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Abstract. In this paper we present a method to calculate the prices of robustness and reblending through 
a robust real-time optimization method for the on-line linear oil blending process. Our approach places 
this problem in a wider frame where different sources of uncertainty inherent to the blending process 
appear. The polytopal structure of our problem permits a robust approach that is simpler than the classical 
theory of Ben-Tal and Nemirovskii which needs convex programming tools. Our method is intended to 
avoid reblending and we measure its performance in terms of the blend quality giveaway and feedstocks 
prices. The difference between the nominal and the robust optimal values (the price of robustness) 
provides a benchmark for the cost of reblending which is difficult to estimate in practice. This new 
information can be used to adjust the level of conservatism in the model. Additional critical information 
for the control system is produced. 
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1. INTRODUCTION 

The oil blending process consists in determining the optimal 
proportions to blend from a set of available components such 
that the final product obtained fulfills a set of specifications 
on their properties. The legal constraints and environmental 
considerations make it harder nowadays to obtain the “good” 
blend. When the blend does not fulfill the constraints, it has 
to be reblended and this is a loss of money, time and energy. 
So, we address the problem of evaluating the price of 
reblending and how to avoid it. 
A blending system is typically constituted by three functional 
subsystems: the scheduling subsystem, the on-line optimizer 
and the control subsystem. The scheduling subsystem is the 
one in charge of the general refinery production planning. 
The scheduling subsystem uses a linear program to calculate 
for a given period the recipes �, properties � and volumes � 
of reference for a sequence of blends ���

�� ��
�� ����� 	 A

B�C � D (typically D E FB��B��). These calculations are based 
on the mean characteristics of components. Several sources 
of uncertainty (see below) perturb the process. The online 
optimizer is then required to update the target recipe which 
may became sub-optimal, or even infeasible, due to these 
disturbances in the process. For the first blends of the 
sequence, the online process fits well with the forecasted 
���

�� ��
�� ����. Nevertheless, after a number of blends, it 

happens that the blending environment differs significantly 
from the mean characteristics considered by the scheduling 
subsystem. In these cases, it is very difficult for the online 
optimizer to take the right decision. The feedback is based on 
measures of the blends’ and components’ properties gathered 
by online analyzers. Finally, the control subsystem is in 
charge to adjust the component’s flow rates (the recipe �) in 
order to attain the current target recipe. Here we focus on the 
Real Time Optimization (RTO) system formed by the online 

optimizer and the control subsystem. An RTO loop consist of 
calculating the optimal recipe �� for the new constraints and 
adjusting the actual recipe � by �� � �. Typically, our 
control subsystem adjusts the recipe every 5 minutes by 
calling the online optimizer with different sets of constraints 
(up to 100 calls in 5 minutes). A RTO is one that meets this 
time constraint. This motivates our approach for robust blend 
models that can be calculated efficiently. Our uncertainty 
model gives rise to linear models that are efficiently solved. 
An important characteristic in the oil blending process is the 
strict requirements over some properties controlled by 
environmental, legal and technological standards. If these 
properties are not satisfied, one can correct the blend to a 
certain limit by dumping the appropriate additives in it. 
Otherwise, the blend must be reblended. The additives are too 
expensive whereas reblending reduces the refinery capacity, 
so one should consider these blends' bounds as hard 
constraints which must be satisfied. 
On the other hand, oil blending is a complex process where 
several unknown and uncertain factors affect the blend's 
properties. In addition to the plantmodel error produced by 
the linearization of blending laws, there are other sources of 
uncertainty: measure errors on components and properties 
caused by instruments' precision; uncertain knowledge of the 
components' properties due to upstream process variations 
and uncontrolled blending conditions such as air temperature, 
humidity, etc. All these are typical uncertainties arising in 
any RTO problem (see Zhang 2001). 
Hard constraints on the blends' properties combined to these 
sources of uncertainty are the ideal characteristics to apply 
the Robust Optimization (RO) techniques (see Ben-Tal & al 
2009). A main issue in the RO techniques is to consider a 
deterministic and set-based uncertainty model. No 
probabilistic assumption is made over the uncertainty and the 
solution obtained is optimal for any realization of the 



 
 

     

 

uncertainty in a given set. RO techniques seem to be ad hoc 
to address an uncertain RTO problem where the feasibility is 
the primary concern. 
Some previous works have been devoted to find robust 
solutions to the blending problem. In (Hendrix 1996), a 
geometric approach is presented for the product and mixture 
design problems but only considering the uncertainty due to 
measurement imprecision. To deal with components' 
properties uncertainty, (Singh 2000) proposed a non-linear 
blend RTO system based on predictions of feedstocks 
properties whereas (Wang & al 2007) presented a chance 
constraint model and a hybrid: neural networks - genetic 
algorithm solution. More recently, (Chèbre & al 2010) 
introduced a linear blending control algorithm which handles 
this type of uncertainties via an estimator of the components' 
properties. A more general method based on stochastic 
programming which covers various types of uncertainty is 
presented in (Zhang & al 2002). 
Our approach begins by highlighting the polytopes 
underlying the blending process. This and the special form of 
uncertainty on components (see below) permit to model the 
robustness without need of convex programming tools. 
Linear programming solver is all we need. This point is of 
greatest interest in the real time processes under 
investigation. Our models permit to calculate a number of 
critical informations such as: the relative price of reblending, 
the price of robustness, the interval of feasible blend 
volumes, etc. 
In this paper we study the blending process with linear 
blending laws and the components stocked in running tanks. 
The paper’s structure follows. Section 2 presents the 
Blending Polytopes inherent to the Blending Problem and the 
Basic Equation which will be used to introduce the updated 
data in the RTO model. Section 3 analyzes the general case 
when the heel of a previous blend is used in the production of 
the new blend and a RTO approach is proposed to solve the 
Blending Problem. In Section 4 we construct uncertainty sets 
for various types of uncertainty. These sets determine the 
robust regions for the blending polytopes in which the new 
robust RTO method is based. Finally, the price of robustness 
and reblending is introduced and explained through a real 
numerical example in Section 5. 

2. BLENDING POLYTOPES 

Let's denote by � and � the number of components and 
properties respectively. We will represent a blend's recipe by 
a vector � E �� such that �� is the percentage of component � 
present in the blend whereas the blend's properties will be 
denoted by a vector � E ��. Then the set of components is 
described by the � � � matrix � where, ���� is the i th 
physical and / or chemical characteristic of the component j. 
It is customary when blending to use the heel of a previous 
blend to produce a new one. The process starts then with a 
volume �� of a previous blend with properties �� E �� and 
continues by adding gradually a volume � of the new blend 
to obtain a final product's volume � ! "# A �� $ �. 
We suppose that blend's properties are linear combinations of 
components' properties. In general they are not, but a number 
of transformations exist that give good linear approximations 
of them. So, for any % E F�� �� the blend's properties 

corresponding to the recipe � are determined by the basic 
equation:  

���� A &' ( �� $ )' ( � ( �  (1) 
where, &' A *+

*+,-.�.)' A -
*+,-.. 

Having a blend's volume �� with properties ��, equation (1) 
can be used at any time in the process to plan the production 
of a fixed volume % E F�� ��. We just update �� and the 
matrix � and take � � % as the remaining volume to pour. 
For this planning horizon, the optimal recipe is obtained by 
solving the Blending Problem (BP): 

 
/012 3 ( �  
� 4 � 4 �   (2) 
� 4 ���� 4 �  (3) 

B5 ( � A B� � 4 � 4 B (4) 
 

Here 3 E �� gives the components' costs. A recipe � is 
subject to components availability and hydraulic bounds 
which impose the component's constraints (2). Similarly, the 
properties constraints (3) are determined by quality lower (�) 

and upper (�) bounds. Additionally, properties' bounds are 

labeled as hard 6�7 � �78. or soft 6�9� �98. Hard bounds are 

related to legal, commercial and environmental specifications 
which must be satisfied whereas soft bounds can be violated 
but incurring into quality giveaway. Finally, (4) are the 
percentage constraints. We note :; A <� E ��.=.B5 ( � A B> 
and the simplex ?; A <� E ��.=.B5 ( � A B� � 4 � 4 B>.  
 
Now, there are 3 distinct polytopes and one polyhedron 
participating in blending process. Geometrically, the 
intersection of the regions determined by the components 
constraints and ?; defines the recipe's polytope: 
 

@ A A� E ?;.=.� 4 � 4 �B  (5) 
 
which represents the set of all recipes that can be produced. 
On the other hand, the properties constraints define the 
polyhedron (as it may be unbounded): 
 

CD A E� E ��.=.� 4 ���� 4 �F  (6) 

 
Both are defined in the component's space. 
In properties space, the image of @ under the basic equation 
is the possible blend's polytope: 
 

G A <���� E ��.=.� E @>   (7) 
 
Finally, the target polytope is defined by: 
 

C A E� E ��.=.� 4 � 4 �F  (8) 

 
We notice that, among the four preceding polytopes, only G 
and CD depend on %. At this point we have identified 
@� CD� G� C underlying the BP and we observe that for a fixed 
volume %, a feasible solution of BP is a recipe � E @ H CD 
with properties ���� E G H C. 
 



 
 

     

 

3. BLENDING FROM A PREVIOUS BLEND 

In any RTO loop, the on line optimizer is required to produce 
a recipe that permits the controller to guide the blending 
process. In Section 2 we stated that for a fixed volume % to 
pour, the optimal recipe can be obtained by solving the BP. 
However, the BP can result to be infeasible because of the 
uncertainty pervading the process or for instance, when a 
previous blend with properties out of specification is used in 
the production of the new blend. Therefore, a method to 
compute at any time the best recipe for the planning horizon 
is required. Later we present this method but first we discuss 
the BP feasibility when the heel of a previous blend is used. 
 
If the blend is produced from scratch or the volume to pour is 
too big compared with the heel's volume, that is, if �� A � or 
% I J then the basic equation reduces to ���� A � ( � and 
the polytope G�%� does not depend on ��. However, the fact 
of using the actual blend's properties �� in the basic equation 
to update the model inside the RTO loop, makes blending 
from a previous blend the regular case. Thus, we have �� K � 
and G�%� “moves” from �� toward G�J� as % increases. In 
properties space the polytope C doesn't depend on %. We 
suppose that there is an interval of volumes F�L�� � �L"M� such 
that G�%� H C K .N� O.% E F�L�� � �L"M�. Even if G�%� and C  
may have different affine dimensions, they both lie into ��. 
Consequently, this intersection makes sense. In other words, 
when G�%� moves it encounters C. If this were not the case, 
one has to change the components in order to assure 
feasibility. The BP is feasible only for these volumes. 
 
Having the values �L�� and �L"M helps to select the 
appropriate planning horizon at each RTO loop. Choosing a 
planning horizon by taking a volume % P �L�� produces an 
infeasible BP and makes it necessary to generate an 
alternative recipe with a possible deterioration of the overall 
performance of the RTO method. On the other side, �L"M is 
the maximum volume to blend when looking for a blend 
within specifications. After �L"M has been poured, G�%� 
moves away from C and the blend's properties deteriorate 
progressively. 
Furthermore, knowing �L�� and �L"M helps the control 
system to reduce unnecessary and inefficient interventions. 
The last ones having as purpose to correct the blend to be 
within specifications but often they are based on a limited 
view of the problem. In order to compute the interval 
F�L�� � �L"M�, let's rewrite the basic equation:  
 

���� A ;
;QR+

( ��� ( �� $ � ( ��  (9) 

 

with �� A S+
' . Now we present the RTO method: 

 
Blending RTO Method 

We denote by C7D A E� E ��.=.�7 4 ���� 4 �7F the 

polyhedron defined by the hard constraints and let �5 E C7D 
be an “ideal” target blend without quality giveaway provided 
by the scheduling department. 
 

Any RTO loop proceeds through the steps I. to VI. as 
follows: 

 
I.  Incorporate the new available information 

���� ��� �� �� in the basic equation. If �� A �, 
solve problems (11), (14) and (15) in this order 
until having a feasible solution. Otherwise, go 
to step II.  
 

II.  Compute �L�� and �L"M by solving the linear 
programming problem: 
 

/TU�/012+�2 ��, � E @ H CD� �� V �  (10) 
 
If Problem (10) is infeasible or if � W
F�L�� � �L"M� go to step IV. Otherwise, a blend 
without quality giveaway exists for any volume 
% E F�L�� � �L"M�. Choose a blending horizon 
% E F�L�� � �L"M� and go to step III. 
 

III.  Compute the optimal recipe:  
 

/012 3 ( � � � E @ H CD  (11) 
 
Notice that solving Problem (11) with % free 
and the additional constraint: 
 

��L�� 4 �� 4 ��L"M  (12) 
 

we obtain at the same time the optimal 
blending horizon %� E F�L�� � �L"M� and the 
optimal recipe for this volume. This is the best 
choice if it's not imperative to produce a 
particular volume. In this case STOP. 
Otherwise go to step IV. 
 

IV.  Forget the components costs and focus only on 
the hard constraints. Compute the interval 
F�L�� � �L"M� by solving the problem: 
 

/TU� �/01.�2+�2 ��, � E @ H C7D � �� V �  (13) 
 
If this problem is infeasible or if � W
F�L�� � �L"M� go to step VI. Otherwise, go to 
step V. 
 

V. Look for a recipe � E @ H C7D and a volume 
%� E F�L�� � �L"M� producing the blend with 
minimal quality giveaway. To do this, perform 
a dichotomic search over % solving at each step 
(with % fixed) the problem: 
 

 
/012�X .Y���� � ��Z�Y;
� E @ H C7D� Z E CD

  (14) 

 
VI.  Find � E @ to produce a volume � of a blend 

with properties as near as possible to the ideal 
blend �5: 

/012 .Y���� � �5Y; � � E @  (15) 
 



 
 

     

 

Following these steps, the RTO method always produces a 
recipe that guides the control process. In step I, �� A � and 
by solving problems (11), (14) and (15) we obtain the 
minimal cost recipe, the blend with minimal quality giveaway 
or the closest blend to �5. If BP is feasible for some volume 
% E F�L�� � �L"M�, then a blend without quality giveaway 
exists and the method generates the one of minimal cost (step 
III). Otherwise, the hard constraints become the priority and 
the method searches for a blend satisfying them while 
minimizing the blend's quality giveaway (step V). Finally, if 
there is no blend satisfying the hard constraints, the recipe 
producing the blend with properties as close as possible to �5 
is proposed (step VI). 
We finish this section by stressing the possible application of 
the RTO method to determine the appropriate heel's volume 
to use in the blend. In our analysis, �� is considered as fixed 
but we can solve (11) with the additional constraint (12) with 
�� and � free in order to obtain the cheapest recipe �� for 
some ��

� E F��L�� � ��L"M�. Then we can find (by means of 

the relation �� A S+
'  a suitable pair ��, �. The choice of norm 

[;, in problems (14) and (15) permits to obtain blends 
violating a minimum number of properties. Moreover, it 
gives LP problems and there are a lot of well-known fast and 
robust LP solvers. 
 

4. ROBUST RTO 

In the previous section we proposed a blending RTO method 
based on blending polytopes and its evolution with the 
blended volume. Looking to reduce the model deviations 
produced by some uncertainties, the method uses blend's and 
components' properties updates to feedback the model via the 
basic equation. However, model updating may fail to 
guarantee even a feasible solution. A main reason of this 
failure is the implicit assumption that data remains 
unchanged inside each RTO loop. 
For instance, when on-line blending is used, � values 
fluctuate with time because components are issued from 
different process presenting also perturbations. To address 
this problem, (Singh 2000) proposed a blending RTO method 
which updates the model with predictions of the components' 
properties. Although this method improves the model 
accuracy, it continues to be non-robust as it depends on the 
quality of the predictions. Moreover, uncertainty in the 
blending process affects other factors than � values as we 
will see below. 
 
In accordance with (Zhang 2001), uncertainty in any RTO 
system may be of four types: 1. Process uncertainty: 
components properties, temperature, humidity, etc.; 2. 
Measurement uncertainty; 3. Model uncertainty; 4. Market 
uncertainty: components availabilities and prices, blends 
demands, etc. In this work we consider the uncertainties 
arising from components measurement and blend's properties 
measurement (type 2) and the uncertainty caused by 
imprecise knowledge of the components properties (type 1). 
 
Measurement and components properties uncertainties 
manifest geometrically in different ways: for the first type, 
the real recipe (the real percentages of each component used 

in the blend) and its properties may differ from the nominal 
ones. So, the real recipe and its properties are located in 
neighborhoods of the nominal recipe and its properties 
respectively. For the second type, the real matrix �\  differs 
from the nominal matrix � and hence the real polytope C]D is 
different from the nominal polytope CD. In both cases, when 
a nominal feasible recipe � E @ H CD is computed, the real 
recipe may lie outside the polytope CD and the real blend's 
properties may be outside the polytope C. Then the real 
recipe results to be infeasible. 
An intuitive idea to fix our RTO method against measure and 
� uncertainties follows from the previous geometric 
information. The idea consists in computing for polytope CD 
its convex robust region �CD such that any point in this 
region resists to � uncertainty and to measurement errors. 
That is, any point in �CD is guaranteed to remain inside the 
real polytope for all possible realizations of � and any 
measurement error, within reasonable limits. 
So, the robust RTO method will consist in replacing polytope 
CD by �CD in the RTO method from Section 3. To develop 
this idea, first we need to model and measure the uncertainty 
we would like to be protected of and then to compute the 
appropriate robust region of CD. This development follows 
the Robust Optimization (RO) theory (see Ben-Tal & al 
2009). 
 
Let � be a nominal recipe and ���� its properties. To model 
the components and properties measurement uncertainties, 
we suppose that the real recipe �̂ lies in the ball ?��� _�� of 
radius _� and center � whereas the real blend's properties �̂ 
lies in the ball: 
 

?������ _�� A <� E �� .=.���� � _� 4 � 4 ���� $ _�> 
 
We are given the minimal � and maximal � values of �. In 
order to model matrix � uncertainty, we use interval sets. 
That is, we suppose that each real value �\��� is comprised in 
the interval ̀���� A a���� � b���c � ���� $ b���Q d around its nominal 
value ���� for some positive values b���c � b���Q . 
Here we could use different sets and any norm to model the 
uncertainty. The level of conservatism (how much we want to 
be protected of uncertainty) and the problem complexity 
depend on these choices. Taking interval sets and the max 
norm, the robust regions obtained are polytopes and the 
complexity in the model is preserved at the expense of being 
probably too conservative (we are protected from the worst 
deviations of all � values and from the biggest measurement 
errors occurring all at the same time). Now we proceed to 
construct the robust region of polytope CD. 
 
Any point � E CD is robust regarding � uncertainty iff 
.� 4 �̂��� 4 �. That is, iff for any �\  such that �\��� E `����, 
 
�� 4 &' ( ���� $ )' ( �\� ( �. 4 ��� e A B� C ��  (16) 

 
holds. Notice that any row �\� can be expressed 
parametrically as �\��f� A �� $ fc5g�

c $ fQ5g�
Q, with, 

g�
c A heijkb��;c � C � b���c l� g�

Q A heijkb��;Q � C � b���Q l� fc A



 
 

     

 

/01��� f� � fQ A /TU��� f� for some f E �� such that 
YfYm 4 B. Therefore we can deduce that � E CD is robust 
regarding � uncertainty iff for e A B�C �� 
 

 �� $ )' ( b�c ( �. 4 ����� 4 �� � )' ( b�Q ( �   (17) 

 
From now on we denote by n�c��� A )' ( b�c ( �. and 
n�Q��� A )' ( b�Q ( �. 
In addition to � uncertainty, � E CD resists also to 
components' measure uncertainty if and only if any point in 
?��� _�� satisfies (17). That is, iff for e A B�C �� 
 
�� $ n�c��� .4 ���� $ Z� 4 �� � n�Q���   (18) 

 
holds for all Z E �� such that YZYo 4 _�. Then, computing 
the minimum and maximum on Z we get that (18) holds iff 
 
�� $ n�c��� $ _� 4 ���� $ Z� 4 �� � n�Q��� � _� (19) 

 
with _� A )' ( _� ( Y��Yp. This is a result from duality, 
;
o $ ;

p A B. With q A B, the problems remains linear. 

Equivalently, any recipe � E CD is robust regarding � 
uncertainty and properties' measure uncertainty iff 
 

�� $ n�c��� 4 ����� $ r� 4 �� � n�Q���� (20) 

 
holds for all r E �� such that =r�= 4 _��. As previously, 
computing the minimum and maximum on r, (20) holds if 
 
�� $ n�c��� $ _�� 4 ����� 4 �� � n�Q��� � _�� (21) 

 
Finally, letting s�A /TU.�_� � _��� we obtain the robust region 
�CD of polytope CD: 

 

�CD A E� E ��.=.�� $ n�c��� $ s�4 ����� 4 �� � n�Q��� �
s� � e A B� C ��F   (22) 

 
Any � E �CD resists to � uncertainty and to components and 
properties' measurement uncertainties. 
 
To summarize, let's consider a nominal feasible recipe 
� E @ H CD. If �̂ E ?��� _�� and �̂ E ?������ _�� for some 
_� E �Q and _� E ��Q and if ���� E �̀��, then the recipe �̂ 
will be feasible in reality: �̂ E @t H C]D. 
 
The RTO method proposed in Section 3 transforms then in a 
robust RTO method by a simple substitution of CD with �CD. 
This reduces the impact in implementation as the structure of 
RTO remains the same. As � and �� may be considered as 
free variables in the RTO method, we can describe polytope 
�CD by using explicitly (19) and (21) in association with the 
identity )' A u

u,v+ instead of (22) where a max is involved. 

This robust RTO method depends completely on the robust 
region �CD and to obtain it we only need to determine the 
values of bc� bQ, _�, _�. This information is available for the 
class of real-world problems we are concerned with. It's 

worthwhile to note that while _� and _� are considered as 
fixed values independent of the RTO loop's length, bc and bQ 
depend on it. As fluctuations on � may accumulate over time, 
the longest the loop's length is, the biggest these fluctuations 
can be. 
Here we limit the analysis to measurement and components 
properties uncertainties. However, other types of uncertainty 
manifest geometrically in the same way and thus can be 
treated identically. For instance, when the uncertainty is due 
to uncontrolled factors like temperature or humidity, the real 
blend's properties are located in a ball around the nominal 
blend's properties. To model the uncertainty in the 
components prices, we can transform the optimization 
problem to one with certain objective function and such that 
uncertainty appears as a constraint (3 ( � 4 3). Then we can 
construct the uncertainty sets and determine the way it affects 
the robust regions. We can proceed similarly for the 
uncertainty in the components availabilities which affects the 
robust region �@ of polytope @. 
 

5. THE PRICE OF ROBUSTNESS AND REBLENDING 

In this section we present a real example (with scaled values) 
in order to illustrate and compare some key aspects of the 
RTO method and its robust counterpart. Here we show how 
to compute practically the price of robustness and reblending. 
The BP consists in producing a fixed volume � ! "# A
����.�w of blend from 8 components and �� A x���.�w of 
the heel's volume from a previous blend. Each component 
and the previous blend has 7 properties to be controlled 
during the process and they are represented by the y � z 
matrix � and vector �� respectively. Vectors ���� and ��"M 
stand for the properties bounds while vector 3 denotes the 
components' cost. 
 

B 

y1 36.00 36.00 32.00 42.00 16.00 31.00 35.00 46.00 

y2 0.04 0.04 0.03 0.08 0.08 0.14 0.06 0.55 

y3 630.00 620.00 600.00 580.00 620.00 600.00 540.00 450.00 

y4 32.77 32.77 32.77 16.98 16.98 37.72 24.08 8.26 

y5 937.95 937.95 636.62 199.06 199.06 170.47 1381.90 2.80 

y6 0.80 0.10 0.05 0.04 1.50 2.50 0.05 0.01 

y7 50.00 49.00 50.00 55.00 25.00 39.00 41.00 45.00 

c 87.06 87.06 87.02 86.00 83.08 78.05 87.06 117.01 

 
b0 ymin ymax 

30.00 30.00 46.00 

1.66 0.18 1.66 

640.00 540.00 640.00 

35.19 6.98 35.19 

1381.90 2.02 432.09 

1.81 0.00 10.00 

40.00 40.00 55.00 

 
In order to produce a robust recipe, we assume that 
components and properties measurement errors are bounded 
by _� A F�{Bx� �{���|� x�� �{�zx}� �{�xz� �{����~�� �{x� 
and _� A �{�B respectively. Regarding � uncertainty, we 
dispose of �c and �Q the absolute lower and upper bounds of 
matrix �. Let define, �c A � � �c, �Q A �Q � � and 



 
 

     

 

� A �Q � �c. So, there are bc and bQ such that � � bc 4
� 4 � $ bQ, with bc A /01.��c� � ( �� and bQ A
/01.��Q� � ( �� for some � P � P B. As we stated in Section 
4, the values of _� and _� are fixed during the process 
whereas � is directly related to the RTO loops' length. We 
take � A �{�B. 
 
We solve (10) with �� A x���.�w, and obtain 
F��L��� � ��L"M�� A F�� �{�|}x� and the corresponding robust 
feasible volumes interval:.F�L��� � �L"M�� A F��|�~�J�. The 
corresponding interval for the nominal case is.F�L�� � �L"M� A
F|~�zy�J�. This means that we need to produce at least 
|~�zy.�w (��|�~.�w) in order to get a (robust) blend within 
specifications which uses completely ��. Taking only the 
hard constraints, we obtain similar intervals. 
 
If we decide to produce � ! "# A �����w using �� A
x����w then we solve Problem 15 and we obtain a recipe 
with cost ��{yx.���w but the blend is out of specifications. 
Actually, this blend violates only one property's bound but by 
more than z��. Instead of this, we can compute the biggest 
heel's volume allowing us to produce �����w of robust 
blend. This is the decision taken in practice. From relations 
��L"M� A *+

*  and � ! "# A �� $ � we obtain ��L"M A
Byx��w. 
 
Next, fixing �� A Byx��w and � A ~xz�{��w we solve (11) 
to obtain the optimal robust recipe 
��
� A F�{B~xz� �{�zB�� �{�|�x� �{B�~�� �{x� �{x� �{�|�x� �{x� 

with cost 3�� A ��{yx.���w. Incidentally, this is the same 
recipe that produces the blend out of specifications! On the 
other hand, the optimal nominal recipe  
 

��
� A F�{B~|� �{�zx� �{�~z� �{B}�� �{x� �{x� �{�|�� �{Bx|� 

 
has a cost of 3�� A zz{|�.���w. Therefore, producing a 
robust recipe induces a cost increase of x{}z�. However, we 
observe that if we take �� A � (no reblending), then the 
robust recipe cost is zy{y� and the nominal recipe cost is 
zy{�~ producing a cost increase of only �{y}�. 
From these results we are interested in comparing the price of 
robustness with the reblending cost (the cost difference 
between the recipes obtained when the heel's volume is used 
and when it is not). In order to provide a fair comparison, the 
price of robustness is obtained by taking �� A � (no 
reblending involved) and the reblending cost from the 
nominal recipes (no robustness involved). 
 
To compute the price of robustness we conduct a blending 
simulation over 36 RTO loops of 2-hours length. In Table 1 
we show the average recipe's cost over the 36 periods and the 
percentage increase in cost (s3) from the nominal recipe to 
the robust recipe for different � values and taking �� A �. 
 
Then we generate the optimal nominal recipes when �� A
B}z{~~ (��L"M for � A �{�B) and �� A � are used in the 
production of �����w of blend. The cost of these recipes are 
zz{x�  and zy{�~ respectively. We observe that for this case, 

the recipe's cost with reblending is 
���{��c��{���

��{�� =1.43% 

greater than the nominal recipe's cost whereas the relative 
price of robustness is of only 0.35% for a significant value of 
� A �{B. 
 

� 3��  3��  s3��� 
0.01 87.3851 87.1097 0.32 

0.02 87.3542 87.0763 0.32 

0.03 87.3847 87.1036 0.32 

0.04 87.3632 87.0795 0.32 

0.05 87.4058 87.1194 0.33 

0.06 87.4134 87.1249 0.33 

0.07 87.4232 87.1309 0.33 

0.08 87.4258 87.1306 0.34 

0.09 87.4297 87.1307 0.34 

0.1 87.4077 87.1062 0.35 

 
Table 1: Relative price of robustness for different levels of 

uncertainty. 
 

6. CONCLUSION 
The main achieving of our paper is to propose and implement 
a set based robustness model. Each call to our RO linear 
solver takes 0.25s in average on a benchmark of real 
problems (up to 20 components and 30 properties). We thus 
meet the real time constraint for the online optimization. The 
solutions obtained with the linear models differ from the real 
blends less than the laboratory measure errors. The limit of 
our approach is the underlying form of uncertainty. Others 
models of uncertainty will lead to convex programming 
techniques that are more time consuming. Moreover, our 
approach doesn’t apply in the case of non linear blending 
laws. 
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