖Lϕh‖L2(QT ) 2.83 × 100 1.71 × 100 1.02 × 100 6.13 × 10−1 3.82 × 10−1

Table 31: Example EX3 - BFS element - r = 10−2.
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h 1.56 × 10−1 7.81 × 10−2 3.90 × 10−2 1.95 × 10−2 9.76 × 10−3

‖vh‖L2(0,T ) 0.6044 0.5864 0.576 0.5595 0.5716

‖v − vh‖L2(QT ) 2.55 × 10−1 1.3 × 10−1 8.7 × 10−2 7.81 × 10−2 7.27 × 10−2

‖λh‖L2(QT ) 0.619 0.5955 0.5806 0.5722 0.5774

‖Lϕh‖L2(QT ) 2.7028 1.6157 1.0384 7.3 × 10−1 5.77 × 10−1

Table 32: Example EX3 - HCT element - Uniform mesh - r = 10−2.

h 9.87 × 10−2 4.93 × 10−2 2.46 × 10−2 1.23 × 10−2 6.17 × 10−3

‖vh‖L2(0,T ) 0.612 0.584 0.5746 0.5715 0.5713

‖v − vh‖L2(0,T ) 2.45 × 10−1 1.57 × 10−1 1.15 × 10−1 1.08 × 10−1 8.84 × 10−2

‖λh‖L2(QT ) 0.6203 0.5976 0.5857 0.5802 0.5779

‖Lϕh‖L2(QT ) 2.8835 1.6143 9.71 × 10−1 6.43 × 10−1 4.68 × 10−1

Table 33: Example EX3 - HCT element - Non uniform mesh - r = 10−2.
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