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Prices of robustness and reblending in oil industry
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Abstract. In this paper we present a method to calculatetloes of robustness and reblending through
a robust real-time optimization method for the mellinear oil blending process. Our approach @ace
this problem in a wider frame where different sesrof uncertainty inherent to the blending process
appear. The polytopal structure of our problem psrenrobust approach that is simpler than thesidab
theory of Ben-Tal and Nemirovskii which needs conpeogramming tools. Our method is intended to
avoid reblending and we measure its performanderins of the blend quality giveaway and feedstocks
prices. The difference between the nominal andrtimist optimal values (the price of robustness)
provides a benchmark for the cost of reblendingctvhis difficult to estimate in practice. This new
information can be used to adjust the level of eovetism in the model. Additional critical infornat

for the control system is produced.

Keywords:Robustness, Blending, Polyhedra, RTO, Linear Rrogning.

1. INTRODUCTION

The oil blending process consists in determinirgy dptimal
proportions to blend from a set of available conmgaia such
that the final product obtained fulfills a set giesifications
on their properties. The legal constraints and remvnental
considerations make it harder nowadays to obtairi‘gbod”
blend. When the blend does not fulfill the constisii it has
to be reblended and this is a loss of money, tintkemergy.

optimizer and the control subsystem. An RTO loopsist of
calculating the optimal recipe” for the new constraints and
adjusting the actual recipa by u* —u. Typically, our
control subsystem adjusts the recipe every 5 msning
calling the online optimizer with different sets adnstraints
(up to 100 calls in 5 minutes). A RTO is one thatets this
time constraint. This motivates our approach fdrusi blend
models that can be calculated efficiently. Our utaiety
model gives rise to linear models that are effitiesolved.

So, we address the problem of evaluating the pdte An important characteristic in the oil blending pess is the

reblending and how to avoid it.

A blending system is typically constituted by thfaactional
subsystems: the scheduling subsystem, the on-ptienizer
and the control subsystem. Theheduling subsystera the
one in charge of the general refinery productioanping.
The scheduling subsystem uses a linear prograraltolate
for a given period the recipes propertiesy and volumed/
of reference for a sequence of blenfsy, vy, VP), k =

strict requirements over some properties controlleygl
environmental, legal and technological standarfisthése
properties are not satisfied, one can correct tbacbto a
certain limit by dumping the appropriate additivies it.

Otherwise, the blend must be reblended. The addgitre too
expensive whereas reblending reduces the refinmpadity,

so one should consider these blends' bounds as hard

constraints which must be satisfied.

1,..., K (typically K € [10,15]). These calculations are basedon the other hand, oil blending is a complex precebere

on the mean characteristics of components. Segerakces
of uncertainty (see below) perturb the process. @hkne

several unknown and uncertain factors affect thendib
properties. In addition to the plantmodel errordueed by

optimizeris then required to update the target recipe whidhe linearization of blending laws, there are otbeurces of

may became sub-optimal, or even infeasible, du¢hése
disturbances in the process. For the first blenfisthe
sequence, the online process fits well with theedasted
wy, y2, V). Nevertheless, after a number of blends,
happens that the blending environment differs Sicamtly
from the mean characteristics considered by theddhmng
subsystem. In these cases, it is very difficult thoe online
optimizer to take the right decision. The feedbiackased on
measures of the blends’ and components’ propegtiisered
by online analyzers. Finally, theontrol subsystemis in
charge to adjust the component’s flow rates (tlgpeau) in
order to attain the current target recipe. Herdfageis on the
Real Time Optimization (RTO) system formed by tméire

uncertainty: measure errors on components and grepe
caused by instruments' precision; uncertain knogdeaf the
components' properties due to upstream processatioens

@nd uncontrolled blending conditions such as anpierature,

humidity, etc. All these are typical uncertainti@ssing in
any RTO problem (see Zhang 2001).

Hard constraints on the blends' properties combtoettiese
sources of uncertainty are the ideal charactesigticapply
the Robust Optimization (RO) techniques (see Bdn&ral
2009). A main issue in the RO techniques is to icensa
deterministic and set-based uncertainty model.
probabilistic assumption is made over the unceftaand the
solution obtained is optimal for any realization tfe
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uncertainty in a given set. RO techniques seenetadhoc corresponding to the recipe are determined by thkasic
to address an uncertain RTO problem where thebidisis equation

the primary concern. y(w) =a, by+ B, B-u (D)

Some previous works have been devoted to find tobushere,a, = -2> g, =-*

solutions to the blending problem. In (Hendrix 189& |5 ing 4 blend's volumg, with propertiesh,, equation (1)
geometric approach is presented for the productramtlire  -,5n be used at any time in the process to plapribguction

design problems but only considering the uncerathte to ¢ o fixed volumev € [0,V]. We just updateh, and the

measurement imprecision. To deal with components iy g and takel — v as the remaining volume to pour.

properties uncertainty, (Singh 2000) proposed alm@@r , his planning horizon, the optimal recipe igaoed by
blend RTO system based on predictions of feedStOCEBIving theBlending Problen{BP):

properties whereas (Wang & al 2007) presented aoceha
constraint model and a hybrid: neural networks netie

algorithm solution. More recently, (Chebre & al 201 gu:“uc<uﬁ @)

introduced a linear blending control algorithm whitandles - ; - < 3

this type of uncertainties via an estimator of tbenponents' ysyw=y (3

properties. A more general method based on stdchast 1Mu=10<u<1 (4)
programming which covers various types of uncetyais

presented in (Zhang & al 2002). Here ¢ € R™ gives the components' costs. A recipeis

Our approach begins by highlighting the polytopegubject to components availability and hydraulicuts
underlying the blending process. This and the spéaim of ~Which impose the component's constraints (2). Biryil the
uncertainty on components (see below) permit toehdie Properties constraints (3) are determined by quéditer (y)
robustness without need of convex programming tooland upper ) bounds. Additionally, properties’ bounds are

Linear programming solver is all we need. This paiof abeled ashard (YHJH) or soft (}’sis)- Hard bounds are
greatest interest in the real time processes under = =

investigation. Our models permit to calculate a hamof elatéd tolegal, commercial and environmental gjgations
critical informations such as: the relative pridaeblending, Which must be satisfied whereas soft bounds cavidiated

the price of robustness, the interval of feasiblent Put incurring into qualitygiveaway Finally, (4) are the
volumes. etc. percentage constraints. We ndfg = {u € R* |17 -u = 1}

In this paper we study the blending process wittedr and the simplef, = {u € R* | 1"-u=10<u <1}
blending laws and the components stocked in runtangs.
The paper's structure follows. Section 2 presertig t
Blending Polytopes inherent to the Blending Probéerd the
Basic Equation which will be used to introduce thplated
data in the RTO model. Section 3 analyzes the gémase
when the heel of a previous blend is used in tloeymtion of
the new blend and a RTO approach is proposed t@ s$bé
Blending Problem. In Section 4 we construct unéetyasets . i
for various types of uncertainty. These sets deternthe which represents the set of all recipes that cqprbduced.
robust regions for the blending polytopes in whibe new ©On the other hand, the properties constraints detime
robust RTO method is based. Finally, the priceabiustness Pelyhedron (as it may be unbounded):

and reblending is introduced and explained throagieal

numerical example in Section 5. Cy = {u ER"|y<syw) < i} (6)

2. BLENDING POLYTOPES

Now, there are 3 distinct polytopes and one polyhed
participating in blending process. Geometricallyhe t
intersection of the regions determined by the camepts
constraints and, defines theecipe's polytope

U={ues |usu<u} (5)

Both are defined in theomponent's space

Let's denote byn and m the number of components andn properties spagethe image of/ under the basic equation
properties respectively. We will represerttland's recipedy s thepossible blend's polytope

a vectoru € R™ such thaty; is the percentage of compongnt

present in the blend whereas thiend's propertieswill be P={y(u) ER™|u€eU} (7)
denoted by a vectgy € R™. Then the set of components is

described by them xn matrix B where, B; ; is the i Finally, thetarget polytopes defined by:
physical and / or chemical characteristic of thexponentj.

It is customary when blending to use the heel pfevious C = {y ER™|y<y< ?} 8)
blend to produce a new one. The process startswitana =
volumeV,, of a previous blend with propertiég € R™ and
continues by adding gradually a voluieof the new blend
to obtain a final product's volung,.,; =V, + V.

We suppose that blend's properties are linear auatibins of
components' properties. In general they are natabwmber
of transformations exist that give good linear appnations
of them. So, for anyv € [0,V] the blend's properties

We notice that, among the four preceding polytopaty P
and C; depend onv. At this point we have identified
U, Cy, P, C underlying the BP and we observe that for a fixed
volume v, a feasible solution of BP is a recipes U n Cy
with propertiesy(u) € P n C.



3. BLENDING FROM A PREVIOUS BLEND

In any RTO loop, the on line optimizer is requitedoroduce
a recipe that permits the controller to guide thenting

process. In Section 2 we stated that for a fixeldme v to

pour, the optimal recipe can be obtained by soltheyBP.
However, the BP can result to be infeasible becaddhe

uncertainty pervading the process or for instavdeen a
previous blend with properties out of specificatisrused in
the production of the new blend. Therefore, a methm
compute at any time the best recipe for the planhiorizon
is required. Later we present this method but firstdiscuss
the BP feasibility when the heel of a previous blenused.

If the blend is produced from scratch or the volumeour is
too big compared with the heel's volume, thatfig,i= 0 or
v — oo then the basic equation reducesyta) = B - u and
the polytopeP(v) does not depend dfy. However, the fact
of using the actual blend's propertigsin the basic equation
to update the model inside the RTO loop, makesditen
from a previous blend the regular case. Thus, we g+ 0
and P(v) “moves” from b, toward P(c) asv increases. In
properties space the polytofgke doesn't depend on. We
suppose that there is an interval of volurfigg,,, Vy;q.] Such
thatP(v) N C # 0,V v € [Vyin, Vaxl- Even if P(v) andC
may have different affine dimensions, they bothiti® R™.
Consequently, this intersection makes sense. laratiords,
whenP(v) moves it encounter§. If this were not the case,

Any RTO loop proceeds through the steps I. to 4. a

follows:

max, ming , U, U € U N Cy,ug =0

one has to change the components in order to assure

feasibility. The BP is feasible only for these voles.

Having the valuesVy;, and V., helps to select the
appropriate planning horizon at each RTO loop. Ghapa
planning horizon by taking a volume< V,;, produces an
infeasible BP and makes it necessary to generate
alternative recipe with a possible deterioratiorttef overall
performance of the RTO method. On the other digg, is

the maximum volume to blend when looking for a blen

within specifications. AfterV,,,, has been poured?(v)

an

V.

moves away fromC and the blend's properties deteriorate

progressively.

Furthermore, knowingVy,, and Vy,., helps the control
system to reduce unnecessary and inefficient iatgions.
The last ones having as purpose to correct thedbierbe
within specifications but often they are based olirated
view of the problem. In order to compute the ingrv
[Viin Vmaxl, let's rewrite the basic equation:

1
1+ug

y(u) = “(Uug by +B-u) )

= Now we present the RTO method:

with u, .

Blending RTO Method
We denote by Cyy = {u ER"|yn<y(w) < ?H} the

polyhedron defined by the hard constraints and/je€ Cyy
be an “ideal” target blend without quality giveawarpvided
by the scheduling department.

max, (min), , g, 4 € U N Cpy,ug =0

Vv

Incorporate the new available information
(Vy, by, B, V) in the basic equation. I, = 0,
solve problems (11), (14) and (15) in this order
until having a feasible solution. Otherwise, go
to step Il

ComputeV,,;,, andVy,,, by solving the linear
programming problem:

(10)

If Problem (10) is infeasible or ifV ¢
Vmin» Vmax] 90 to step IV. Otherwise, a blend
without quality giveaway exists for any volume
v € [Viin, Vuax]. Choose a blending horizon
v € [Viin, Vmax] @nd go to step lIl.

Compute the optimal recipe:

min,c-u,u € UNCy (1)
Notice that solving Problem (11) with free
and the additional constraint:
Ugmin = Up = Uomax (12)
we obtain at the same time the optimal
blending horizon v* € [Viin, Vuax] and the
optimal recipe for this volume. This is the best
choice if it's not imperative to produce a
particular volume. In this case STOP.
Otherwise go to step IV.

Forget the components costs and focus only on
the hard constraints. Compute the interval
[Vimin» Vmax] DY solving the problem:

(13)

If this problem is infeasible or ifV ¢
Wmin» Vmax] 90 to step VI. Otherwise, go to
step V.

Look for a recipeu € U n Cyy and a volume

v* € [Vyin,» Vuax] Producing the blend with

minimal quality giveaway. To do this, perform
a dichotomic search oversolving at each step
(with v fixed) the problem:

ming |ly(w) —y(©ll,

uEUnCHu,tECU (14)

.Find u € U to produce a volum& of a blend

with properties as near as possible to the ideal
blendy;:
min, |ly(w) = yrlly,u € U (15)



Following these steps, the RTO method always presic in the blend) and its properties may differ frone thominal
recipe that guides the control process. In stdfy k0 and ones. So, the real recipe and its properties acatdd in
by solving problems (11), (14) and (15) we obtale t neighborhoods of the nominal recipe and its pragert
minimal cost recipe, the blend with minimal qualiyeaway respectively. For the second type, the real mariiffers

or the closest blend tp;. If BP is feasible for some volume from the nominal matrix8 and hence the real polytodg is

v € [Vyin, Vmax), then a blend without quality giveaway different from the nominal polytop€,. In both cases, when
exists and the method generates the one of mirdosil(step a nominal feasible recipe € U n €, is computed, the real
[I1). Otherwise, the hard constraints become therjly and recipe may lie outside the polytogig and the real blend's
the method searches for a blend satisfying them|eWhiproperties may be outside the polytofe Then the real
minimizing the blend's quality giveaway (step V)nddly, if  recipe results to be infeasible.

there is no blend satisfying the hard constraitite, recipe  An intuitive idea to fix our RTO method against reege and
producing the blend with properties as close asiptestoy; B uncertainties follows from the previous geometric
is proposed (step VI). information. The idea consists in computing forypope C;,
We finish this section by stressing the possiblgliagtion of jts convexrobust regionRC, such that any point in this
the RTO method to determine the appropriate heellsme region resists t uncertainty and to measurement errors.
to use in the blend. In our analysig, is considered as fixed That is, any point irRC, is guaranteed to remain inside the
but we can solve (11) with the additional constréli?) with  rea| polytope for all possible realizations 8f and any
Vo andV free in order to obtain the cheapest reaipefor  measurement error, within reasonable limits.

someug € [Uoyin, Uomax]- Then we can find (by means of o, the robust RTO method will consist in replagiadytope
the relationu, = % a suitable pail,, V. The choice of norm Cy by RCy in the RTO method from Section 3. To develop
L,, in problems (14) and (15) permits to obtain biendthis idea, first we need to model and measure tloerntainty

violating a minimum number of properties. Moreovir, We would like to be protected of and then to corapilte

robust LP solvers. the Robust Optimization (RO) theory (see Ben-Tala&
20009).
4. ROBUST RTO Let u be a nominal recipe andu) its properties. To model

In the previous section we proposed a blending Rieghod the components and properties measurement undersain
based on blending polytopes and its evolution wite We Suppose that the real recipéies in the ballS(u, su) of
blended volume. Looking to reduce the model dewmti radiuséu and centew whereas the real blend's properties
produced by some uncertainties, the method uses'bland lies in the ball:

components' properties updates to feedback the Im@dthe

basic equation. However, model updating may fail to SGW),6y) ={y €R™|y(w) -y <y <y(w) + 6y}
guarantee even a feasible solution. A main readothis _

failure is the implicit assumption that data rensainWe are given the minima and maximalB values ofB. In
unchanged inside each RTO loop. order to model matrix3 uncertainty, we use interval sets.
For instance, when on-line blending is usekl, values That is, we suppose that each real valueis comprised in
fluctuate with time because components are issueth f e intervallB; ; = B, — &;;, B,; + &{;] around its nominal
different process presenting also perturbations.afidress ' ' . '

: . ) valueB; ; for some positive values;, &;';.
this problem, (Singh 2000) proposed a blending Ri&hod J ) 7 b
which updates the model with predictions of the pornents' Here we could use different sets and any norm tdefthe

: ; : ncertainty. The level of conservatism (how muchweat to
properties. Alth(_)ugh this method improves the mod(%e protec)t/ed of uncertainty) and the( problem conityle
accuracy, it continues to be non-robust as it dépem the depend on these choices. Taking interval sets hadntax
quality of the predictions. Moreover, uncertainty the :

blending process affects other factors ttawvalues as we norm, the _robust regions obtained are polytopes t%_uaad
will see below complexity in the model is preserved at the experideeing

probably too conservative (we are protected from worst

In accordance with (Zhang 2001), uncertainty in &yO dﬁ\grast'%réil?rfriﬁlm;ﬁlstefhaengafr?emﬁtr?]z)b'?\l%e;tvcéea:gg]em
system may be of four types: 1. Process uncertaint 9 : P

components properties, temperature, humidity, et.; onstruct the robust region of polytogg.
Measurement uncertainty; 3. Model uncertainty; Zarkét
uncertainty: components availabilities and pricétends
demands, etc. In this work we consider the unawits
arising from components measurement and blendjseptiies
measurement (type 2) and the uncertainty caused bwiSav-boyi—i-[)’,,-Ei-u <y
imprecise knowledge of the components propertigse(il). -

Any point u € C; is robust regardingB uncertainty iff
y < J(w) <. Thatis, iff for anyB such thaB, ; € IB; ;,
i=1,..,m (16)

i _ holds. Notice that any rowB; can be expressed
Measurement and components properties uncerta'n“ﬁ&rametrically as B,(z) = B, + 2z~ TQ7 +z*TQf, with
L L L i ]

manifest geometrically in different ways: for thiesf type,

B ._=d' ._’___’._ , +=d :'—’."’:'— ) T =
the real recipe (the real percentages of each coemaised Qi ag (8"1 g"”) Qi a9 (8"1 g"”) d



min(0,z), z* = max(0,z) for some z € R™ such that
lIzllo < 1. Therefore we can deduce thai C, is robust
regardingB uncertainty iff fori = 1,...,m

YitBy&iu <y )<y, — By u 17)

From now on we denote by; (u)=p,"¢ +u and
yi@ =B, u

In addition to B uncertainty, u € C; resists also to
components' measure uncertainty if and only if pont in
S(u, du) satisfies (17). That is, iff far=1,...,m

yityi@ <yw+t) <y, -y (18)

holds for allt € R™ such that||t||, < éu. Then, computing
the minimum and maximum anwe get that (18) holds iff

yitvi@W+6<yu+t) <y, —-y;@-46 (19

with &; = B, 6u - |[B;ll. This is a result from duality,
%+ % = 1. Withp = 1, the problems remains linear.

Equivalently, any recipeu € C; is robust regardingB
uncertainty and properties’ measure uncertainty iff

yityvi@<yW+zZ, <y, -y, (20)

holds for allZ € R™ such that|Z;| < dy;. As previously,
computing the minimum and maximum 8n(20) holds if
yityi @+ 6y <yi(w) <y, —vyi' W) — 8y, (21)

Finally, lettingA;= max(6;, §y;) we obtain the robust region
RCy of polytopeCy:

RCy = {u € R™ |y +y7 () + A< yi(w) <7, — v @) —
Api=1,..,m} (22)

worthwhile to note that whildu and 6y are considered as
fixed values independent of the RTO loop's lengthande™*
depend on it. As fluctuations dhmay accumulate over time,
the longest the loop's length is, the biggest tlilestuations
can be.

Here we limit the analysis to measurement and co@pis
properties uncertainties. However, other typesrafentainty
manifest geometrically in the same way and thus ban
treated identically. For instance, when the unaatas due

to uncontrolled factors like temperature or hunyidihe real
blend's properties are located in a ball around ribminal
blend's properties. To model the uncertainty in the
components prices, we can transform the optiminatio
problem to one with certain objective function andth that
uncertainty appears as a constrainty < c¢). Then we can
construct the uncertainty sets and determine theitvadfects
the robust regions. We can proceed similarly foe th
uncertainty in the components availabilities whidfects the
robust regiorRU of polytopeU.

5. THE PRICE OF ROBUSTNESS AND REBLENDING

In this section we present a real example (withescaalues)
in order to illustrate and compare some key aspetthe

RTO method and its robust counterpart. Here we show
to compute practically the price of robustness tdending.
The BP consists in producing a fixed volunig,., =

5000 m3 of blend from 8 components afg = 2000 m3 of

the heel's volume from a previous blend. Each comepb
and the previous blend has 7 properties to be alber
during the process and they are represented by’ th@

matrix B and vectorb, respectively. Vectors,,;, and

stand for the properties bounds while veatodenotes the
components' cost.

Any u € RCy resists taB uncertainty and to components an(

properties' measurement uncertainties.

To summarize, let's consider a nominal feasibleipeec
uelncy. If eSS, du) andy € S(y(u),dy) for some
Su € R* anddy € R™* and if B, ; € I, ;, then the recipéi
will be feasible in realityii € U n Cy.

g

The RTO method proposed in Section 3 transforms ihe
robust RTO method by a simple substitutiorCgfwith RC;,.
This reduces the impact in implementation as thesire of
RTO remains the same. A5 andV, may be considered as
free variables in the RTO method, we can descridgtqpe
RCy by using explicitly (19) and (21) in associatioithwthe
identity g, = —— instead of (22) where a max is involved

1+ug
This robust RTO method depends completely on theisb
region RC, and to obtain it we only need to determine th
values ofs~, e, du, &y. This information is available for the
class of real-world problems we are concerned wiith.

B

Vi 36.00| 36.00| 32.00| 42.00{ 16.00| 31.00| 35.00| 46.00
Yo 0.04f 0.04] 0.03] 0.08/ 0.08] 0.14 0.06] 0.55
ys | 630.00| 620.00| 600.00| 580.00| 620.00{ 600.00| 540.00| 450.00
Ya 32.77| 32.77| 32.77| 16.98| 16.98| 37.72| 24.08] 8.26
hys | 937.95| 937.95| 636.62| 199.06| 199.06{ 170.47| 1381.90, 2.80
‘ye 0.80] 0.10] 0.05| 0.04f 150| 250 0.05| 0.01
i 50.00{ 49.00{ 50.00{ 55.00| 25.00| 39.00/ 41.00{ 45.00
[ 87.06| 87.06/ 87.02| 86.00| 83.08| 78.05| 87.06]/117.01

bO Ymin Yma

30.00{ 30.00{ 46.00

1.66] 0.18| 1.66

640.00[ 540.00| 640.00

35.19] 6.98]| 35.19

1381.90 2.02| 432.09

1.81| 0.00{ 10.00

40.00| 40.00| 55.00

In order to produce a robust recipe, we assume that
components and properties measurement errors areded

by 8y =10.12,0.0003, 20,0.0826,0.028,0.000049, 0.2]

and du = 0.01 respectively. Regardin@ uncertainty, we
dispose o3~ andB™* the absolute lower and upper bounds of
matrix B. Let define, T"=B—B~, Tt*=B*—-B and



B<B+e*, with e =min(T7,0-T) and &*t= price of robustness is of only 0.35% for a sigmifit value of
min(T™*,0 - T) for some0 < < 1. As we stated in Section 6 = 0.1.
4, the values ofsu and 8y are fixed during the process

T = B* — B~. So, there are™ ands* such thatB — s~ < greater than the nominal recipe's cost whereasdlative

whereasf is directly related to the RTO loops' length. We 6 i ch Ac(%)
taked = 0.01. 0.01 | 87.3851] 87.1097  0.32
0.02 | 87.3542| 87.0763  0.32
We solve (10) with V, =2000m3, and obtain 0.03 | 87.3847| 87.103f 0.32
[Uomingr Yomaxr] = [0,0.0362] and the corresponding robust 0.04 | 87.3632) 87.0795 0.32
feasible volumes intervalVying, Viaxr] = [55304, 0]. The 0.05| 874058 87.1194 0.33
corresponding interval for the nominal cas®/i$i,, Viyaxl = 006 | 87.4134] 87.1249 0.33
[34587,00]. This means that we need to produce at least 007 | 87.4232] 87.1309 0.33
34587 m3 (55304 m3) in order to get a (robust) blend within 0.08 | 87.4258 87.1306 0.34
specifications which uses completeliy. Taking only the 009 | 87.4297| 87.1307 0.34
hard constraints, we obtain similar intervals. 01 | 87.4077| 871063 0.35

Table 1: Relative price of robustness for diffedentls of

If we decide to produceV, =5000m3 using V, = )
P total " 9 % uncertainty.

2000m3 then we solve Problem 15 and we obtain a recipe

with cost90.72 €/m3 but the blend is out of specifications.

Actually, this blend violates only one propertysuhd but by 6. COI_\ICLU_SI_ON ) )
more tharB0%. Instead of this, we can compute the biggesthe main achieving of our paper is to propose amulément
heel's volume allowing us to produé®00m® of robust @ Set based robustness model. Each call to ourif@rl
blend. This is the decision taken in practice. Frafations Solver takes 0.25s in average on a benchmark of rea
Uomaxr = v_Vo and Vi =Vo+V we obtain Vyyg, = problems (up to 20 components and SQ propgru_c_es).tWUs
1720m?. meet the real time constraint for the onhneppmnon. The
solutions obtained with the linear models diffesrfr the real
blends less than the laboratory measure errors.lifitieof

our approach is the underlying form of uncertair®thers
models of uncertainty will lead to convex programqi
techniques that are more time consuming. Moreouer,
approach doesn't apply in the case of non lineandihg

Next, fixingV, = 1720m? andV = 4285.5m3 we solve (11)
to obtain the optimal robust recipe
up = [0.1428,0.0819,0.0352,0.1049, 0.2,0.2,0.0352,0.2]
with cost c; = 90.72 €/m3. Incidentally, this is the same
recipe that produces the blend out of specificatiddn the

other hand, the optimal nominal recipe laws.
uly = [0.143,0.082,0.048,0.169, 0.2, 0.2, 0.035, 0.123] REFERENCES
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