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Traces of functions of bounded deformation

Introduction

Functions of bounded deformation have been introduced in connexion with variational problems of small strain elasto-plasticity. These models lead to the minimization of energy functionals with linear growth with respect to the linearized strain, and, therefore, enforce finite energy configurations for which the linearized strain is an integrable function. Contrary to the case of elasticity, no Korn's inequality is available in the non-reflexible space L 1 (see [START_REF] Ornstein | Non-inequality for differential operators in the L 1 -norm[END_REF][START_REF] Conti | A new approach to counterexample to L 1 estimates: Korn's inequality, geometric rigidity, and regularity for gradients of separately convex functions[END_REF]), and usual compactness methods (adding a viscosity, Galerkin or finite difference approximations) forces one to fall within the framework of linear strains in the space of measures.

The space BD(Ω) of functions of bounded deformation in an open set Ω of R n has been introduced in [START_REF] Matthies | The saddle point of a differential program, Energy methods in finite element analysis[END_REF][START_REF] Suquet | Existence et régularité des solutions des équations de la plasticité[END_REF] as the natural energy space to study plasticity models (see [START_REF] Suquet | Sur les équations de la plasticité: existence et régularité des solutions[END_REF][START_REF] Strang | Duality and relaxation in the variational problems of plasticity[END_REF][START_REF] Anzellotti | Existence of the displacement field for an elasto-plastic body subject to Hencky's law and Von Mises' yield criterion[END_REF]). It is made of all integrable functions u : Ω → R n whose distributional strain -the symmetric part of the distributional derivative Eu := (Du + Du T )/2 -is a Radon measure with finite total variation. In the footsteps of these works, a systematic study of this space has been carried out, starting from basic properties (traces, imbeddings, Poincaré-Korn inequalities) in [START_REF] Anzellotti | Existence of the displacement field for an elasto-plastic body subject to Hencky's law and Von Mises' yield criterion[END_REF][START_REF] Strang | Functions of bounded deformations[END_REF][START_REF] Suquet | Un espace fonctionnel pour les équations de la plasticité[END_REF], to fine properties (structure of the strain measure, one-dimensional sections, approximate differentiability) in [START_REF] Ambrosio | Fine properties of functions with bounded deformation[END_REF][START_REF] Hajlasz | On approximate differentiability of functions with bounded deformation[END_REF], by analogy with the space BV (Ω) (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] and references therein). We also refer to the monograph [START_REF] Temam | Problèmes mathématiques en plasticité[END_REF] and the unpublished thesis [START_REF] Kohn | New estimates for deformations in terms of their strains[END_REF] for additional information.

Later on, a variational model of fracture mechanics [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF] gave another application of the space BD(Ω). This model consists in a constrained minimization of a Mumford-Shah type energy functional for which the subspace SBD(Ω) of special functions of bounded deformation introduced in [START_REF] Ambrosio | Fine properties of functions with bounded deformation[END_REF][START_REF] Bellettini | Compactness and lower semicontinuity properties in SBD(Ω)[END_REF] (see also [START_REF] Chambolle | An approximation result for special functions with bounded deformation[END_REF]) has found relevant. Recently, the space GBD(Ω) of generalized functions of bounded deformation has been introduced and studied in [START_REF] Maso | Generalized functions of bounded deformation[END_REF] in order to palliate the lack of maximum principle in such vectorial variational problems. We also refer to [START_REF] Barroso | A relaxation theorem in the space of functions of bounded deformation[END_REF][START_REF] Ebobisse | A lower semicontinuity result for some integral functionals in the space SBD[END_REF][START_REF] Ebobisse | A note on the integral representation of functionals in the space SBD(Ω)[END_REF][START_REF] Gargiulo | Some sufficient conditions for lower semicontinuity in SBD and applications to minimum problems[END_REF][START_REF] Rindler | Lower semicontinuity for integral functionals in the space of functions of bounded deformation via rigidity and Young measures[END_REF] and references therein for applications of functions of bounded deformation to lower semicontinuity, relaxation, and related problems of the calculus of variations.

A common typical feature of these models is that they develop strain concentration -the so-called slip surfaces in plasticity and cracks in brittle fracture -leading, from a macroscopic point of view, to displacement discontinuities. For this reason, it is relevant to understand the nature of discontinuities of functions of bounded deformation which was one of the main purposes of [START_REF] Ambrosio | Fine properties of functions with bounded deformation[END_REF][START_REF] Bellettini | Compactness and lower semicontinuity properties in SBD(Ω)[END_REF][START_REF] Chambolle | An approximation result for special functions with bounded deformation[END_REF]. In particular, as in the case of functions of bounded variation, one needs to make precise the notion of trace on sets of co-dimension one.

A first result in that direction has been given in [START_REF] Suquet | Sur un nouveau cadre fonctionnel pour les équations de la plasticité[END_REF] where a very weak notion of trace of BD(Ω) functions has been obtained as an element of the distribution space W -1, n n-1 (∂Ω; R n ). Subsequently, this result has been improved in [START_REF] Strang | Functions of bounded deformations[END_REF][START_REF] Suquet | Un espace fonctionnel pour les équations de la plasticité[END_REF] by establishing that the trace actually belongs to L 1 (∂Ω; R n ). However, it turns out that the proofs presented in those references, only given for domains of class C 1 , contain several imprecisions (see the paragraph below). In addition, the arguments do not easily extend to Lipschitz domains, although such a result has been stated and used many times. Since we did not locate a precise non-ambiguous proof in the literature, and according to the importance of this result, we decided to present in this work a rigorous proof of the trace theorem in BD(Ω) for Lipschitz domains Ω.

In order to highlight the imprecisions in [START_REF] Strang | Functions of bounded deformations[END_REF][START_REF] Suquet | Un espace fonctionnel pour les équations de la plasticité[END_REF], let us briefly sketch the general idea of the proofs in the simplified two-dimensional case (n = 2). As usual in trace theory, a localization argument allows one to reduce to the case where Ω is written as the sub-graph {(x 1 , x 2 ) : x 2 < a(x 1 )} of some C 1 function a : R → R in some orthogonal basis (e 1 , e 2 ) of R 2 , and u has compact support in Ω. Since smooth functions are not dense in BD(Ω) for the norm topology, the trace cannot be defined as the unique continuous extension of the restriction mapping to the boundary. It is rather obtained by taking the limit of u(x) as the point x ∈ Ω tends to the boundary. Contrary to the case of functions of bounded variation, since we only control the symmetric part of the gradient, it is not possible to control simultaneously all the components of the trace. Indeed, if x ∈ ∂Ω, taking the limit of u(xtξ) as t → 0 + with respect to some direction ξ ∈ R 2 , only allows one to get an estimate of the trace of the component of u along the direction ξ. A formal justification of this fact is given by the following computation: for any vectors ξ and ζ ∈ R 2 pointing outside Ω, and any point x ∈ ∂Ω,

u(x) • ζ = - +∞ 0 d dt [u(x -tξ) • ζ] dt = +∞ 0 Du(x -tξ) : (ζ ⊗ ξ) dt which can be estimated in terms of Eu only if ζ = ξ since Du : (ξ ⊗ ξ) = Eu : (ξ ⊗ ξ).
If ξ is a transversal direction to ∂Ω, it is proved in [START_REF] Strang | Functions of bounded deformations[END_REF] that the function x ∈ ∂Ω → u(xtξ) • ξ admits a limit g ξ in L 1 (∂Ω; R n ) as t → 0 + satisfying the integration by parts formula: for all ϕ ∈ C 1 (R 2 ),

Ω (u • ξ)(∇ϕ • ξ) dx + Ω ϕ d[Eu : (ξ ⊗ ξ)] = ∂Ω ϕg ξ (ν • ξ) dH 1 , (1.1) 
where ν is the outer unit normal to ∂Ω. Since e 2 is clearly transversal to ∂Ω, it permits to define the second component γ 2 (u) of the trace of u in the basis (e 1 , e 2 ) by g e2 , and it also shows the validity of the integration by parts formula involving the second diagonal term E 22 u. The definition of the first component of the trace is more involved. Let us first explain the strategy of [START_REF] Strang | Functions of bounded deformations[END_REF]. Using the implicit function theorem, whose application strongly rests on the C 1 character of the boundary, it is shown that for λ large enough, the vectors λe 2 ± e 1 are transversal to ∂Ω. At this point, the authors of [START_REF] Strang | Functions of bounded deformations[END_REF] claim that it is possible to define the first component γ 1 (u) of the trace of u in the basis (e 1 , e 2 ) by adding-up the integration by parts formulas (1.1) with ξ = λe 2 + e 1 and ξ = λe 2e 1 , which would also establish the integration by parts formula involving the first diagonal term E 11 u. Next subtracting (1.1) with ξ = λe 2 + e 1 and ξ = λe 2e 1 would lead to the last integration by parts formula involving the anti-diagonal term E 12 u. Unfortunately, a careful inspection of that proof shows that this argument can be rigorously justified only if we a priori knew that ξ → g ξ is linear. Of course this property is related to the linearity of the trace mapping γ. The point is that, exactly as in the case of functions of bounded variation, the linearity (and the uniqueness) of γ is ensured thanks the full integration by parts formula. Unfortunately, this property is not clear at this step of the proof, and this point seems to have been neglected in [START_REF] Strang | Functions of bounded deformations[END_REF].

On the other hand, the argument developed in [START_REF] Suquet | Un espace fonctionnel pour les équations de la plasticité[END_REF] rests on the fact that, using again the implicit function theorem, and thus the C 1 character of the boundary, there is no loss of generality to assume that the function a : R → R (defining the boundary curve) is one to one. Therefore, writing ∂Ω as {(x 1 , x 2 ) : x 1 = a -1 (x 2 )} permits to define correctly the first component γ 1 (u) of the trace in the basis (e 1 , e 2 ), and as a by-product to establish the integration by parts formula involving the term E 11 u. The main drawback of this approach is that the components of γ(u) are not obtained by the same limit procedure, and therefore the last formula, involving the term E 12 u, does not follow straightforwardly from the construction.

In conclusion, both arguments given in [START_REF] Strang | Functions of bounded deformations[END_REF][START_REF] Suquet | Un espace fonctionnel pour les équations de la plasticité[END_REF] seem to present some ambiguities, and this is the reason why we decided to give a simplified rigorous and self contained proof of that result. Let us close this introduction by pointing out the recent result of [START_REF] Maso | Generalized functions of bounded deformation[END_REF] where a notion of trace for a generalized class of functions of bounded deformation, called GBD, has been introduced as the approximate limit when points tend to the boundary (see Section 5 of that paper). In particular, the existence of traces on submanifolds of class C 1 and on Lipschitz boundaries has been established by means of a method similar to that used in [START_REF] Strang | Functions of bounded deformations[END_REF]. If restricting to BD fields, it would be possible to infer the stronger trace results, Theorem 3.2 and Proposition 4.1, of the present paper at the expense of the integration by parts formula which was actually the missing point of [START_REF] Strang | Functions of bounded deformations[END_REF]. We however militate in favor of our approach since it only uses elementary tools of standards BD functions, in contrast with [START_REF] Maso | Generalized functions of bounded deformation[END_REF] where the analysis of generalized BD functions needs a more complicated treatment and finer geometric measure theoretic arguments.

The paper is organized as follows. After gathering the main notation used throughout this work in Section 2, we give in Section 3 a self contained proof of the trace theorem in BD(Ω) for bounded open sets Ω ⊂ R n with Lipschitz boundary, on the one hand generalizing the results of [START_REF] Strang | Functions of bounded deformations[END_REF][START_REF] Suquet | Un espace fonctionnel pour les équations de la plasticité[END_REF], and, on the other hand, getting rid of the imprecisions present in both papers. As a by-product, we also show in Section 4 the existence of one-sided Lebesgue limits on countably H n-1 -rectifiable sets. The proofs presented below follow the lines of the analogous result for functions of bounded variation in [START_REF] Evans | Measure theory and fine properties of functions[END_REF]. We use the notation S n-1 := {ζ ∈ R n : |ζ| = 1} for the unit sphere of R n and

ω n = L n (B 1 ), so that H n-1 (S n-1 ) = nω n . Given a vector ξ ∈ S n-1 , we write Π ξ := {x ∈ R n : x • ξ = 0}
for the hyperplane orthogonal to ξ and passing through the origin. We denote by π ξ the orthogonal projection onto Π ξ , i.e., π ξ

(x) = x -(x • ξ)ξ ∈ Π ξ for any x ∈ R n . We say that a set Γ ⊂ R n is countably H n-1 -rectifiable if Γ = ∞ i=1 Γ i ∪ N , where Γ i ⊂ M i for some (n -1)-dimensional manifolds M i ⊂ R n of class C 1 , while N ⊂ R n is a H n-1 -negligible set (see [2, Section 2.9]
). It is possible to define, for H n-1 -a.e. x ∈ Γ, an approximate unit normal, denoted by ν Γ (x) ∈ S n-1 , and characterized by

ν Γ (x) = ±ν Mi (x) for all i ≥ 1, and for H n-1 -a.e. x ∈ Γ ∩ M i , (2.2) 
where ν Mi (x) is a normal to M i at the point x (see [2, Section 2.11]).

Measures.

Given an open subset Ω of R n and a finite dimensional Euclidian space X, we denote by M(Ω; X) the space of all X-valued Radon measures with finite total variation. If X = R, we simply write M(Ω; R) = M(Ω). According to the Riesz representation Theorem, M(Ω; X) can be identified to the topological dual of C 0 (Ω; X) (the space of all continuous functions ϕ : Ω → X such that {|ϕ| ≥ ε} is compact for every ε > 0), and a weak* topology is defined according to this duality. If µ ∈ M(Ω; X) then |µ| stands for the variation measure, and if

A ⊂ Ω is a Borel set, the measure µ A is defined by (µ A)(B) = µ(A ∩ B) for every Borel set B ⊂ Ω.
Another natural weak* topology in the space of measures is that generated by the topological dual of C b (Ω; X) (the space of bounded and continuous functions from Ω to X). We recall, in particular, that if (µ k ) ⊂ M(Ω; X) and µ ∈ M(Ω; X), then (see e.g. Proposition 1.80 and Theorem 2.39 in [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]),

µ k ⇀ µ weakly* in M(Ω; X), |µ k |(Ω) → |µ|(Ω), =⇒ |µ k | ⇀ |µ| weakly* in [C b (Ω)] ′ , µ k ⇀ µ weakly* in [C b (Ω; X)] ′ . (2.3) 2.4.
Functions of bounded deformation. The space of functions of bounded deformation, denoted by BD(Ω), is the space of all functions u ∈ L 1 (Ω; R n ) whose symmetric part of the distributional derivative satisfies

Eu := Du + Du T 2 ∈ M(Ω; M n×n sym ).
The space BD(Ω) is a Banach space when endowed with the norm

u BD(Ω) := u L 1 (Ω) + |Eu|(Ω).
It is proved in [START_REF] Strang | Functions of bounded deformations[END_REF]Proposition 2.5] that BD(Ω) can be identified to the dual of a Banach space, and therefore it can be endowed with a natural weak* topology. It turns out that a sequence (u k ) ⊂ BD(Ω) converges weakly* in BD(Ω) to some u ∈ BD(Ω) if and only if u k → u strongly in L 1 (Ω; R n ) and Eu k ⇀ Eu weakly* in M(Ω; M n×n sym ). An intermediate notion of convergence between weak* and strong convergences is the so-called strict convergence: a sequence (u k ) ⊂ BD(Ω) converges strictly to some u ∈ BD(Ω) if and only if

     u k → u strongly in L 1 (Ω; R n ), Eu k ⇀ Eu weakly* in M(Ω; M n×n sym ), |Eu k |(Ω) → |Eu|(Ω).
Let us finally recall several results about functions of bounded deformation that will be used throughout this work. Let us stress that, of course, all these results are independent of the trace theorem. It is known that smooth functions are not dense in BD(Ω). However, weaker approximation results hold: for any u ∈ BD(Ω) there exists a sequence [25, Theorem II-3.2]). In the sequel, we shall also use the fact that, if u ∈ BD(Ω), the measure Eu does not charge H n-1 negligible sets (see [START_REF] Ambrosio | Fine properties of functions with bounded deformation[END_REF]Remark 3.3]).

(u k ) ⊂ C ∞ (Ω; R n ) ∩ BD(Ω) such that u k → u strictly (see [3, Theorem 1.3]). If, in addition, Ω is bounded with Lipschitz boundary, the same result holds with C ∞ (Ω; R n ) in place of C ∞ (Ω; R n ) ∩ BD(Ω) (see

Trace on the boundary of Lipschitz domains

The object of this section is to show a trace theorem in BD(Ω) for bounded open sets Ω ⊂ R n with Lipschitz boundary, generalizing the results of [19, Theorem 1.1] and [START_REF] Suquet | Un espace fonctionnel pour les équations de la plasticité[END_REF]Theorem 1] for C 1 domains. Note that the proofs of [START_REF] Strang | Functions of bounded deformations[END_REF][START_REF] Suquet | Un espace fonctionnel pour les équations de la plasticité[END_REF] were strongly using the C 1 character of the boundary through different applications of the implicit function theorem. We employ here another approach similar to that used in the case of functions of bounded variation [START_REF] Evans | Measure theory and fine properties of functions[END_REF]. It consists in using the density of smooth functions with respect to the strict convergence.

As explained in the introduction, the main difference with the case of functions of bounded variation is that, since we only control the symmetric part of the gradient of u ∈ BD(Ω), it is not possible to directly estimate at the same time all components of the trace with respect to the BD(Ω)-norm of u. Indeed, if ∂Ω is locally written as the graph of some Lipschitz function in some direction, say, e n ∈ S n-1 , then one can only define the component of the trace with respect to this direction e n . In order to define the n -1 other components, one should be able to slightly move the local coordinate system by still keeping the graph property of ∂Ω. This is the object of the following well-known geometric result. Lemma 3.1. Let (e 1 , . . . , e n ) be an orthonormal basis of R n , and let a : R n-1 → R be a Lipschitz function in this coordinate system (where R n-1 is identified to Vect(e 1 , . . . , e n-1 ), and R is identified to Vect(e n )). We define the Lipschitz graph of a by

Σ := {x = (x ′ , x n ) ∈ R n : x n = a(x ′ )}
, where x ′ = (x 1 , . . . , x n-1 ). Then there exists η 0 > 0 (depending only on the Lipschitz constant of a) such that for any ξ ∈ S n-1 with |ξe n | < η 0 , we have

Σ = {x ∈ R n : x • ξ = a ξ (x -(x • ξ)ξ)},
for some Lipschitz function a ξ : Π ξ → R.

Proof. Let L > 0 be the Lipschitz constant of a. Let us fix

α := L √ 1 + L 2 , ( 3.1) 
and define the open cone

C := {ζ ∈ R n : |ζ • e n | > α|ζ|}.
Step 1. Let us show that, for any x ∈ Σ, (x + C) ∩ Σ = {x}. For any ξ ∈ C, and for all x ∈ Σ, we define the straight line passing through x and with direction ξ by

L ξ x := {x + tξ, t ∈ R}. We first observe that L ξ x ∩ Σ = ∅ since x ∈ L ξ x ∩ Σ. Next, if y ∈ L ξ
x ∩ Σ is any other point, then we can write it as y = x + tξ for some t ∈ R, and thus, since y ∈ Σ, then a(y ′ ) = y n = y • e n = (x + tξ) • e n = x n + tξ • e n . Moreover, since x ∈ Σ, we also have that x n = a(x ′ ), whence

|a(y ′ ) -a(x ′ )| = |y n -x n | = |t||ξ • e n | > α|tξ| = α|x -y|. (3.2)
On the other hand, Pythagoras Theorem ensures that |x -

y| 2 = |x n -y n | 2 + |x ′ - y ′ | 2 = |a(x ′ )-a(y ′ )| 2 +|x ′ -y ′ | 2 . Thus gathering with (3.2) leads to |a(y ′ )-a(x ′ )| 2 > α 2 |a(y ′ ) -a(x ′ )| 2 + α 2 |x ′ -y ′ | 2 , or still by (3.1), |a(y ′ ) -a(x ′ )| 2 > L 2 |x ′ -y ′ | 2 .
But since the function a is L-Lipschitz, we deduce that y ′ = x ′ , and thus y = x.

Step 2. Let us prove that for every ξ ∈ C ∩ S n-1 , there exists β > 0 such that 

C ξ := {ζ ∈ R n : |ζ • ξ| > β|ζ|} ⊂ C.
β 2 |ζ • ξ| 2 ≤ |ζ| 2 = |ζ • ξ| 2 + |π ξ (ζ)| 2 , or still |ζ • ξ| 2 ≤ β 2 1 -β 2 |π ξ (ζ)| 2 for every ζ ∈ c C ξ . (3.4)
Let us define the mapping a ξ : π ξ (Σ) → R by a ξ (y) := t, where y + tξ ∈ Σ. Let us check that this map is well defined. Indeed if y 1 and y 2 ∈ π ξ (Σ), then there exist x 1 and x 2 ∈ Σ such that y i = π ξ (x i ) for i = 1, 2. Then (3.3) shows that x 1 ⊂ x 2 + c C ξ , and thus x 1x 2 ∈ c C ξ . Hence (3.4) yields in turn

|x 1 • ξ -x 2 • ξ| 2 ≤ β 2 1 -β 2 |π ξ (x 1 ) -π ξ (x 2 )| 2 . (3.5)
Therefore, since a ξ (y i ) = x i • ξ for i = 1, 2, then

y 1 = y 2 ⇒ π ξ (x 1 ) = π ξ (x 2 ) ⇒ x 1 • ξ = x 2 • ξ ⇒ a ξ (y 1 ) = a ξ (y 2 ).
In addition, (3.5) also shows that a ξ is Lipschitz since

|a ξ (y 1 ) -a ξ (y 2 )| 2 ≤ β 2 1 -β 2 |y 1 -y 2 | 2 .
It is thus possible to extend a ξ as a Lipschitz function from Π ξ to R with the same Lipschitz constant. The conclusion is obtained by defining η 0 := √ 2 -2α, and noticing that if ξ ∈ S n-1 is such that |ξe n | < η 0 , then ξ ∈ C.

As for BV functions, smooth functions up to the boundary are not dense in BD for the norm topology. Therefore the trace mapping cannot be obtained as the continuous extension of the restriction mapping to the boundary, as is usually done in Sobolev spaces. It will follow from the approximation of BD functions by smooth ones with respect to the strict convergence. However, this construction does not a priori ensure the uniqueness of such a mapping nor its linearity. Nevertheless, it turns out that both properties actually hold among all maps satisfying the integration by parts formula, from which the trace in BD is thus indissociable. The proof presented below is inspired from that in the BV case (see [START_REF] Evans | Measure theory and fine properties of functions[END_REF]Theorem 5.3.1]).

Theorem 3.2. Let Ω ⊂ R n be a bounded open set with Lipschitz boundary. There exists a unique linear continuous mapping

γ : BD(Ω) → L 1 (∂Ω; R n )
such that the following integration by parts formula holds: for every u ∈ BD(Ω)

and ϕ ∈ C 1 (R n ), Ω u ⊙ ∇ϕ dx + Ω ϕ dEu = ∂Ω γ(u) ⊙ ν ϕ dH n-1 , (3.6)
where ν is the outer unit normal to ∂Ω. In addition,

γ(u) = u| ∂Ω for all u ∈ C 0 (Ω; R n ) ∩ BD(Ω). (3.7)
Proof.

Step 1. We first assume that u ∈ C ∞ (Ω; R n ). In this case, we simply define the trace of u on ∂Ω by the restriction of u on that set: γ(u) := u| ∂Ω . This mapping is clearly linear, and we next prove that it is continuous with values in L 1 (∂Ω; R n ).

Step 1a. In this step we study locally the trace mapping defined above. Let x 0 ∈ ∂Ω, then there exists an open set A ′ ⊂ R n containing x 0 , an orthonormal basis (e 1 , . . . , e n ) of R n , and (in this coordinate system) a Lipschitz mapping a : R n-1 → R such that

Ω ∩ A ′ = {x = (x ′ , x n ) ∈ A ′ : x n < a(x ′ )}, ∂Ω ∩ A ′ = {x = (x ′ , x n ) ∈ A ′ : x n = a(x ′ )}.

We will prove that for any open set

A ⊂⊂ A ′ , ∂Ω∩A |γ(u)| dH n-1 ≤ C u BD(Ω∩A ′ ) , (3.8) 
where the constant C > 0 is independent of u.

Let us define the graph of a by Σ := {x = (x ′ , x n ) ∈ R n : x n = a(x ′ )}. According to Lemma 3.1, there exists η 0 > 0 such that for any ξ ∈ S n-1 with |ξ -

e n | < η 0 , then Σ = {x ∈ R n : x • ξ = a ξ (x -(x • ξ)ξ)} for some Lipschitz function a ξ : Π ξ → R.
Let ξ ∈ S n-1 with |ξe n | < η 0 , and let ε 0 > 0 be such that, for all ε ≤ ε 0 , the open sets A ξ ε := {z = ytξ : y ∈ ∂Ω ∩ A, 0 < t < ε} are contained in Ω ∩ A ′ . For all y ∈ ∂Ω ∩ A and all ε ∈ (0, ε 0 ], by the fundamental theorem of calculus, we have

u(y -εξ) • ξ -u(y) • ξ = ε 0 d dt [u(y -tξ) • ξ] dt = - ε 0 Eu(y -tξ)ξ • ξ dt,
and thus, Fubini's Theorem yields

∂Ω∩A |u(y -εξ) • ξ -u(y) • ξ| dH n-1 (y) ≤ ε 0 ∂Ω∩A |Eu(y -tξ)ξ • ξ| dH n-1 (y) dt.
Using the area formula for Lipschitz graphs together with Fubini's Theorem, we get that

∂Ω∩A |u(y -εξ) • ξ -u(y) • ξ| dH n-1 (y) ≤ A ξ ε |Euξ • ξ| 1 + |∇a ξ | 2 dx ≤ C ξ A ξ ε |Euξ • ξ| dx, (3.9) 
where C ξ > 0 only depends on the Lipschitz constant of a ξ , and, in particular,

∂Ω∩A |γ(u) • ξ| dH n-1 ≤ C ξ Ω∩A ′ |Eu| dx + ∂Ω∩A |u(y -εξ)| dH n-1 (y).
Integrating the previous inequality with respect to ε ∈ (0, ε 0 ], and invoking once more Fubini's Theorem leads to

∂Ω∩A |γ(u)•ξ| dH n-1 ≤ C ξ Ω∩A ′ |Eu| dx+ 1 ε 0 ε0 0 ∂Ω∩A |u(y -tξ)| dH n-1 (y) dt ≤ C ξ Ω∩A ′ |Eu| dx + 1 ε 0 A ξ ε 0 |u| 1 + |∇a ξ | 2 dx ≤ C ξ Ω∩A ′ |Eu| dx + C ξ ε 0 Ω∩A ′ |u| dx ≤ C ξ u BD(Ω∩A ′ ) .
Taking first ξ = e n leads to γ n (u) := γ(u) • e n which satisfies the estimate

∂Ω∩A |γ n (u)| dH n-1 ≤ C n u BD(Ω∩A ′ ) . (3.10) 
For i ∈ {1, . . . , n -1}, let us take ξ = ξ i := en+δei √ 1+δ 2 , where δ > 0 is small enough so

that |ξ i -e n | < η 0 . Then ∂Ω∩A |γ(u) • ξ i | dH n-1 ≤ C i u BD(Ω∩A ′ ) ,
and, defining the other components of γ(u) in the basis (e 1 , . . . , e n ) by Step 1b. We now extend the local estimate (3.8) into a global estimate. Since ∂Ω is compact, it can be covered by finitely many open sets A 1 , . . . , A N with the following properties: for all i ∈ {1, . . . , N }, there exist an orthonormal basis (e 1 , . . . , e n ) of R n (depending on i), a Lipschitz function a i : R n-1 → R (in this coordinate system), and open sets

γ i (u) := γ(u) • e i = √ 1 + δ 2 γ(u) • ξ i -γ n (u) δ leads to ∂Ω∩A |γ i (u)| dH n-1 ≤ C i √ 1 + δ 2 δ + C n δ u BD(Ω∩A ′ ) . ( 3 
A ′ i with A i ⊂⊂ A ′ i such that Ω ∩ A ′ i = {x = (x ′ , x n ) ∈ A ′ i : x n < a i (x ′ )}, ∂Ω ∩ A ′ i = {x = (x ′ , x n ) ∈ A ′ i : x n = a i (x ′ )}.
Let θ 1 , . . . , θ N be a partition of unity subordinated to this covering, i.e., θ i ∈ C ∞ c (A i ; [0, 1]), and

N i=1 θ i = 1 on ∂Ω. Since θ i u ∈ C ∞ (Ω; R n ), then its trace γ(θ i u) on ∂Ω ∩ A i satisfies (3.8), i.e., ∂Ω∩Ai |γ(θ i u)| dH n-1 ≤ C θ i u BD(Ω∩A ′ i ) ≤ C u BD(Ω) ,
where the constant C > 0 is independent of u. In addition, since γ(

θ i u) = θ i | ∂Ω γ(u) and Supp (θ i u) ⊂ A i ∩ Ω, we infer that ∂Ω |γ(u)| dH n-1 ≤ N i=1 ∂Ω∩Ai θ i |γ(u)| dH n-1 ≤ C u BD(Ω) . (3.12) 
Step 2. Let us now consider a function u ∈ BD(Ω). Then there exists a sequence

(u k ) ⊂ C ∞ (Ω; R n ) such that      u k → u strongly in L 1 (Ω; R n ), Eu k ⇀ Eu weakly* in M(Ω; M n×n sym ), |Eu k |(Ω) → |Eu|(Ω).
(3.13) According to Step 1, the trace γ(u k ) of u k is well defined, and according to (3.12),

∂Ω |γ(u k )| dH n-1 ≤ C u k BD(Ω) , (3.14) 
for some constant C > 0 independent of k.

Step 2a. We first argue locally as in Step 1a with the same notation. We show that the sequence (γ(u k )) k∈N is a Cauchy sequence in L 1 (∂Ω ∩ A; R n ). Let us fix 0 < t < ε < ε 0 . According to (3.9) and since A ξ t ⊂ A ξ ε , we infer that

∂Ω∩A |u k (y -tξ) • ξ -γ(u k )(y) • ξ| dH n-1 (y) ≤ C ξ |Eu k |(A ξ t ) ≤ C ξ |Eu k |(A ξ ε ).
As a consequence, for any integers k, l ∈ N, we infer that

∂Ω∩A |γ(u k ) • ξ -γ(u l ) • ξ| dH n-1 ≤ ∂Ω∩A |u k (y -tξ) • ξ -γ(u k )(y) • ξ| dH n-1 (y) + ∂Ω∩A |u l (y -tξ) • ξ -γ(u l )(y) • ξ| dH n-1 (y) + ∂Ω∩A |u k (y -tξ) • ξ -u l (y -tξ) • ξ| dH n-1 (y) ≤ C ξ |Eu k |(A ξ ε ) + |Eu l |(A ξ ε ) + ∂Ω∩A |u k (y -tξ) -u l (y -tξ)| dH n-1 (y) .
Integrating the previous inequality with respect to t ∈ (0, ε), and using Fubini's Theorem in the last integral, we get that

∂Ω∩A |γ(u k ) • ξ -γ(u l ) • ξ| dH n-1 ≤ C ξ |Eu k |(A ξ ε ) + |Eu l |(A ξ ε ) + 1 ε Ω∩A ′ |u k -u l | dx .

As in

Step 1a, we first choose ξ = e n , and then, for i ∈ {1, . . . , n -1}, ξ = ξ i := en+δei √ 1+δ 2 for some δ > 0 small enough. Remembering that

γ n (u k ) := γ(u k ) • e n , γ i (u k ) = √ 1 + δ 2 γ(u k ) • ξ i -γ n (u k ) δ ∀ i ∈ {1, . . . , n -1},
we obtain the estimate

∂Ω∩A |γ(u k )-γ(u l )| dH n-1 ≤ C ξ,δ 1 ε Ω∩A ′ |u k -u l | dx+|Eu k |(A en ε )+|Eu l |(A en ε ) + n-1 i=1 |Eu k | A ξi ε + |Eu l | A ξi ε .
Let us observe that the convergences (3.13) and (2.3) ensure that |Eu k | ⇀ |Eu| weakly* in [C b (Ω)] ′ . Passing to the upper limit as k and l → ∞ in the previous inequality, we get that lim sup

k,l→∞ ∂Ω∩A |γ(u k ) -γ(u l )| dH n-1 ≤ C ξ,δ |Eu| A en ε + |Eu| A en ε + n-1 i=1 |Eu| A ξi ε + |Eu| A ξi ε .
Since the sets A en ε and A ξi ε monotonically decrease to A ∩ ∂Ω, while |Eu| in concentrated in Ω, we deduce that the right hand side of the previous inequality tends to zero as ε ց 0. Therefore the sequence (γ(u k )) k∈N is of Cauchy type in L 1 (∂Ω ∩ A; R n ), and thus, we can find some function γ

A (u) ∈ L 1 (∂Ω ∩ A; R n ) such that γ(u k ) → γ A (u) strongly L 1 (∂Ω ∩ A; R n ).
In addition, thanks to the usual integration by parts formula, we have for all ϕ ∈ C 1 c (A)

Ω∩A u k ⊙ ∇ϕ dx + Ω∩A ϕEu k dx = ∂Ω∩A γ(u k ) ⊙ ν ϕ dH n-1 .
At this point, we remark that the convergences (3.13) and (2.3) ensure that Eu k ⇀ Eu weakly* in [C b (Ω; M n×n sym )] ′ . It is then possible to pass to the limit in the previous formula, and get that

Ω∩A u ⊙ ∇ϕ dx + Ω∩A ϕ dEu = ∂Ω∩A γ A (u) ⊙ ν ϕ dH n-1 .
Step 2b. We now define the trace of u on the whole boundary. Using the same notation as in Step 1b, we cover ∂Ω by finitely many open sets A 1 , . . . , A N .

Step 2a ensures the existence, for each i ∈ {1, . . . , N }, of a function

γ Ai (u) ∈ L 1 (∂Ω ∩ A i ; R n ) such that Ω∩Ai u ⊙ ∇ϕ dx + Ω∩Ai ϕ dEu = ∂Ω∩Ai γ Ai (u) ⊙ ν ϕ dH n-1 for every ϕ ∈ C 1 c (A i ). In particular, taking ϕ ∈ C 1 c (A i ∩ A j ), for i = j, yields ∂Ω∩Ai∩Aj γ Ai (u) ⊙ ν ϕ dH n-1 = ∂Ω∩Ai∩Aj γ Aj (u) ⊙ ν ϕ dH n-1
which implies that γ Ai (u)⊙ν = γ Aj (u)⊙ν H n-1 -a.e. on ∂Ω∩A i ∩A j . According to (2.1), we infer that γ Ai (u) = γ Aj (u) H n-1 -a.e. on ∂Ω∩A i ∩A j . It is thus possible to define the mapping γ :

BD(Ω) → L 1 (∂Ω; R n ) by setting γ(u) := γ Ai (u) H n-1 -a.e. on ∂Ω ∩ A i . It has the property that γ(u k ) → γ(u) strongly in L 1 (∂Ω ∩ A i ; R n
) for all i ∈ {1, . . . , N }, and consequently,

γ(u k ) → γ(u) strongly in L 1 (∂Ω; R n ). (3.15) 
In particular, passing to the limit in (3.14), and invoking the convergences (3.13) yields

∂Ω |γ(u)| dH n-1 ≤ C u BD(Ω) . (3.16) 
Step 3. Let us show the integration by parts formula (3.6), and, as a byproduct, the uniqueness and the linearity of γ. Since u k ∈ C ∞ (Ω; R n ), the usual integration by parts formula implies that for all ϕ ∈ C 1 (R n ),

Ω u k ⊙ ϕ dx + Ω ϕEu k dx = ∂Ω γ(u k ) ⊙ ν ϕ dH n-1 .
According to the convergences (3.13), (2.3) and (3.15), we are in position to pass to the limit in the previous equality to get that

Ω u ⊙ ϕ dx + Ω ϕ dEu = ∂Ω γ(u) ⊙ ν ϕ dH n-1 .
It remains to show that the trace mapping γ is unique, linear and continuous. To show the uniqueness, assume that γ : BD(Ω) → L 1 (∂Ω; R n ) is another map satisfying the integration by parts formula (3.6). Then for each ϕ ∈ C 1 (R n ), we infer that

∂Ω γ(u) ⊙ ν ϕ dH n-1 = ∂Ω γ(u) ⊙ ν ϕ dH n-1 ,
which, thank to (2.1), leads to γ(u) = γ(u) H n-1 -a.e. on ∂Ω. The same argument can be reproduced to show that γ is linear, and the continuity is therefore a consequence of (3.16).

Step 4. We finally prove (3.7). Using the same notation as that of Step 1a, we first show that for any u ∈ BD(Ω),

ε 0 ∂Ω∩A |u(y -tξ) • ξ -γ(u)(y) • ξ| dH n-1 (y) dt ≤ C ξ ε|Eu| A ξ ε . (3.17) 
Indeed, let (u k ) ⊂ C ∞ (Ω; R n ) be a sequence as in (3.13). Then according to (3.9), we have

ε 0 ∂Ω∩A |u k (y -tξ) • ξ -γ(u k )(y) • ξ| dH n-1 (y) dt ≤ C ξ ε 0 A ξ t |Eu k ξ • ξ| dx dt ≤ C ξ ε|Eu k |(A ξ ε ), (3.18)
since A ξ t ⊂ A ξ ε whenever t < ε. We first note that, according to Fubini's Theorem On the other hand, the continuity of u ensures that for all y ∈ ∂Ω ∩ A,

ε 0 ∂Ω∩A |u(y -tξ) • ξ -u k (y -tξ) • ξ| dH n-1 (y) dt = A ξ ε |u k -u| 1 + |∇a ξ | 2 dx ≤ C ξ Ω∩A ′ |u k -u| dx → 0, while , by (2.3) 
1 ε ε 0 u(y -tξ) • ξ dt → u(y) • ξ
as ε → 0. Passing to the limit in (3.19) yields u(y)•ξ = γ(u)(y)•ξ for all y ∈ ∂Ω∩A, and (3.7) follows from the fact that the previous property holds for every ξ ∈ S n-1 with |ξe n | < η 0 which contains a basis of R n .

Remark 3.3. In the proof of Theorem 3.2, we actually proved that if u ∈ BD(Ω)

and (u k ) ⊂ C ∞ (Ω; R n ) is such that u k → u strictly in BD(Ω), then γ(u k ) → γ(u) strongly in L 1 (∂Ω; R n ).
By construction, the trace mapping BD(Ω) → L 1 (∂Ω; R n ) is continuous with respect to the norm topology of BD(Ω), nevertheless, it is not weakly* continuous. The following result states that the trace is continuous with respect to the strict convergence of BD(Ω) (see [START_REF] Strang | Functions of bounded deformations[END_REF][START_REF] Suquet | Un espace fonctionnel pour les équations de la plasticité[END_REF]). Proof. According to [START_REF] Temam | Problèmes mathématiques en plasticité[END_REF], for each k ∈ N, there exists a sequence (u j k ) ⊂ C ∞ (Ω; R n ) such that u j k → u k strictly in BD(Ω) as j → ∞, and Remark 3.3 ensures that γ(u j k ) → γ(u k ) strongly in L 1 (∂Ω; R n ) as j → ∞. It is thus possible to find an increasing sequence (j k ) ր ∞ such that for each k ≥ 1,

u j k k -u k L 1 (Ω) + |Eu j k k |(Ω) -|Eu k |(Ω) + γ(u j k k ) -γ(u k ) L 1 (∂Ω) < 1 k .
We have thus constructed a sequence (u

j k k ) ⊂ C ∞ (Ω; R n ) such that u j k k → u strictly in BD(Ω), which also satisfies γ(u j k k ) → γ(u) strongly in L 1 (∂Ω; R n ) thanks again to Remark 3.3. We finally deduce that γ(u k ) → γ(u) strongly in L 1 (∂Ω; R n ).
In the following result, we show that the pointwise values of the trace γ(u) of a function u ∈ BD(Ω) can be recovered by taking limits of averages of u on balls centered on the boundary, and intersected with Ω. 

(B ̺ (x) ∩ Ω) ̺ n-1 = 0.
Note that H n-1 almost every points of ∂Ω satisfy these properties. Indeed, the first one is a consequence of Lebesgue's differentiation theorem. For what concerns the second property, it suffices to show that, for each k ≥ 1, the Borel sets 

B k := x ∈ ∂Ω : lim sup ̺→0 |Eu|(B ̺ (x) ∩ Ω) ω n-1 ̺ n-1 ≥ 1 k are H n-1 negligible.
: R n-1 → R such that Ω ∩ A = {x = (x ′ , x n ) ∈ A : x n < a(x ′ )}, ∂Ω ∩ A = {x = (x ′ , x n ) ∈ A : x n = a(x ′ )}.
As before, we define the graph of a by Σ := {x = (x ′ , x n ) ∈ R n : x n = a(x ′ )}, and according to Lemma 3.1, there exists η 0 > 0 such that for any ξ ∈

S n-1 with |ξ -e n | < η 0 , then Σ = {x ∈ R n : x • ξ = a ξ (x -(x • ξ)ξ)} for some Lipschitz function a ξ : Π ξ → R with Lipschitz constant L > 0. It is enough to check that for any ξ ∈ S n-1 with |ξ -e n | < η 0 , then lim ̺→0 1 ̺ n B̺(x)∩Ω |u(y) • ξ -γ(u)(x) • ξ| dy = 0,
since, as already seen, this family of vectors ξ contains a basis of R n .

For simplicity, we denote by c := √ 1 + L 2 . Let ̺ > 0 be small enough so that B 5cρ (x) ⊂ A, and

B ̺ (x) ∩ Ω ⊂ {z = y -tξ : y ∈ ∂Ω ∩ B 2c̺ (x), 0 < t < 2c̺} ⊂⊂ B 5cρ (x) ∩ Ω.
By this choice of ̺, Fubini's Theorem implies that

B̺(x)∩Ω |u(y) • ξ -γ(u)(x) • ξ| dy ≤ 2c̺ 0 ∂Ω∩B2c̺(x) |u(y -tξ) • ξ -γ(u)(x) • ξ| dH n-1 (y) dt,
and thus

B̺(x)∩Ω |u(y) • ξ -γ(u)(x) • ξ| dy ≤ 2c̺ ∂Ω∩B2c̺(x) |γ(u)(y) • ξ -γ(u)(x) • ξ| dH n-1 (y) + 2c̺ 0 ∂Ω∩B2c̺(x) |u(y -tξ) • ξ -γ(u)(y) • ξ| dH n-1 (y) dt.
Therefore, by (3.17) and our choice of x we infer that

1 ̺ n B̺(x)∩Ω |u(y) • ξ -γ(u)(x) • ξ| dy ≤ 2c ̺ n-1 ∂Ω∩B2c̺(x) |γ(u)(y) -γ(u)(x)| dH n-1 (y) + 2c C ξ |Eu|(B 5c̺ (x) ∩ Ω) ̺ n-1 → 0,
which completes the proof of the Proposition.

Traces on rectifiable sets

In this section we show that functions of bounded deformation admit one-sided Lebesgue limits on countably H n-1 -rectifiable subsets of Ω. This result strongly relies on the pointwise characterization of the trace stated in Proposition 3.5. As a consequence, L n (B ± ̺ (x, ν M (x)) ∩ U ∓ ) ≤ ω n-1 ε̺ n , and by the arbitrariness of ε, the last term of the right hand side of (4.3) is infinitesimal as well. We have thus proved that for H n-1 -a.e. According to [2, page 163], it shows that the triplet (u + M (x), u - M (x), ν M (x)) is uniquely defined up to a permutation of (u + M (x), u - M (x)) and a change of sign of ν M (x).

This property allows one to define, H n-1 -a.e. on M , one sided-Lebesgue limits u ± M with respect to a normal direction ν M . In addition, a simple covering argument permits to extend the local representation formula (4.1) of Eu on M into the global representation

Eu M = (u + M -u - M ) ⊙ ν M H n-1 M. (4.5) 
Step 2. Let us now consider a countably H n-1 -rectifiable set Γ ⊂ Ω. By definition,

Γ = ∞ i=1 Γ i ∪ N,
where H n-1 (N ) = 0, and Γ i ⊂ M i for some hypersurfaces M i of class C 1 . In addition, we can assume without loss of generality that Γ i ∩ Γ j = ∅ if i = j. According to (4.4), for all i ∈ N, there exists a set N i ⊂ Ω with H n-1 (N i ) = 0 with the following property: for all x ∈ Γ i \ N i , there exists a triplet (u + Mi (x), u - Mi (x), ν Mi (x)) satisfying lim 

2 . Notation 2 . 1 . 2 .

 2212 Vectors and matrices. If x and y ∈ R n we use the notation x•y for the scalar product in R n , and |x| for the norm. We denote by M n×n the set of all real n × n matrices, and by M n×n sym the subset of all symmetric matrices. If A and B ∈ M n×n , we write A : B for the scalar product in M n×n , and |A| for the norm. We recall that for any two vectors a and b ∈ R n , a ⊗ b ∈ M n×n stands for the tensor product, i.e., (a ⊗ b) ij = a i b j for all 1 ≤ i, j ≤ n, and a ⊙ b := (a ⊗ b + b ⊗ a)/2 ∈ M n×n sym is the symmetric tensor product. It is easy to check that |a ⊙ b| ≥ Sets. If x ∈ R n and ̺ > 0, then B ̺ (x) stands for the open ball of center x and radius ̺. If x = 0, we simply write B ̺ instead of B ̺ (0). The Lebesgue measure in R n is denoted by L n , and the (n -1)-dimensional Hausdorff measure by H n-1 .

  Note that since C ξ and C are cones, it is enough to check thatC ξ ∩ S n-1 ⊂ C. Let us define c 0 := (|ξ • e n |α) ∧ √ 2 > 0, β := (2c 2 0 )/2 > 0, and let ζ ∈ C ξ ∩ S n-1 . Assuming first ξ • ζ ≥ 0 leads to |ζ -ξ| 2 = 2 -2ζ • ξ < 2 -2β = c 2 0 . Therefore, |ζ • e n | = |ξ • e n + (ζξ) • e n | ≥ |ξ • e n | -|ζ -ξ| > |ξ • e n |c 0 ≥ α. If instead ξ • ζ ≤ 0, then |ζ + ξ| 2 = 2 + 2ζ • ξ < 2 -2β = c2 0 , and again |ζ • e n | = |ξ • e n + (ζ + ξ) • e n | ≥ |ξ • e n | -|ζ + ξ| > |ξ • e n |c 0 ≥ α. Step 3. Let us show the conclusion of the lemma. From Steps 1 and 2, for any ξ ∈ C ∩ S n-1 and any x ∈ Σ we have (x + C ξ ) ∩ Σ = {x}, and thus Σ ⊂ x + c C ξ for every ξ ∈ C and x ∈ Σ. (3.3) But if ζ ∈ c C ξ , then |ζ • ξ| ≤ β|ζ|, and Pythagoras Theorem ensures that 1

. 11 )

 11 Combining (3.10) and (3.11) gives (3.8).

  , we have |Eu k | ⇀ |Eu| weakly* in [C b (Ω)] ′ . Relation (3.17

1 ε ε 0 u

 10 ) then follows from (3.15) by taking the limit as k → ∞ in(3.18).Taking in particular u ∈ BD(Ω) ∩ C(Ω; R n ), then (3.17) leads to∂Ω∩A (ytξ) • ξ dtγ(u)(y) • ξ dH n-1 (y) ≤ C ξ |Eu| A ξ ε . (3.19) 

Proposition 3 . 4 .

 34 Let Ω ⊂ R n be a bounded open set with Lipschitz boundary. Let u ∈ BD(Ω) and (u k ) ⊂ BD(Ω) be such that u k → u strictly in BD(Ω). Then γ(u k ) → γ(u) strongly in L 1 (∂Ω; R n ).

Proposition 3 . 5 .

 35 Let Ω ⊂ R n be a bounded open set with Lipschitz boundary, and u ∈ BD(Ω). Then for H n-1 -a.e. x ∈ ∂Ω, lim ̺→0 1 ̺ n B̺(x)∩Ω |u(y)γ(u)(x)| dy = 0. Proof. Let x ∈ ∂Ω be a Lebesgue point of γ(u) which also satisfies lim ̺→0 |Eu|

Proposition 4 . 1 .

 41 Let Ω be an open subset of R n , u ∈ BD(Ω), and Γ be a countably H n-1 -rectifiable subset of Ω. Then for H n-1 -a.e. x ∈ Γ, there exist one-sided Lebesgue limits u ± Γ (x) with respect to the approximate unit normal ν Γ (x) to Γ, i.e., lim̺→0 + B ± ̺ (x,νΓ(x)) |u(y)u ± Γ (x)| dy = 0, where B ± ̺ (x, ν Γ (x)) := {y ∈ B ̺ (x) : ±(yx) • ν Γ (x) > 0}.In addition, we have the representationEu Γ = (u + Γu - Γ ) ⊙ ν Γ H n-1 Γ. Proof. Step 1. We first consider a (n -1)-dimensional manifold M of class C 1 .Then for each x 0 ∈ M , there exist an open ball U centered at x 0 such thatM ∩ U = {x = (x ′ , x n ) ∈ U : x n = a(x ′ )},for some function a : R n-1 → R of class C 1 . Let us define the open sets with Lipschitz boundaryU ± := {x = (x ′ , x n ) ∈ U : ±x n > ±a(x ′ )}. then |x -y| < ̺, ±y n < ±a(y ′ ), ±ν M (x) • (yx) = ∓∇a(x ′ ) • (y ′x ′ ) ± (y nx n ) 1 + |∇a(x ′ )| 2 > 0,and therefore, since |y ′x ′ | < ̺ < δ, then ±a(x ′ ) ± ∇a(x ′ ) • (y ′x ′ ) < ±y n < ±a(x ′ ) ± ∇a(x ′ ) • (y ′x ′ ) ± ε|x ′y ′ |.

  ,νM i (x)) |u(y)u ± Mi (x)| dy = 0.Moreover, by the characterization (2.2) of the approximate normal, for each i ≥ 1, there exists a setZ i ⊂ Ω such that H n-1 (Z i ) = 0 and ν Γ (x) = ±ν Mi (x) for all x ∈ Γ i \ Z i . Let us define the exceptional set Z := N ∪ ∞ i=1 (N i ∪ Z i ). Then H n-1 (Z) = 0, and we define the one sided-traces on Γ \ Z byu ± Γ (x) = u ± Mi (x) if x ∈ Γ i \ Z and ν Γ (x) = ν Mi (x), u ∓ Mi (x) if x ∈ Γ i \ Z and ν Γ (x) = -ν Mi (x),so that, for all x ∈ Γ \ Z, νΓ(x))|u(y)u ± Γ (x)| dy = 0.

  This property is a consequence [2, Theorem 2.56] since we have H n-1 (B k ) ≤ k|Eu|(B k ) = 0, because the measure Eu is concentrated on Ω.By the Lipschitz regularity of ∂Ω, there exist an open neighborhood A ⊂ R n of x, an orthonormal basis (e 1 , . . . , e n ) of R n , and a Lipschitz mapping a
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Let us denote by ν M the unit normal to M oriented from U -to U + , i.e. ν M (y) = (-∇a(y ′ ), 1)

1 + |∇a(y ′ )| 2 for all y ∈ M ∩ U, so that, on M ∩ U , the normal to U -is ν M , while the normal to U + is -ν M . Since u ∈ BD(U ± ), according to Theorem 3.2, there exist

Summing up both previous relations, and using the definition of the distributional derivative, we infer that

and thus

By density, the previous relation holds for any ϕ ∈ C 0 (U ) which implies that

At this point, the traces u ± M might depend on the open set U . We now show that for

) is independent of the local representation of M . To this aim, we will prove that u ± M (x) are one-sided Lebesgue limits with respect to the direction ν M (x). According to Proposition 3.5, we have that for

Let us fix a point x ∈ M ∩ U (i.e. x n = a(x ′ )) satisfying (4.2). Since a is of class C 1 , for each ε > 0, there exists δ > 0 such that if

For all ̺ < δ, defining the half balls by

Thanks to (4.2), the two first integrals in the right hand side of (4.3) tend to zero as ̺ → 0 + . Concerning the last term, we observe that if y ∈ B

In addition, since according to [1, Remark 3.3], one has |Eu|(Z) = 0, (4.5) yields

and the proof is complete.