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Abstract
The main result of the paper consists in graphical necessary and sufficient conditions which ensure the generic discrete mode observability

of structured switching descriptor systems. The methods used in the previous studies on the observability of switching linear systems on
standard form are not applicable to switching descriptor systems. So, we develop a new approach starting from bipartite representations of
these systems and then building a new kind of digraph dedicated to the discrete mode observability study. The proposed method assumes
only the knowledge of the system’s structure and is applicable to a large class of descriptor systems including regular and non regular
systems even if they are square or under-determined. The provided conditions can be implemented by classical graph-theory algorithms.
Key words: Switching systems, descriptor systems, mode observability, graph theory.

1 Introduction
Hybrid systems, combining event-driven and time-driven dy-
namics, have received growing attention in the control com-
munity as they describe a wide range of systems (Johansson
and Rantzer (Eds), 2007). On the other hand, descriptor
systems, which handle systems with both differential and
non-differential relations, result from a convenient and nat-
ural modelling process (Müller, 2000). Their applications
can be found in robotics, electrical networks, biologic and
economic systems (Müller, 2000). When the model repre-
senting the whole or more generally a part of a system is a
singular model (for modelling convenience), the functioning
system is then represented by a switching descriptor system
and in order to check the functioning mode, we have to ob-
serve the discrete mode variable of the switching system.
Switching descriptor systems are also particularly suited to
handle systems (even in standard form) where the dynam-
ics of the continuous part is not entirely known in each
discrete mode. Some practical examples where the switch-
ing descriptor models are useful and pertinent are provided
in (Boukas, 2008; Clotet et al., 2009; De Koning, 2003).
The paper focuses on the discrete mode observability of
switching descriptor systems. The discrete mode observabil-
ity is relevant to detect some abrupt changes due to faults
and which make the system switching to non nominal dy-
namics or for supervision when the switching between dif-
ferent modes implies control structure modifications. Few
works deal with the observability of switching descriptor
system, whereas the developed approaches used to study
systems in standard form are not directly applicable. More-
over, for the most part, observability studies use algebraic
or geometric approaches and so require the exact knowl-
edge of the state space matrices characterizing the systems’
model. In many modelling problems or during the concep-
tion stage, these matrices have a number of fixed zero en-
tries determined by the physical laws while the remaining
entries are not precisely known. In these cases, to study
the structural properties, like observability, the idea is that
we only keep the zero/non-zero entries in the state space
matrices. Many interesting works on these models, called
structured models, aim to analyse their properties (Dion et
al., 2003; Murota, 1987; Reinschke, 1988).

The paper is organised as follows: after Section 2, which
is devoted to the problem formulation, some definitions re-
lated to the graph-theoretic approach are given in Section
3. The main result is provided in Section 4 before a brief
conclusion.

2 Problem statement
Consider the following switching descriptor system (SDS)

Σ :

{
Er(t)ẋ(t) = Ar(t)x(t)

y(t) = Cr(t)x(t)
(1)

where x ∈ Rn and y ∈ Rp are respectively the state vec-
tor and the output (measurement) vector and where Er(t) ∈
Rm×n, Ar(t) ∈ Rm×n and Cr(t) ∈ Rp×n. In order to guar-
antee that there exists at least one trajectory x(t) satisfying
the relations defining system Σ, Er(t)x(0−) is assumed to
be admissible i.e. it does not result in contrary equations
in Σ and is such that system Σ is solvable. The exogenous
and unobserved discrete mode variable (or switching signal)
r : [0,∞) → Q = {1, . . . , N}, is assumed, as in (Babaali
and Pappas, 2005), to be right-continuous and only a finite
number of jumps can occur in any finite interval.
The discrete mode observability is the capacity to deduce
the discrete mode knowing the measurements. It is based on
the mode distinguishability:
Definition 1 (Mode distinguishability) Two distinct modes
q ∈ Q and q′ ∈ Q are distinguishable if, for almost all
initial conditions x0, either there exist an integer s ≥ 0 and
an expression fq(y, ẏ, . . . , y

(s)) = 0 which is satisfied for
mode q but is not satisfied for mode q′, or there exist an
integer s′ ≥ 0 and an expression fq′(y, ẏ, . . . , y

(s′)) = 0
which is satisfied for mode q′ but is not satisfied for mode q.
Here, “ for almost all initial conditions x0” is to be under-
stood as “for all x0 ∈ Rn except for the zero set of some
polynomials with real coefficients in the n initial state com-
ponents” (x0 = 0 for example).
Definition 2 (Discrete mode observability) Σ is discrete
mode observable if its modes are distinguishable 2-by-2.
Discrete mode observability analysis can then be reduced
to the study of the distinguishability of each pair of modes.
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Thus, in this paper, we consider that we have only 2 modes.
Moreover, since we study a structural property, it is pertinent
to deal with structured systems, for which we assume that
only the sparsity pattern of matrices Eq , Aq and Cq is known
for q ∈ {1, 2}. So, to each entry of these matrices, we
only know whether its value is fixed to zero, or that it has
an non-fixed real value represented by a parameter λi. The
vector of these parameters is Λ = (λ1, λ2, . . . , λh)

T and
it is assumed that Λ can take any value in Rh. We denote
by Aλ

q , Cλ
q and Eλ

q respectively the matrices obtained by
replacing the non zeros in Aq , Cq and Eq , for q ∈ {1, 2}
by the corresponding parameters λi and we denote

ΣΛ :

{
Eλ

r(t)ẋ(t) = Aλ
r(t)x(t)

y(t) = Cλ
r(t)x(t)

(2)

If all parameters λi are numerically fixed, we obtain a so-
called admissible realization of ΣΛ. We say that a property is
true generically for ΣΛ if it is true for almost its realizations
or equivalently for almost all parameters λi.
For the discrete mode observability analysis, it is pertinent
and necessary to highlight the similarities and the differences
between the models associated to these modes. Indeed, for
q ̸= q′, it is not realistic to assume that all the parameters
of Aλ

q , Cλ
q or Eλ

q are free from the ones of Aλ
q′ , C

λ
q′ or Eλ

q′ .
Thus, we decompose each structured matrix into 2 parts:
the first one is common to the 2 modes and the second
one is specific to each mode i.e. for q ∈ {1, 2}, Aλ

q =

A0+As
q , Cλ

q = C0+Cs
q and Eλ

q = E0+Es
q . We assume that

the entries of these matrices are free and that a coefficient
of Aλ

q (resp. Cλ
q and Eλ

q ) is exclusively in A0 or in As
q

(resp. in C0 or in Cs
q , and in E0 or in Es

q ). These notations
can be extended to the multi-mode case (Boukhobza and
Hamelin, 2011).

3 Graphical representation and definitions

For each mode q = 1, 2, we associate to structured system
ΣΛ a bipartite graph noted B(ΣΛ, q) = (V+,V−,Wq) ,
where V+ and V− are 2 disjoint vertex subsets and Wq is
the edge set related to mode q. The vertices are associated
to the whole internal state, dynamical variables and outputs
of ΣΛ and the edges represent links between these variables
for each mode. More precisely, V+ = X and V− = Y∪Z,
with X = {x1, x2, . . . , xn}, Z = {z1, z2, . . . , zm} rep-
resenting relation z = Eλ

r(t)x and Y = {y1, y2, . . . , yp}.
Edge set is related to each mode q and is defined by
Wq = Aq-edges∪Cq-edges∪Eq-edges, where Aq-edges={
(xj,xi) | Aλ

q (i, j) ̸= 0
}
, Cq-edges=

{
(xj,yi) | Cλ

q (i, j) ̸= 0
}

and
Eq-edges=

{
(xj, zi) | Eλ

q (i, j) ̸= 0
}
. Each edge is associated to

a free non-zero parameter of the system’s model called the
weight of the edge. Number q is written under each edge
associated to an element of specific matrices As

q , Cs
q and

Es
q and represents its index. The edges which are common

to the two modes i.e. associated to matrices A0, C0 and E0
have index 0. The edges which are specific to mode q have
index q.

Example 1 To the system defined by the following matrices, we
associate bipartite graphs in Figure 1.

A0=


0 λ1 0 0 0 0

0 0 0 0 0 λ2

0 0 0 λ3 0 0

0 0 0 0 λ4 0

, C0=


λ5 0 0 0 0 0

0 λ6 0 0 0 0

0 0 λ7 0 0 0

0 0 0 λ8 0 0

, E0=


λ9 0 0 0 0 0

0 0 0 0 0 λ10

0 λ11 λ12 0 0 0

0 0 0 λ13 0 0

.

The specific matrices for mode 1 are such that the entries of As
1

are zero except As
1(3, 1) = λ14, Cs

1 = 0 and the entries of Es
1

are zero except Es
1(2, 3) = λ15. The specific matrices for mode

2 are such that As
2 = 0, Cs

2 = 0 and the entries of Es
2 are zero

except Es
2(3, 1) = λ16.
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Figure 1. Bipartite graphs associated to system of Example 1.
Mode 1 on the left, mode 2 on the right.

• Two edges are disjoint if they have no common vertex. A
matching is a set M of disjoint edges.
• A path P is denoted P = vs0 → vs1 → . . . → vsi ,
where, for a given q ∈ {1, 2}, (vsj ,vsj+1

) ∈ Wq for
j = 0, 1, . . . , i − 1. We say in this case that P cov-
ers vs0 , vs1 , . . . , vsi . A path is simple when every ver-
tex occurs only once. The weight of P is the product of
the weights of all its edges. A cycle is a path of the form
vs0 → . . . vsi → vs0 , where vs0 , . . . , vsi are distinct.
• Let V1 and V2 represent two subsets, P is a V1-topped
path if its end belongs to V1.
Consider now any bipartite graph noted B defined by the
triplet (V+,V−,W ), and let us recall the subdivision of
such graph into ν + 2 partially ordered irreducible com-
ponents denoted Ci(B) = (V+

i (B),V−
i (B),Wi(B)) using

the Dulmage-Mendelsohn (DM) decomposition (Dulmage
and Mendelsohn, 1958; Murota, 1987):
# Find a maximal matching M in B. We associate to this
maximal matching a non bipartite digraph noted BM =
(V+,V−,WM ) where (v1,v2) ∈ WM ⇔ (v1,v2) ∈
W or (v2,v1) ∈ M . We denote by ∂+M (resp. ∂−M) the
set of vertices in V+ (resp. in V−) covered by the edges of
M . We note S+

0 = V+ \ ∂+M and S−
0 = V− \ ∂−M .

# V+
0 (B)=S+

0∪{v ∈ V+, ∃ a path in BM from S+
0 to v}.

# V−
0 (B) = {v ∈ V−, ∃ a path in BM from S+

0 to v}.
# W0(B) = {edges linking V+

0 (B) to V−
0 (B)}.

# V+
∞(B) = {v ∈ V+, ∃ a path in BM from v to S−

0 }
# V−

∞(B)=S−
0 ∪{v∈V−,∃ a path in BM from v to S−

0 }.
# W∞(B) = {edges linking V+

∞(B) to V−
∞(B)}.

# For i = 1, . . . , ν, let Ci(B) be the strongly connected
components (2 vertices vi and vj are said to be strongly
connected if it exists path from vi to vj and a path from vj
to vi, the relation “is strongly connected to” is an equiva-
lence relation and we call each equivalent class a strongly
connected component) of the graph obtained from BM after
deleting the vertices and the edges of C0(B) and C∞(B).
# Define a partial order “4” on the strongly connected
compo-nents Ci(B) for i = 0, 1, . . . , ν,∞ as follows:
Ci(B) 4 Cj(B)⇔ there exists a path starting from vertices
of Cj(B) to the ones of Ci(B) in BM , C0(B) is called the
minimal inconsistent part of B and C∞(B) is the maxi-
mal inconsistent part of B.
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4 Main result
4.1 Preliminaries
To establish the mode observability of each mode, we
apply some results deduced mainly from (Murota, 1987;
Boukhobza and Hamelin, 2011). These results allow in a
first stage to reduce the graph to its useful part i.e. to
the part where it is possible to write a non-trivial expres-
sion linking only the output and their derivatives. The DM-
decomposition properties allow to prove quite easily the fol-
lowing result:
Lemma 1 For a mode q, there can exist a redundancy equa-
tion linking the output components and their derivatives only
in the maximal inconsistent part C∞(B(ΣΛ, q)) ofB(ΣΛ, q).
According to the previous lemma, we consider in the se-
quel of the paper only the maximal inconsistent part of
B(ΣΛ, q). We can then work on bipartite graphs B̄(ΣΛ, q)
instead of B(ΣΛ, q), where B̄(ΣΛ, q) = (V̄+

q , V̄
−
q , W̄q)

with V̄+
q = V+

∞(B(ΣΛ, q)), V̄−
q = V−

∞(B(ΣΛ, q)) and
W̄q is the subset of edges included in Wq which link
V+

∞(B(ΣΛ, q)) to V−
∞(B(ΣΛ, q)). In this framework, Āq-

edges, C̄q-edges and Ēq-edges are respectively the subsets of
Aq-edges, Cq-edges and Eq-edges linking V+

∞(B(ΣΛ, q))
to V−

∞(B(ΣΛ, q)). For q = 1, 2, we denote by X̄q, Ȳq and
Z̄q the restrictions of respectively X, Y and Z to the ver-
tices of V̄+

q and V̄−
q i.e. X̄q = V̄+

q , Ȳq = V̄−
q ∩ Y and

Z̄q = V̄−
q ∩ Z.

Example 1 (Continued): For both modes 1 and 2, we can
choose as maximal matching M = {(x1, z3), (x2,y2), (x3,y3),
(x4,y4), (x5, z4), (x6, z2)}. We can deduce that the maximal
inconsistent part is defined by the following set of vertices: V̄+

1 =
V̄+

2 = {x1, x2, x3, x4} and V̄−1 = V̄−2 = {y1, y2, y3, y4,
z1, z3}. The reduced bipartite graphs are depicted in Figure 2.
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Figure 2. Reduced bipartite graphs of the system of Example 1.
Mode 1 on the left, mode 2 on the right.

We define, for each q = 1, 2, and each output vertex sub-
set VY ⊆ Ȳq, sub-graph B̄(ΣΛ, q,VY) by removing from
B̄(ΣΛ, q) all the output vertices which are not in VY and
the Cq-edges which do not arrive to VY. Then, we exhibit
two classes of output vertex subsets for which we can com-
pute the observability subspaces dimensions:
• VY ⊆ Ȳq is said to be q-complete, if the minimal incon-
sistent part of B̄(ΣΛ, q,VY) is empty.
• VY ⊆ Ȳq is said to be q-eligible, if only the maximal
inconsistent part of B̄(ΣΛ, q,VY) is not empty.
We can deduce the following results from (Boukhobza and
Hamelin, 2011):
Lemma 2 For each q-complete subset Yu =
{yi1,q , yi2 , . . . , yik} ⊂ Ȳq there exist generically state
space subdivision X̄q = (X̃T

q , X̂
T
q )

T , functions φx,q , φy,q

and an integer ν ≤ n such that, in mode q, dynamics of
system (2) restricted to its maximal inconsistent part can
be written as:

Ẽq
˙̃Xq = ÃqX̃q + φx,q(Yu, Ẏu, . . . , Y

(ν)
u )

Ys = C̃qX̃q + φy,q(Yu, Ẏu, . . . , Y
(ν)
u )

(3)

where Ẽq is a square full rank matrix and Ys = Ȳq \Yu.
Corollary 3 For each yi∈Ȳq, there exist integers k and s,
and a function fq , which satisfy expression on form y

(k)
i =

fq(yi, ẏi,. . . , y
(k−1)
i , Yu,Ẏu, . . . ,Y

(s)
u )=0, whereYu⊆Ȳq\{yi}.

Finally, we characterize the generic dimension of the ob-
servability subspace associated to an output vertex subset:
Definition 3 For each mode q ∈ {1, 2} and to each q-
eligible vertex subset VY ⊆ Ȳq, integer βq(VY) is defined
as card(X̄q) minus the sum of minimal number of Ēq-edges
included in a maximal matching of the maximal inconsistent
part of B̄(ΣΛ, q,VY). For each q-complete vertex subset
VY⊆Ȳq,we defineβq(VY)as card(X̄q) minus the sum of:
- the minimal number of Ēq-edges included in a maximal
matching of the maximal inconsistent part of B̄(ΣΛ, q,VY)
- the maximal number of Ēq-edges included in a maximal
matching of the consistent part of B̄(ΣΛ, q,VY).

We can deduce from (Boukhobza and Hamelin, 2011):
Lemma 4 Consider SSDS ΣΛ, for each q-complete vertex
subset VY ⊆ Ȳq, βq(VY) is equal to the generic dimension
of the observable subspace for mode q when restricting the
measurements to the output components associated to VY.

Definition 4 For each yi ∈ Ȳq and mode q, we define
integer dq(yi) = βq(Ȳq)− βq(Ȳq \ {yi}).

4.2 Discrete mode observability digraph
The discrete mode observability digraph contains the same
vertices than B̄(ΣΛ, q) but not the same edges. In fact, we
remove all the Ēq-edges and substitute them by new edges
denoted Γq-edges and Ψq-edges defined for each mode q.

Definition of Γq-edges and their indices:
# Consider B̄E(ΣΛ, q) the restriction of B̄(ΣΛ, q) to only
the Ēq-edges,
# Let M be a maximal matching in B̄E(ΣΛ, q) to
which we associate a non bipartite digraph noted B̄q,M =
(X̄q, Ȳq ∪ Z̄q,WM ) where (v1,v2) ∈ WM ⇔ (v1,v2) ∈
Ēq-edges or (v2,v1) ∈ M .
# In WM , if (v1,v2) ∈ Ēq-edges, then it conserves its in-
dex and if (v1,v2) ∈ WM \ Ēq-edges, then it has the same
index than (v1,v2) which belongs to Ēq-edges.
# Let E+(q, 0) be the set of vertices in X̄q which are not
covered by the edges of M ,
# For each mode q, we note by Ci(Ēq) = (E+(q, i),
E−(q, i), E(q, i)), i = 1, . . . , µq the strongly connected
components related to B̄q,M and C0(Ēq) = (E+(q, 0), ∅, ∅).
# Use the partial order “4” (cf. Section 3) on the strongly
connected components Ci(Ēq) for i = 0, 1, . . . , µq .
# if Ci(Ēq) contains an edge with index q then Ci(Ēq) is
said to be a q-component.
# Γq-edges = {(zj,xi) if xi and zj belong to the same
strongly component Cℓ(Ēq)} ∪ {(zj,xi) if xi ∈ E+(q, ℓ),
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zj ∈ E−(q, k) and Cℓ(Ēq) 4 Ck(Ēq), ℓ ̸= 0}.
The indices of the Γq-edges are computed as follows:
- all the edges linking elements of a q-component have in-
dex q.
- if Cℓ(Ēq) 4 Ck(Ēq) and if there exists a path in B̄q,M

starting from Cℓ(Ēq) to Ck(Ēq) containing at least an edge
with index q, then the Γq-edges linking xi ∈ E+(q, ℓ) to
zj ∈ E−(q, k) have all index q.
- if Cℓ(Ēq) 4 Ck(Ēq) and if there exists a path starting from
Cℓ(Ēq) to Ck(Ēq) containing only edges with index 0, then
the Γq-edges linking xi ∈ E+(q, ℓ) to zj ∈ E−(q, k) have
index 0.
Definition of Ψq-edges and their indices:
# Ψq-edges = {(xi, zj) if xi ∈ E+(q, 0), zj ∈ E−(q, k)
and C0(Ēq) 4 Ck(Ēq)}.
The indices of the Ψq-edges are computed as follows:
- if there exists a path in B̄q,M starting from C0(Ēq) to
Ck(Ēq) containing at least an edge with index q then the Ψq-
edges linking xi ∈ E+(q, 0) to zj ∈ E−(q, k) have index q.
- if there exists a path in B̄q,M starting from C0(Ēq) to
Ck(Ēq) containing only edges with index 0 then the Ψq-
edges linking xi ∈ E+(q, 0) to zj ∈ E−(q, k) have index 0.

The interpretation of Γq-edges and Ψq-edges is related to
the decomposition of matrix Ēq into (Ẽq Êq), where Ẽq
is a square generically full column matrix. Edge subset
Γq-edges represents matrix Ẽ−1

q and Ψq-edges represents
matrix Ẽ−1

q Êq as it is stated in the following lemma proved
in Appendix A:
Lemma 5 For SSDS ΣΛ in mode q, matrix Ēq can be writ-
ten as (Ẽq Êq), after possibly column permutations, where
Ẽq is a square generically full column matrix which columns
correspond to state vertices included in E+(q, k), k ̸= 0
and Ēq corresponds to state vertices included in E+(q, 0).
We can state:
i. The Γq-edges correspond generically to the edges of Ẽ−1

q

and when the index of an edge of Γq-edges is equal to q, then
the corresponding element of Ẽ−1

q is specific to mode q.
ii. The Ψq-edges correspond generically to the edges of
Ẽ−1

q Êq and when the index of an edge of Ψq-edges is equal
to q, then the corresponding element of Ẽ−1

q Êq is specific
to mode q.
Using the previous Γq and Ψq edges definitions, we
construct, for each mode q = 1, 2, a new digraph
noted Gdmo(ΣΛ, q) defined by

(
V̄+

q , V̄
−
q , W̄q ∪ Γq-edges ∪

Ψq-edges\Ēq-edges
)
, where each edge belonging to Āq∪C̄q

keeps its initial index.
Example 1 (Continued): For mode 1, to cover Z̄1 with
only Ē1-edges, we choose the maximal matching M =
{(x1, z1), (x2, z3)}. Therefore, E+(1, 0) = {x3, x4} which ver-
tices are not covered by M . When we carry out the decom-
position of B̄M (ΣΛ, 1) into strongly connected components, we
obtain two strongly connected components: C1(Ē1) defined by
E+(1, 1) = {x2} and E−(1, 1) = {z3} and C2(Ē1) defined by
E+(1, 2) = {x1} and E−(1, 2) = {z1}, with C1(Ē1) � C2(Ē1)
and C2(Ē1) � C1(Ē1). These two strongly connected components

are not 1-components. We can then deduce that there exist two Γ1-
edges with indices 0: {(z1,x1), (z3,x2)}. Finally, as there exists
a path between E+(1, 0) and C1(Ē1) (x3 → z3), which does not
contain any edge with index 1, we have one Ψ1-edge having index
0: (x3, z3). The discrete mode observability digraph associated
to mode 1 is depicted in the left side of Figure 3. Similarly, the
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Figure 3. Discrete mode observability digraphs for the system of
Example 1. Mode 1 (left), Mode 2 (right).
discrete mode observability digraph for mode 2 is depicted in the
right side of Figure 3.
In the new digraph, we define two particular vertex subsets:
• For q ∈ {1, 2}, Vess,q

[
V1,V2

]
is the vertex subset includ-

ing the vertices present in all the maximum V1–V2 linkings
included in Gdmo(ΣΛ, q).
• For q ∈ {1, 2}, in Gdmo(ΣΛ, q), there exists a unique
vertex subset noted So

q

[
V1,V2

]
, called minimum output

separator, which is the set of begin vertices of all direct
Vess,q

[
V1,V2

]
–V2 paths. Note that, an output vertex subset

VY is q-eligible if in Gdmo(ΣΛ, q), So
q

[
E+(q, 0),VY

]
=

E+(q, 0).

4.3 Discrete mode observability analysis
Proposition 6 SSDS ΣΛ, with two possible modes q ∈
{1, 2} is generically discrete mode observable iff one of the
following conditions is satisfied in its associated discrete
mode observability digraphs Gdmo(ΣΛ, q), q = 1, 2 :
1. for some q ∈ {1, 2}, there exists a cycle C containing at
least one edge of index q;
2. for some q ∈ {1, 2}, there exists a E+(q, 0)–Ȳq path
containing at least one edge of index q;
3. for q ̸= q′, Ȳq ̸= Ȳq′;
4. for some q ∈ {1, 2}, there exists a q-eligible vertex subset
VY ⊆ Ȳq such that, either VY is not q-eligible for mode
q′, or βq(VY) ̸= βq′(VY);
5. for some q ∈ {1, 2}, there exist an edge eκ of index q
and an yi-topped path P of length strictly greater or equal
to 2 dq(yi) + 1 which covers eκ and such that vℓ belongs
to a direct So

q [{vP}, Ȳq]-yi path, where vP and vℓ are re-
spectively the begin vertex of P and the end vertex of eκ.

Proof: Sufficiency: Condition 1: Let us denote by xi one of the
vertices of cycle C verifying Condition 1. There exist a xi–yj

path in Gdmo(ΣΛ, q), where yj ∈ Ȳq and a q-complete subset
Yu ⊂ Ȳq \ {yj}. From Lemma 2, there exist functions φx,q ,
φy,q and an integer ν ≥ 0 such that for mode q, ΣΛ restricted
to its maximal inconsistent part can be written as in form (3).
The digraph representation of (3) contains also C. Note that C is
necessarily a succession of Ẽ−1

q and Ãq edges. From Theorem
21.1 of (Reinschke, 1988), the characteristic equation of matrix
Ẽ−1

q Ãq , which has the form (Ẽ−1
q Ãq)

ñ+. . .+ak(Ẽ
−1
q Ãq)

k+. . .

+ a0I = 0, contains a term añ−k̄(Ẽ
−1
q Ãq)

ñ−k̄, where 2k̄ is the
length of C and ñ is the dimension of X̃q . añ−k̄ depends on the
weight of C and so, on a specific parameter of Es

q or As
q . Thus,(

C̃q,j(Ẽ
−1
q Ãq)

ñ+. . .+akC̃q,j(Ẽ
−1
q Ãq)

k+. . .+a0C̃q,j

)
X̃q=0 (4)

where C̃q,j is the line of matrix C̃ related to output yj in mode
q in (3) i.e. yj = C̃q,jX̃q + φy,q,j(Yu, Ẏu, . . . , Y

(ν)
u ). Equation

4



(4) leads to an algebraic equation parametrized by at least an
element specific to mode q.
Condition 2: Let denote by vi the vertex of E+(q, 0) from which
there is a E+(q, 0)–Ȳq path P containing at least an edge eκ of
index q. Let λκ be the non-zero parameter (or weight) associated
to eκ, yj be the end of P and 2ℓ + 1 its length. It exists a
q-complete subset Yu = {yi1 , yi2 , . . . , yik} ⊂ Ȳq \ {yj} such
that elements of E+(q, 0) are covered by a complete matching
in B̄(ΣΛ, q) without using edges and vertices of P neither the
ones belonging to Ēq-edges. From Lemma 2, there exist func-
tions φx,q , φy,q and an integer ν ≤ ñ such that the dynamics
equation of state part X̃q is in form (3). From the characteristic
equation of matrix Ãq , we can write an equation as (4), where
also C̃q,j is the line of matrix C̃ related to output yj in mode
q in (3) i.e. yj = C̃q,jX1,q + φy,q,j(Yu, Ẏu, . . . , Y

(ν)
u ). Thus,

C̃q,j(Ẽ
−1
q Ãq)

kX̃q = y
(k)
j − C̃q,j

(
φ

(k−1)
x,q (Yu, Ẏu, . . . , Yu

(ν))+

Ẽ−1
q Ãqφ

(k−2)
x,q (Yu, Ẏu, . . . , Yu

(ν)) + . . . + (Ẽ−1
q Ãq)

k−2

φ̇x,q(Yu, Ẏu, . . . , Yu
(ν))

)
− φ

(k)
y,q,j(Yu, Ẏu, . . . , Y

(ν)
u ). Since

there exists a path of length 2ℓ + 1 from vi to yj containing
an edge eκ, term Cj(Ẽ

−1
q Ãq)

ℓ is not zero and depends on the
element denoted previously λκ. Therefore, we obtain an algebraic
equation specific to mode q.

Condition 3: This condition implies that there exists
yi ∈ Ȳq \ Ȳq′ . Using Corollary 3, there is a redundancy equa-
tion including yi and its derivatives in mode q but not in mode q′.
Condition 4: If VY is q-eligible for mode q and not for mode
q′, then Corollary 3 ensures the existence of an equation linking
the components of VY and their derivatives in mode q but not
in mode q′. Otherwise, if βq(VY) ̸= βq′(VY), then at least one
output derivative can be expressed in mode q′ using other outputs
but not in mode q .
Condition 5: If, for some q, yi ∈ Ȳq then there exists a q-
complete vertex subset Yu ⊆ Ȳq \ {yi}. From Lemma 2, there
exist functions φx,q , φy,q and an integer ν ≤ ñ such that the
dynamics equation of state part X̃q is in form (3). Moreover,
there exists a minimal subset Ys ⊆ Ȳq \ (Yu ∪ {yi}) such that
∀k ≥ dq(yi), we can write an equation of the form

y
(k)
i =

∑
s<k̃i

αi,sy
(s)
i +

∑
l |yl∈Ys

ñ∑
s=0

αl,sy
(s)
l +υ(Yu, . . . , Y

(n)
u ) (5)

Let us denote by vP = xj the begin vertex of the so-called path
P satisfying Condition 5 (i.e. P is a yi-topped path of length
2k+1 strictly greater than dq(yi) and covers eκ) and ej the jth

Euclidean vector. Relation (5) can be written as:
C̃q,i(Ẽ

−1
q Ãq)

kej =(∑
s<dq(yi)

αi,sC̃q,i(Ẽ
−1
q Ãq)

s+
∑

yl∈Ys

n∑
s=0

αl,sC̃q,l(Ẽ
−1
q Ãq)

s
)
ej (6)

where each non-zero component of C̃q,l(Ẽ
−1
q Ãq)

s is asso-
ciated to the paths arriving to yl ∈ Ys of length 2s + 1.
If So

q

[
{xj},Ys ∪ {yi}

]
is a state vertex, let us denote it

xr. There exist kr and k′ such that kr + k′ = k and
C̃q,i(Ẽ

−1
q Ãq)

kej = C̃q,i(Ẽ
−1
q Ãq)

kr∆r(Ẽ
−1
q Ãq)

k′
ej where

∆r is a diagonal matrix which has only one non-zero element
∆r(r, r) = 1. We can do the same reasoning for each term
C̃q,l(Ẽ

−1
q Ãq)

sej and so there exist sr and s′ such that sr+s′ = s

and C̃q,l(Ẽ
−1
q Ãq)

sej = C̃q,l(Ẽ
−1
q Ãq)

sr∆r(Ẽ
−1
q Ãq)

s′ej .
The fact that end vertex xℓ of eκ belongs to a direct
So
q [{xj}, Ȳq]-yi path implies that specific edge eκ belongs

to a So
q

[
vP,Ys∪{yi}

]
–Ys∪{yi} path. This means that edge

eκ appears in only some So
q

[
vP,Ys∪{yi}

]
–Ys∪{yi} paths.

Thus, some terms of C̃q,i(Ẽ
−1
q Ãq)

kr and C̃q,l(Ẽ
−1
q Ãq)

sr ,

but not all, contain the non-zero parameter corresponding
specific to mode q. Denoting by Cr = eTr , where er is
the rth Euclidean vector, we have that C̃q,i(Ẽ

−1
q Ãq)

kej =

C̃q,i(Ẽ
−1
q Ãq)

kr∆r(Ẽ
−1
q Ãq)

k′
ej = α′Cr(Ẽ

−1
q Ãq)

k′
ej and

C̃q,l(Ẽ
−1
q Ãq)

sej = C̃q,l(Ẽ
−1
q Ãq)

sr∆r(Ẽ
−1
q Ãq)

s′ej =

α′l,sCr(Ẽ
−1
q Ãq)

s′ej . Thus, after substitution of the previous
terms in relation (6),

α′Cr(Ẽ
−1
q Ãq)

k′
ej =( ∑

sr≤s<dq(yi)

α′i,sαi,sC
s−sr
r +

∑
l |yl∈Ys

ñ∑
s=sr

α′l,sαl,sCr(Ẽ
−1
q Ãq)

s−sr
)
ej

where some, but not all, coefficients α′ and α′l,s depend on the
weight of eκ. This equality leads to an algebraic relation satisfied
only in mode q. If So

q

[
{xj},Ys ∪ {yi}

]
is a dynamical vertex,

we have the same result.
Necessity: From Lemma 1, only the edges in the maximal in-
consistent part in each mode of ΣΛ can lead to an algebraic
relation allowing the discrete mode observability. It is necessary
to consider a q-complete subset Yu ⊆ Ȳq to obtain for mode q
a system on form (3).
When Conditions 1 and 2 are not satisfied, it is not possible, for
any choice of Yu, to obtain an algebraic relation achieving mode
distinguishability from the characteristic equation of any matrix
(Ẽ−1

q Ãq) of (3). In this case also, φx,q(Yu, Ẏu, . . . , Y
(ν)
u ) does

not depend on any specific element of Āq , C̄q or Ēq , q ∈ {1, 2}.
When Conditions 3 and 4 are not satisfied, the output elements of
some vertex subset Ys implicated in any of the existing algebraic
output equations have similar derivative degrees for modes 1 and
2. Thus, the only way to have different algebraic equations is
that there exists at least one coefficient αi,s or αl,s of (5), which
characterizes a parameter which intervenes in only one mode.
Without loss of generality, we can assume that Ys is minimal.
Defining k̃i = βq(Ys ∪ {yi} ∪Yu) − βq(Ys ∪Yu) ≥ dq(yi),
in redundancy relation (5), we have necessarily k ≥ k̃i. To
guarantee discrete mode observability, there must exist at least a
yi-topped path P , of length greater or equal to 2k̃i +1 and so of
length strictly greater than 2dq(yi), associated to this relation.
Let us denote by xj the begin vertex of P and ej the jth Eu-
clidean vector. Equation (5) can be written as relation (6), where
C̃q,l(Ẽ

−1
q Ãq)

s is associated with yl-topped paths, yl ∈ Ys of
length 2s+1. If for each xℓ, end vertex of a specific edge belong-
ing to P , xℓ does not belong to any direct So

q [{vP},Y1,q]-yi

path, then all the paths starting from xr to Y contain only edges
common to the two modes. Then all the existing relations of the
form (5) do not contain terms specific to a mode q. We can do
the same reasoning for all q-complete subsets Yu ⊆ Ȳq. Thus,
it is not possible to achieve the mode distinguishability. △
Comments and interpretation: If there is a specific edge
belonging to any cycle in the discrete mode observability
digraphs Gdmo(ΣΛ, q) then the distinguishability is possi-
ble (first condition). If a specific edge belongs to any path
linking the minimal inconsistent part of Eq to the output
in Gdmo(ΣΛ, q) then the distinguishability is possible (sec-
ond condition). If a specific edge allows to modify the
output subdivision due to the previous DM-decomposition
(third condition) or to modify the observability subspace
of any output measurements set (fourth condition), then
the distinguishability is possible. Finally, if a specific edge
belongs to an output rooted path including a state vertex,
which can be linked independently to other outputs, then
the distinguishability is possible (fifth condition). If all the
conditions are not satisfied, then the two modes are too
similar or their differences are not observable from the
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measurements and so they are not distinguishable.
Example 1 (Continued): For mode 1, we have only one specific
edge (x1, z3) belonging to a cycle: x1 → z3 → x2 → z1 → x1

and Condition 1 is satisfied. This characterizes an algebraic relation
specific to mode 1: λ9λ11ÿ1 = λ1λ5

(
λ3
λ8

y4 +
λ14
λ5

y1 − λ12
λ7

ẏ3
)

.

For mode 2, we have only one specific edge (z1,x2) belonging to
a cycle: z1 → x2 → z1. This characterizes an algebraic relation
specific to mode 2: λ9λ11ÿ1 = λ1λ5

(
λ3
λ8

y4 − λ16
λ5

ẏ1 − λ12
λ7

ẏ3
)

.
Condition 2 is not satisfied for mode 1 neither in mode 2 be-
cause the direct E+(1, 0)–Ȳ1 paths do not contain specific edge.
Condition 3 is not satisfied also as Ȳ1 = Ȳ2. Condition 4
is satisfied for Vy = {y2, y3, y4} which is 1-eligible and 2-
eligible and β1(Vy) = 4 while β2(Vy) = 3. This character-
izes an algebraic relation specific to mode 2 and not satisfied
for mode 1: λ11

λ6
ẏ2 + λ12

λ7
ẏ3 + λ16λ1

λ9λ6
y2 = λ3

λ8
y4. For Condi-

tion 5, only y1 or y2 can play the role of yi in Proposition 6
because they are successor of x1. d1(y1) = 0 = d1(y2) and
So
1 [{x1}, Ȳ1] = {x1}. The existence of direct path x1-y2 of

length 3 covering specific edge (x1, z3) allows to satisfy Condition
5. This characterizes another algebraic relation specific to mode 1:
λ11
λ6

ẏ2 +
λ12
λ7

ẏ3 = λ3
λ8

y4 +
λ14
λ5

y1. For mode 2, Condition 5 is sat-
isfied also and we have relation: λ11

λ6
ẏ2+

λ12
λ7

ẏ3+
λ16
λ5

ẏ1 = λ3
λ8

y4.

5 Conclusion
In this paper, we propose a graph-theoretic tool to character-
ize exactly the generic discrete mode observability of struc-
tured switching descriptor linear systems. The studied sys-
tem can be under-determined, overdetermined or square and
possibly non-regular. Our approach consists in two steps.
First, we simplify the bipartite graphs associated to the sys-
tem and then we build a new digraph dedicated to the dis-
crete mode observability. Then, we establish the necessary
and sufficient graphical conditions for the discrete mode ob-
servability. These conditions generalize the ones established
in (Boukhobza and Hamelin, 2011) for systems in standard
form. To check these conditions, we can use classical pro-
gramming techniques, which are free from numerical diffi-
culties as their computational complexity is polynomial.
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Appendix A: Proof of Lemma 5
i. We can always reorder the strongly connected components to
have Cj(Ēq) 4 Ci(Ēq) only when i ≤ j. In this case, Dulmage-
Mendelsohn decomposition of the bipartite graph related to matrix
Ẽq leads (after a possible permutation of rows and columns of
this matrix) to the following bloc decomposition of Ẽq:

Ẽq =

E+(q, 1)
←−−−−→

E+(q, 2)
←−−−−→

E+(q, 3)
←−−−−→

. . . E+(q, µq)
←−−−−−→

Eq,1,1 Eq,1,2 Eq,1,3 . . . Eq,1,µq

0 Eq,2,2 Eq,2,3 . . . Eq,2,µq

.

.

.
. . .

. . . . . .

.

.

.

0 0 0 . . . Eq,µq,µq



↕ E−(q, 1)

↕ E−(q, 2)

.

.

.

↕ E−(q, µq)

where all matrices Eq,i,i, = 1, . . . , µq are square matrices and
generically full row-rank because there is no inconsistent part in
the bipartite graph related to matrix Ẽq and Eq,i,j ̸= 0 only if
there exists an edge from Ci(Ēq) to Cj(Ēq). Applying the inver-
sion triangular block matrices, to the inversion of Ẽq , we have
that Ẽ−1

q is also a block triangular matrix. Since, Eq,i,i is associ-
ated to a strongly connected component, this sub-matrix cannot,
by any row or column permutation, be partitioned into a block-
triangular matrix. Therefore, the bipartite graph representing this
matrix contains edges from all vertices of E−(q, i) to the ones of
E+(q, i). Moreover, if there exists in Eq,i,i an element which is
specific to mode q, then all the elements of E−1

q,i,i will be specific
to mode q and so must be represented by edges with index q.
Let us look now to the sub-matrices in the upper part
of Ẽ−1

q and consider first the two last blocks of Ẽq i.e.(
Eq,µq−1,µq−1 Eq,µq−1,µq

0 Eq,µq,µq

)
. The inversion of this sub-matrix

gives
(

E−1
q,µq−1,µq−1 −E−1

q,µq−1,µq−1Eq,µq−1,µqE−1
q,µq,µq

0 E−1
q,µq,µq

)
. Ma-

trix E−1
q,µq−1,µq−1Eq,µq−1,µqE

−1
q,µq,µq

is generically non-zero iff
there exists an edge from Cµq−1(Ēq) to Cµq (Ēq). In this case, the
bipartite representing this matrix contain edges from all vertices of
E−(q, µq) to the ones of E+(q, µq − 1). Moreover, if there exists
a path from a vertex of Cµq−1(Ēq) to a vertex of Cµq (Ēq), then
all the elements of E−1

q,µq−1,µq−1Eq,µq−1,µqE
−1
q,µq,µq

will be spe-
cific to mode q and so must be represented by edges with index q.
We can generalize this reasoning to the other blocs of Ẽ−1

q and we
have that the Γq-edges as defined in Subsection 4.2 corresponds
generically to the edges of matrix Ẽ−1

q , where Ẽq is the square
generically full column matrix described by the bipartite graph re-
stricted to Ēq-edges between vertices included in E+(q, k), k ̸= 0
and the ones included in E−(q, k), k ̸= 0. Moreover, when the
index of an edge of Γq-edges is equal to q, then the corresponding
element of Ẽ−1

q is specific to mode q.
ii. According to the previous characterization of Ẽq and as edges
related to Êq are the ones starting from E+(q, 0), we have that
the non zero elements of Ẽ−1

q Êq correspond in B̄q,M to the paths
starting from E+(q, 0) by necessarily an Êq-edge and arriving to
some Ci(Ēq). This is traduced by the definition of Ψq-edges. If,
besides, this path contains an edge with index q, then all the edges
from the corresponding begin vertex and all vertices of Ci(Ēq)
describe relations which are specific to mode q and must have
index q.
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