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Abstract

A numerical method to approximate ruin probabilities is proposed within the frame of a
compound Poisson ruin model. The defective density function associated to the ruin prob-
ability is projected in an orthogonal polynomial system. These polynomials are orthogonal
with respect to a probability measure that belongs to Natural Exponential Family with
Quadratic Variance Function (NEF-QVF). The method is convenient in at least four ways.
Firstly, it leads to a simple analytical expression of the ultimate ruin probability. Secondly,
the implementation does not require strong computer skills. Thirdly, our approximation
method does not necessitate any preliminary discretisation step of the claim sizes distri-
bution. Finally, the coefficients of our formula do not depend on initial reserves.
Keywords: compound Poisson model, ultimate ruin probability, natural exponential fam-
ilies with quadratic variance functions, orthogonal polynomials, gamma series expansion,
Laplace transform inversion.

1 Introduction

A non-life insurance company is assumed to be able to follow the financial reserves’ evolu-
tion associated with one of its portfolios in continuous time. The number of claims until
time t is assumed to be an homogeneous Poisson process {Nt}t≥0, with intensity β. The
successive claim amounts (Ui)i∈N∗ , form a sequence of positive i.i.d. continuous random
variables and independent of {Nt}t≥0, with density function fU and mean µ. The initial
reserves are of amounts u ≥ 0, and the premium rate is constant and equal to p ≥ 0. The
risk reserve process is therefore defined as

Rt = u+ pt−

N(t)∑

i=1

Ui,

the associated claims surplus process is defined as St = u− Rt. In this work, we focus on
the evaluation of ultimate ruin probabilities (or infinite-time ruin probabilities) defined as

ψ(u) = P

(
inf
t≥0
Rt < 0|R0 = u

)
= P

(
sup
t≥0

St > u|S0 = 0

)
. (1.1)
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This model is called a compound Poisson model (also known as Cramer-Lundberg ruin
model) and has been widely studied in the risk theory literature. For general background
about ruin theory, we refer to [16], and [4].
There are several usual techniques for calculation of ultimate ruin probabilities. First,
iterative methods with the so called Panjer’s algorithm derived in [14] and applied to the
ultimate ruin probability computation in [8]. Then, we have numerical inversion of the
Laplace transform used for probability distributions recovery. In a few particular cases,
the inversion is manageable analytically and leads to closed formula but in most cases nu-
merical methods are needed. The numerical inversion via Fourier-series techniques (Fast
Fourier Transform) received a great deal of interest. These techniques have been presented
in [2] in a queuing theory setting. For an application within the actuarial framework, we
refer to [10]. Recently, inversion techniques via the scaled Laplace transform and expo-
nential moments recovery has been performed in [12] for ruin probabilities computations.
We also mention the numerical inversion of Laplace transform using Laguerre method de-
scribed in [19] and [1]. The recovered function takes the form of a weighted sum of Laguerre
functions derived though orthogonal projections, it can be viewed as both a polynomials
and a gamma series expansion that have been commonly used in the actuarial litterature.
The expansion of probability density function as a sum of gamma densities with actuarial
applications has been first proposed in [7] and gave rise to the so-called Beekman-Bowers
approximation for the ultimate ruin probability, derived in [6]. The idea is to approximate
the ultimate ruin probability by the survival function of a gamma distribution using mo-
ments fitting. Gamma series expansion has been employed in [18] and later in [3]. The
authors highlight that it is useful to carry out both analytical calculations and numeri-
cal approximations. They focus on the finite-time ruin probability, injecting directly the
gamma series expression into integro-differential equations leading to reccurence relations
between the expansion’s coefficients. The results are valid in the infinite-time case by let-
ting the time t tend to infinity. In addition, we can mention [15], in which ruin probabilities
expressions are derived using generalized Appell polynomials.
Our method is an expansion using orthogonal polynomials and can be viewed as an ex-
tension of [7], based on Laguerre’s polynomials. It can also be related to gamma series
expansions and numerical inversions of Laplace transform. In this paper, we provide a new
way to both construct and justify expansions with orthogonal polynomials that leads to
an approximation with good numerical behaviour. Our results rely on some properties of
orthogonal polynomials with respect to probability measures in NEF-QVF. From a com-
putational point of view, no discretization of the claim sizes distribution is needed and
the coefficients that require a large part of the CPU time are the same for any value of u.
Moreover, the accuracy is not much sensitive to initial reserves, even for large value.
In Section 2, we introduce a density expansion formula based on orthogonal projection
within the frame of NEF-QVF. Our main results are developped in Section 3: the expan-
sion for ultimate ruin probabilities is derived and a sufficient condition of applicability is
given. Section 4 is devoted to numerical illustrations.
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2 Polynomial expansions of a probability density function

Let F = {Pθ, θ ∈ Θ} with Θ ⊂ R be a Natural Exponential Family (NEF), see [5],
generated by a probability measure ν on R such that

Pθ(X ∈ A) =

∫

A
exp{xθ − κ(θ)}dν(x)

=

∫

A
f(x, θ)dν(x),

where

• A ⊂ R,

• κ(θ) = log
(∫

R
eθxdν(x)

)
is the Cumulant Generating Function (CGF),

• f(x, θ) is the density of Pθ with respect to ν.

Let X be a random variable Pθ distributed. We have

µ = Eθ(X) =
∫
xdFθ(x) = κ′(θ),

V(µ) = Varθ(X) =
∫
(x− µ)2dFθ(x) = κ′′(θ).

The application θ → κ′(θ) is one to one. Its inverse function µ → h(µ) is defined on M
= κ′(Θ). With a slight change of notation, we can rewrite F = {Pµ, µ ∈ M}, where Pµ

has mean µ and density f(x, µ) = exp{h(µ)x− κ(h(µ))} with respect to ν. A NEF has a
Quadratic Variance Function (QVF) if there exists reals v0, v1, v2 such that

V (µ) = v0 + v1µ+ v2µ
2. (2.1)

The Natural Exponential Families with Quadratic Variance Function (NEF-QVF) include
the normal, gamma, hyperbolic, Poisson, binomial and negative binomial distributions.
Define

Qn(x, µ) = V n(µ)

{
∂n

∂µn
f(x, µ)

}
/f(x, µ), (2.2)

for n ∈ N. Each Qn(x, µ) is a polynomial of degree n in both µ and x. Moreover, {Qn}n∈N
is a family of orthogonal polynomials with respect to Pµ in the sense that

< Qn, Qm >=

∫
Qn(x, µ)Qm(x, µ)dPµ(x) = δnm||Qn||

2, m, n ∈ N,

where δmn is the Kronecker symbol equal to 1 if n = m and 0 otherwise. For the sake of
simplicity, we choose ν = Pµ0

. Then, f(x, µ0) = 1 and we write

Qn(x) = Qn(x, µ0) = V n(µ0)

{
∂n

∂µn
f(x, µ)

}

µ=µ0

. (2.3)

For an exhaustive review regarding NEF-QVF and their properties, we refer to [13].
We will denote by L2(ν) the space of functions square integrable with respect to ν.

Proposition 1. Let ν = Pµ0
be a probability measure that generates a NEF-QVF, with

associated orthogonal polynomials {Qn, n ∈ N} given by (2.3). Let X be a random variable
with density function dPX

dν with respect to ν. If dPX

dν ∈ L2(ν) then we have the following
expansion

dPX

dν
(x) =

+∞∑

n=0

E(Qn(X))
Qn(x)

||Qn||2
. (2.4)
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Proof. By construction {Qn}n∈N forms an orthogonal basis of L2(ν), and by orthogonal
projection we get

dPX

dν
(x) =

+∞∑

n=0

<
Qn

||Qn||
,
dPX

dν
>
Qn(x)

||Qn||
.

It follows that

<
Qn

||Qn||
,
dPX

dν
>
Qn(x)

||Qn||
=

∫
Qn(y)

||Qn||

dPX

dν
(y)dν(y)×

Qn(x)

||Qn||

=

∫
Qn(y)dPX(y)×

Qn(x)

||Qn||2

= E(Qn(X))
Qn(x)

||Qn||2
.

3 Application to the ruin problem

3.1 General formula

The ultimate ruin probability in the Cramer Lundberg ruin model is the survival function
of a geometric compound distributed random variable

M =
N∑

i=1

U I
i ,

where

• N is an integer valued random variable having a geometric distribution with param-
eter ρ = βµ

p ,

• (U I
i )i∈N∗ is a sequence of independent and identically distributed nonnegative random

variables having CDF FUI (x) = 1
µ

∫ x
0 FU (y)dy.

The distribution of M has an atom at 0 with probability mass P (N = 0) = 1 − ρ. The
probability measure governing the values of M is

dPM (x) = (1− ρ) δ0(x) + dGM (x), (3.1)

where dGM is the continuous part of the probability measure associated to M which admits
a defective probability density function with respect to the Lebesgue measure. The ultimate
ruin probability is then obtained by integrating the continuous part as the discrete part
vanishes

ψ(u) = P (M > u) =

∫ +∞

u
dGM (x).

Theorem 1. Let ν be an univariate distribution having a probability density function with
respect to the Lebesgue measure, and that generates a NEF-QVF. If dGM

dν ∈ L2(ν) then

ψ(u) =
+∞∑

n=0

V (µ0)
n

{
∂n

∂µn
e−κ(h(µ))ĜM (h(µ))

}

µ=µ0

∫ +∞

u Qn(x)dν(x)

||Qn||2
, (3.2)

where ĜM is the Laplace-Stieljes Transform of GM defined by ĜM (s) =
∫
esxdGM (x).
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Proof. We start by applying Proposition 1 to dGM

dν which leads to

dGM

dν
(x) =

+∞∑

n=0

<
Qn

||Qn||
,
dGM

dν
>
Qn(x)

||Qn||
(3.3)

=

+∞∑

n=0

∫
Qn(x)dGM (x)

Qn(x)

||Qn||2
. (3.4)

By the definition of Qn(x) as defined in (2.3), we obtain

dGM

dν
(x) =

+∞∑

n=0

V n(µ0)

{
∂n

∂µn
e−κ(h(µ))

∫
eh(µ)xdGM (x)

}

µ=µ0

Qn(x)

||Qn||2
(3.5)

=
+∞∑

n=0

V n(µ0)

{
∂n

∂µn
e−κ(h(µ))ĜM (h(µ))

}

µ=µ0

Qn(x)

||Qn||2
. (3.6)

Integration of (3.6) between u and +∞ gives the expression (3.2) for the ultimate ruin
probability.

Remark 1. Equation (3.2) involves the Laplace-Stieljes transform of GM . The presented
method could also be related to Laplace transform inversion techniques.

3.2 Approximation with Laguerre polynomials

We derive an approximation for the ultimate ruin probability, using Theorem 1, combined
with truncations of the infinite series (3.2). For K ∈ N, we will denote by

ψK(u) =
K∑

n=0

V n(µ0)

{
∂n

∂µn
e−κ(h(µ))ĜM (h(µ))

}

µ=µ0

∫ +∞

u Qn(x)dν(x)

||Qn||2
(3.7)

the approximated ruin probability with truncation order K.

Remark 2. We can write (3.7) as

ψK(u) =
K∑

n=0

an

∫ +∞

u Qn(x)dν(x)

||Qn||2
,

where an are independent of u. Once the evaluation of the an for all n ≤ K is done,
estimating the ruin probability requires one integral calculation.

In practice, as the distribution of M is supported on R
+, we will choose the exponential

distribution with parameter ξ for ν, that is:

dν(x) = ξe−ξx
1R+(x)dλ(x).

The associated orthogonal polynomials are the Laguerre ones ,see [17], satisfying

∫ +∞

0
Ln(x)Lm(x)e−xdx = δnm.

The polynomials defined in (2.3) are the Laguerre polynomials with a slight change in

comparison to the definition given in [17]: Qn(x) =
(
−1

ξ

)n
n!Ln(ξx) and their norm is
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||Qn|| =
n!
ξn . As ν is the exponential probability measure with parameter ξ, the mean of

ν is µ0 = 1
ξ , the variance function is V (µ0) = 1

ξ2
, the cumulant generating function is

κ(θ) = log
(

ξ
ξ−θ

)
and the inverse function of the first derivative of κ(.) is h(µ) = ξµ−1

µ . We

can write the expression of the ruin probability (3.2) in a more tractable way, that is:

ψ(u) =
+∞∑

n=0

{
∂n

∂µn
1

ξµ
ĜM

(
ξµ− 1

µ

)}

µ=µ0

(−ξ)n

n!

∫ +∞

u
Ln(ξx)dν(x). (3.8)

Remark 3. The choice of ν is arbitrary in the sense that we could have chosen a more

general gamma distribution dν(x) = ξαxα−1e−ξx

α) 1R+(x). The orthogonal polynomials would
have been the generalized Laguerre polynomials and, with ξ = 1, our expansion would have
been the same as in [7]. By taking a gamma distribution with its two first moments equal to
those of M , the first term of the obtained expansion gives the Beekman-Bowers approxima-
tion. The use of a Normal distribution would have implied an expansion involving Hermite
polynomials, but it seems less intuitive to approximate a probability density function sup-
ported on R

+ by a sum of probability density function supported on R.

Remark 4. Laguerre polynomials analytical expression is

Ln(x) =

n∑

k=0

(
n

n− k

)
(−x)k

k!
. (3.9)

Denoting by an =
{

∂n

∂µn
1
ξµĜM

(
ξµ−1
µ

)}
µ=µ0

(−ξ)n

n! for n ∈ N, the injection of Laguerre

polynomials expression (3.9) into the ruin probability expansion (3.8) gives

ψ(u) =
+∞∑

n=0

an

n∑

k=0

(
n

n− k

)∫ +∞

u

ξk+1xke−ξx

k!
dx

=

+∞∑

k=1

+∞∑

n=k−1

an

(
n

n− k + 1

)∫ +∞

u

ξkxk−1e−ξx

Γ(k)
dx

=

+∞∑

k=1

bk

∫ +∞

u

ξkxk−1e−ξx

Γ(k)
dx. (3.10)

The right hand side of (3.10) is exactly a gamma series expansion as defined in [18].

The defective probability density function associated toGM has the following expression

gM (x) =
+∞∑

n=1

(1− ρ)ρnf∗nUI (x). (3.11)

Remark 5. The Laguerre functions are defined in [1] as

ln(x) = e−x/2Ln(x), x ≥ 0. (3.12)

The application of the Laguerre method consists in representing gM as a Laguerre serie

gM (x) =

+∞∑

n=0

qnln(t). (3.13)

One can note that the representation (3.13) is really close to the expansion proposed in this
paper.
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By Taking the Laplace transform of (3.11), we get

ĜM (s) =
(1− ρ)ρF̂UI (s)

1− ρF̂UI (s)
, (3.14)

with F̂UI (s) =
∫
esxfUI (x)dx the Laplace Stieljes transform of FUI . The moment gen-

erating function of the claim size distribution appears in the formula. This fact limits
the application to claim sizes distributions that admit a well defined moment generating
function, namely light-tailed distributions.

3.3 Integrability condition

There exists a link between the choice of ξ and the adjustment coefficient γ. The adjustment
coefficient is the only positive solution of the so-called Cramer-Lundberg equation,

F̂UI (s) =
1

ρ
. (3.15)

The integrability condition dGM

dν ∈ L2(dν) is equivalent to
∫ +∞

0
gM (x)2eξxdx <∞. (3.16)

In order to ensure this condition, we need the following results.

Theorem 2. Assume that U I admits a bounded density function and that the equation
(3.15) admits a positive solution, then for all x ≥ 0

gM (x) ≤ C(s0)e
−s0x, (3.17)

with s0 ∈ [0, γ) and C(s0) ≥ 0, where γ is the adjustment coefficient.

Proof. In order to prove the theorem we need the following lemma regarding the survival
function FU of the claim sizes distribution.

Lemma 1. Let U be a non-negative random variable with bounded density function fU .
Assume there exists s0 > 0 such that F̂U (s0) < +∞. Then there exists A(s0) > 0 such that
for all x ≥ 0

FU (x) ≤ A(s0)e
−s0x. (3.18)

Proof. As F̂U (s0) < +∞, we have

F̂U (s0)− 1 =

∫ +∞

0
(es0x − 1)fU (x)dx

= s0

∫ +∞

0

∫ x

0
es0yfU (x)dydx

= s0

∫ +∞

0
es0yFU (y)dy

≥ s0

∫ x

0
es0yFU (y)dy

≥ FU (x)(e
s0x − 1).

thus, we deduce that ∀x ≥ 0

FU (x) ≤ (F̂U (s0)− 1 + FU (x))e
−s0x. (3.19)
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The equation (3.15) is equivalent to

ρF̂U (s) = 1 + sµ. (3.20)

The fact that γ is a solution of the equation (3.15) implies that F̂U (s) < +∞, ∀s0 ∈ [0, γ)
and by application of Lemma 1, we get the following inequality upon the density function
of U I

fUI (x) =
FU (x)

µ
≤ B(s0)e

−s0x. (3.21)

In view of (3.11), it is easily checked that gM satisfies the following defective renewal
equation,

gM (x) = ρ(1− ρ)fUI (x) + ρ

∫ x

0
fUI (x− y)gM (y)dy. (3.22)

We can therefore bound gM as in (3.17),

gM (x) ≤ ρ(1− ρ)fUI (x) +

∫ +∞

0
fUI (x− y)gM (y)dy

≤ ρ(1− ρ)B(s0)e
−s0x +B(s0)e

−s0x

∫ +∞

0
es0ygM (y)dy

= (ρ(1− ρ) + ĜM (s0))B(s0)e
−s0x

= C(s0)e
−s0x.

The application of Theorem 2 yields a sufficient condition in order to use the polynomial
expansion.

Corollary 1. For ξ < 2γ, the integrability condition (3.16) is satisfied.

We note the importance of the choice of the parameter ξ. The Laguerre method,
briefly described in Remark 5, does not offer the possibility of changing some parameter.
The expansion is still based on orthogonal projection permitted under an integrability
condition. However, if the function does not satisfy the integrability condition then a
damped version of it is expanded.

4 Numerical illustrations

First, we analyse the convergence of the sum in our method toward known exact values of
ruin probabilities with exponential, gamma and phase-type cases. For those claim sizes dis-
tribution we have explicit formulas that allow us to assess the acuracy of our approximated
ruin probabilities. The goodness of the approximation depends on the order of truncation
K, and results show also a dependence on ξ. Our method also enables us to approximate
ruin probabilities in cases that are relevant for applications but where no formulas are
currently available. We compare the results with Monte-Carlo simulations and discuss the
interest of our method in comparison to the widely used Panjer’s algorithm. First, we plot
the difference between the exact ruin probability value and its approximation

∆ψ(u) = ψ(u)− ψK(u), (4.1)

then we study the behaviour of our approximation when changing the value of ξ and fi-
nally we compare our approximations with the ones of Panjer’s algorithm. In order to use
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Panjer’s algorithm, we need to discretize the integrated tail distribution of the severities
and choose a bandwidth h. The Rounded Method is employed to do the discretization as
it seems to be the best way according to [9]. It consists in rounding the severities to the
closest integer multiple of h. We choose a bandwith arbitrary equal to 0.01 as there is no
tractable formula available for the discretization error.
To produce simulations of the compound geometric sum, we use the procedure described
in [11]. An iterative method is given to simulate random values from integrated tail dis-
tribution. The number of simulations needed, 10 000, and the iterative component in the
simulation procedure imply a significant CPU time that already justify the use of numerical
techniques. Confidence intervals are given in addition to the estimation.
Regarding the ruin model settings, we fix a safety loading at 20%.

4.1 Exponentially distributed claim sizes

In the case of exponentially distributed claim sizes with parameter δ, the ultimate ruin
probability is

ψ(u) = ρe−δ(1−ρ)u, (4.2)

where ρ = β/δp, β is the Poisson process intensity, p the premium rate and u is the
initial reserves. In this particular case, results (3.2) or (3.8) can be used as a tool for
computations. After some tedious calculus, we get

ψ(u) =

∫ +∞

u
ρ
+∞∑

n=0

(
δ(1− ρ)− ξ

δ(1− ρ)

)n

Ln(ξx)dν(x).

We use a property upon the generating function of Laguerre polynomials,
∑+∞

n=0w
nLn(x) =

(1− w)−1exp
(
− xw

1−w

)
, which gives after straightforward integration

ψ(u) = ρe−δ(1−ρ)u. (4.3)

For numerical illustrations, we set δ = 1. Results are displayed in Figure 1 and Table 1.
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Figure 1: Difference between exact and approximated ruin probabilities for exponentially
distributed claim sizes

K

0 5 10 15 20

ξ

6γ/4 0.0564 -0.00085 0.00001 0. 0.
5γ/4 0.02879 -0.00002 0. 0. 0.
γ 0. 0. 0. 0. 0.

3γ/4 -0.03001 -0.00002 0. 0. 0.
2γ/4 -0.0613 -0.00153 -0.00004 0. 0.

Table 1: Difference between exact and approximated ruin probabilities for exponentially
distributed claim sizes, with u = 1

4.2 Phase-type distributed claim sizes

A phase-type distribution is the distribution of the absorbtion time of some continuous-
time absorbing Markov process with a finite states space. Many common distributions are
of phase-type, for instance exponential, hyperexponential or Erlang distributions admit a
phase-type representation. The exact ruin probability is then given in the form of a Matrix-
Exponential, see the book [4] for details. The entire chapter VIII is dedicated to phase-
type distributions. In this second example, we assume that the claim sizes distribution is
a mixture of two Erlang distributions. The associated density function is

f(x) = qErlang(k1, δ1) + (1− q)Erlang(k2, δ2), (4.4)

where Erlang(k, δ) = δkxk−1e−δx

(n−1)! 1R+ and q ∈ [0, 1]. We set k1 = 3, k2 = 2, δ1 = 1,

δ2 = 2/3, and q = 2/5. Results are displayed in Figure 2, and Tables 2, 3.
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Figure 2: Difference between exact and approximated ruin probabilities for phase-type
distributed claim sizes

K

0 20 40 60 80 100

ξ

7γ/4 0.05686 0.00007 0.00002 0. 0. 0.
3γ/2 0.04233 0.00013 0.00003 0.00001 0. 0.
γ 0.0124 0.0008 0.00004 0.00003 0.00002 0.00001
γ/2 -0.01874 0.00372 0.00088 0.00016 0.00004 0.00003
γ/4 -0.03478 0.00725 0.00387 0.00194 0.00092 0.00041

Table 2: Difference between exact and approximated ruin probabilities for phase-type
distributed claim sizes for phase-type distributed claim sizes, with u = 1

u Exact Value Polynomials expansion Panjer’s algorithm
ξ = γ, K=120 h=0.01

0.1 0.828641 0.828642 0.828647
1 0.782188 0.782187 0.782266
5 0.574502 0.574504 0.574904
10 0.386405 0.386406 0.386987
50 0.016181 0.016181 0.016310

Table 3: Ruin probabilities for phase-type distributed claims amounts approximated with
polynomials expansions and Panjer’s algorithm
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4.3 Gamma distributed claim sizes

We assume that the claim sizes are gamma distributed with a scale parameter which is not
integer. The exact form of the ruin probability has been derived in [2] for the Γ(1/2, 1/2)
special case, numerical results are displayed in Figure 3 and Tables 4, 5. We finally compare
approximations for the Γ(1/3, 1) case to results obtained though Monte Carlo simulations,
see Figure 4 and Table 6.

Figure 3: Difference between exact and approximated ruin probabilities for Γ(1/2, 1/2)
distributed claim sizes

K

0 20 40 60 80 100 120

ξ

7γ/4 0.04726 0.00061 0.00009 -0.00012 -0.00009 -0.00001 0.00003
3γ/2 0.02826 0.00062 0.00023 -0.00008 -0.00012 -0.00007 0.
γ -0.01131 0.00016 0.0006 0.00025 -0.00001 -0.00011 -0.00012
γ/2 -0.0531 -0.00231 0.00013 0.00066 0.00063 0.00045 0.00026
γ/4 -0.07486 -0.00594 -0.00242 -0.00073 0.00012 0.00052 0.00067

Table 4: Difference between exact and approximated ruin probabilities for Γ(1/2, 1/2)
distributed claim sizes, and u = 1
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u Exact Value Polynomials expansion Panjer’s algorithm
ξ = γ, K=120 h=0.01

0.1 0.821313 0.821424 0.821356
1 0.736114 0.736238 0.736395
5 0.47301 0.472944 0.473757
10 0.274299 0.274252 0.275131
50 0.00352109 0.00352476 0.00357292

Table 5: Ruin probabilities for Γ(1/2, 1/2) distributed claims amounts approximated with
polynomials expansion and Panjer’s algorithm

Figure 4: Ruin probabilities for Γ(1/3, 1) distributed claim sizes approximated with
polynomials expansion (blue line), Panjer’s algorithm (red line), and Monte-Carlo

simulations: estimation (green line) and 99% confidence interval (black dashed line)

u Monte-Carlo simulations Polynomials expansion Panjer’s algorithm
ξ = γ, K=120 h=0.01

0.1 0.8 0.80505 0.805454
1 0.624 0.634979 0.636315
5 0.232 0.239601 0.241442
10 0.076 0.0712518 0.0723159
50 0 4.569555× 10−6 4.686× 10−6

Table 6: Ruin probabilities for Γ(1/3, 1) distributed claims amounts estimated with
polynomials expansion and Panjer’s algorithm
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4.4 Discussion of the numerical results

• Approximations seem to behave very well for every value of the initial reserves. We
did not put the results here, but when ξ is chosen greater than 2γ approximations
seems to diverge quickly.

• The order of truncation needed to reach a certain level of accuracy depends on the
complexity of the claim sizes distribution. This fact is clearly observed through
simulations within the Γ(1/2, 1/2) case, in which a greater order a truncation is
needed to reach an equal level of accuracy.

• In the exponential case, there is a symmetric pattern. ξ equal to γ is the optimal
choice in terms of order of truncation needed. In the other cases studied, there might
exist an optimal choice for ξ in the range [γ, 2γ).

• Panjer’s algorithm performs well for small initial reserves, sometimes better than our
method. But the ruin probability approximation for large initial reserves, that are
relevant for applications, is problematical in our opinion because the computation
time is clearly increasing and the accuracy is worsening. Our method produces, in a
reasonable time, an acceptable approximated ruin probability for every value of u.

5 Conclusion

Our proposed method provides a very good approximation of the ruin probability when
the claim sizes distribution is light-tailed. We obtained a theoretical result that allows us
to ensure the validity of our expansions. In addition, the repeatability of the coefficients
an (see Remark 2) makes our method very fast when changing the initial reserves u, which
makes it very convenient compared to Panjer’s algorithm. The problem we dealt with is
the approximation of a geometric compound distribution density function. The results
are quite promising and allow us to envisage an extension to more general compound
distributions or even finite-time horizon ruin probabilities. In forthcoming research work,
we would like to study the possibility of a statistical extension when data are available.
The explicit formula obtained involves quantities that can be estimated empirically and
plugged in.
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