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With the interactive continuation tool Diamanlab, solution branches of a parametric nonlinear problem are computed as sets of Taylor-based solutions stored in checkpoints. Theoretical aspects and implementation are generic, taking advantage of the efficient higher-order asymptotic numerical method in its Diamant form that interprets the generic nonlinear problem as a sequence of linear ones, of Automatic Differentiation (AD) for Taylor coefficient computations, of object-oriented programming and graphical user interface capabilities of MATLAB. The implementation involves four classes devoted to the interactive management of the continuation, to the manipulation of a generic system of nonlinear equations, to the checkpoint management and to higher-order AD, respectively.

In practice, any analytical nonlinear system of equation may be implemented in a natural way as a subclass of the generic system class, then solved in an easy manner using the graphical user interface. A benchmark of classical nonlinear problems is provided to serve as a basis for the implementation userdefined problems. Diamanlab usage and bifurcation detection are discussed on the Brusselator problem whose solution involves three interconnected loops. Additional user-defined graphics are presented for the Bratu problem.

Introduction

Numerical continuation and bifurcation analysis of nonlinear equation solutions are classical numerical tools in many scientific areas. During the last thirties, general-purpose software, free and commercial ones, have been proposed to engineers and scientists to draw bifurcation diagrams without embarking into the risky and heavy task of programming their own continuation algorithm. Most of them rely on the first order predictor-corrector principles described in [START_REF] Allgower | Numerical Continuation Methods: an Introduction[END_REF][START_REF] Doedel | Numerical analysis and control of bifurcation problems (i) bifurcation in finite dimensions[END_REF][START_REF] Seydel | Practical Bifurcation and Stability Analysis[END_REF]. Software are nowadays provided with a Graphical User Interface (GUI) allowing interactions with the user. We refer to [START_REF] Govaerts | Interactive continuation tools[END_REF] for an overview of existing packages for continuation and bifurcation analysis. In any case, a good knowledge of the underlying continuation strategy is generally needed for a good tuning of the methodological parameters of such predictor-corrector algorithms.

The Asymptotic Numerical Method (ANM) is an alternative to first order predictorcorrector methods. Solution branches are approximated as higher-order truncated Taylor expansions for which the range of validity is estimated a posteriori from the remainder of the series. Under analyticity assumptions, this allows for an automatic and adaptive computation of the continuation step size that ensures the robustness of the method. Hence, no methodological parameter need to be tuned. The Matlab package MANLAB [START_REF] Arquier | Manlab : logiciel de continuation interactif[END_REF] provides an object-oriented implementation of the ANM as well as a GUI. It manages "automatic" series calculations for user-defined problems written in a quadratic formalism, what has constituted the main limitation to the dissemination of MANLAB as a general purpose continuation tool.

Automatic Differentiation (AD) [START_REF] Griewank | Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation[END_REF] is the more practicable approach to higherorder differentiation, providing generality, efficiency and ease of use. Diamant, the AD version of the ANM [START_REF] Charpentier | Différentiation automatique de la méthode asymptotique numérique typée: l'approche Diamant[END_REF][START_REF] Charpentier | On higher-order differentiation in nonlinear mechanics[END_REF], computes series from the user's equation in a straightforward manner. The Diamanlab tool described in the paper combines the robustness, object-oriented programming and interactivity of the MANLAB tool with the AD abilities of Diamant. The implementation involves four classes devoted to the interactive management of the continuation, to the manipulation of a generic system of nonlinear equations, to the checkpoint management and to higherorder AD, respectively. Diamanlab relies on operator overloading as the vehicle of attaching higher-order derivative computations to the arithmetic operators and intrinsic functions provided by the programming language [START_REF] Berz | COSY INFINITY and its applications in nonlinear dynamics[END_REF][START_REF] Griewank | ADOL-C, a package for the automatic differentiation of algorithms written in C/C++[END_REF][START_REF] Pryce | AD01, a Fortran 90 code for automatic differentiation[END_REF][START_REF] Charpentier | Interactive continuation tools[END_REF]. A Diamanlab user implements his equation system as a classical Matlab function, sets the initial guess, and uses the GUI to plot his bifurcation diagram. Moreover, object-oriented programming allows for the implementation of user-defined graphics for particular analysis of the computed solution branches.

The layout of the paper is as follows. Fundamentals of ANM-based continuation tools, including Diamant, are briefly presented in Section 2. Section 3 discusses with detail the object-oriented implementation of the Diamanlab package. A few examples of interactive continuation usage are provided in Section 4. Finally, Section 5 provides a summary and an outlook.

ANM-based continuation tools

Let R(U ) = R(u, λ) define a nonlinear algebraic system comprising n equations, where u is a state vector of dimension n, λ is a scalar control parameter, and U = (u, λ) for the sake of concision. Solutions of (1), ( 1)

F ind U = (u, λ) ∈ C n × R such that R(U ) = 0,
are one-dimensional continua of solution points, called solution branches, which may intersect at bifurcation points. Continuation algorithms constitute a classical answer to solution branch computations. Under differentiability assumption, the problem (1) may be solved through a first order predictor-corrector method that computes the solution branch as a collection of converged solution points [START_REF] Allgower | Numerical Continuation Methods: an Introduction[END_REF][START_REF] Doedel | Numerical analysis and control of bifurcation problems (i) bifurcation in finite dimensions[END_REF][START_REF] Seydel | Practical Bifurcation and Stability Analysis[END_REF]. To be effective, an elaborate strategy is mandatory for a control of the step-size that guarantees a good compromise between the number of corrections per step and the size of each step.

Under analyticity assumption, higher-order order methods [START_REF] Thompson | The nonlinear perturbation analysis of discrete structural systems[END_REF] such as the ANM [START_REF] Cochelin | Asymptotic-numerical methods and Padé approximants for non-linear elastic structures[END_REF][START_REF] Cochelin | Mthode Asymptotique Numrique[END_REF] provide solution branches as a collection of continuous parametric representations written as truncated Taylor expansions, ( 2)

U (a) = P p=0 a p 1 p! ∂ p U ∂a p (0) = P p=0 a p U p , ∀a ∈ (0, a m ),
where a is a path parameter, generally the pseudo-arc length parameter, a m is the range of validity of the series in which U (a) satisfies the accuracy required by the user, U p is the unknown Taylor coefficient of U at order p, and P the truncation order. In the ANM, series (2) are introduced in the actual user-defined equations. This yields a sequence of linear problems sharing the same Jacobian matrix but different right-hand-side terms, which solution enables the computation of the sequence of {U p } p=1,..,P in an iterative manner. The step size control strategy relies on an automated calculation of the range of validity a m [START_REF] Cochelin | A path-following technique via an asymptotic-numerical method[END_REF] from the remainder of the current series [START_REF] Arquier | Manlab : logiciel de continuation interactif[END_REF]. The solution point U (a m ) is used as initial guess to compute the next parametric representation [START_REF] Arquier | Manlab : logiciel de continuation interactif[END_REF]. By construction, the ANM is a robust and efficient continuation process. A Newton-Raphson (NR) correction may be performed when the accuracy of the initial guess U 0 exceeds a user-prescribed value.

Great improvement in terms of generality is achieved through Diamant [START_REF] Charpentier | On higher-order differentiation in nonlinear mechanics[END_REF]. Series (2) are introduced in the generic problem [START_REF] Allgower | Numerical Continuation Methods: an Introduction[END_REF]. Following Faá di Bruno's generalization of the chain rule to higher-order derivatives [START_REF] Charpentier | The diamant approach for an efficient automatic differentiation of the asymptotic numerical method[END_REF][START_REF] Koutsawa | A generic approach for the solution of nonlinear residual equations. Part I: the Diamant toolbox[END_REF], this yields a sequence of P linear systems, (3)

R p = R 1 U p + {R p |U p = 0}U 1 = 0, p = 1, .., P,
where the Jacobian R 1 is the same over the orders. The higher-order derivative {R p |U p = 0} is the Taylor coefficient R p evaluated with the value of the unknown U p set to 0. Following (3), the linear system at order p ≥ 1 is

(4) R 1 U ′ 1 A U p = -{R p |U p = 0} δ 1p ,
where δ 1p is the Kronecker's delta, U ′ 1 the transpose of vector U 1 , and A a matrix implementing some path equation [START_REF] Cochelin | Mthode Asymptotique Numrique[END_REF].

From a computer point of view, the Jacobian and the higher-order terms are calculated applying AD on the residual function R provided by the user.

Implementation

Diamanlab is implemented for MATLAB version 7.0 or higher. No additional toolbox is necessary. Key aspects of the Diamanlab implementation are generality, efficiency and interactivity. Generality and efficiency are present at different stages taking advantage of Diamant, AD and object-oriented programming. First, any set of actual analytic nonlinear equations ( 1 Taylor coefficient computations appearing in (4). The continuation is implemented in the ContDriver class meanwhile information about computed series are stored in CheckPoint objects. A particular attention is paid to class, method and property names which are indicated using typewriter characters. Interactivity is provided by a Graphical User Interface (GUI) and real time visualization tools for bifurcation analysis. In this section, classes are presented from the lower level ones, Taylor and CheckPoint for series representation, to the higher level ones, Syst and ContDriver dealing with the generic nonlinear system of equation.

3.1. The Taylor class. This class implements an operator overloading library devoted to higher-order AD. A Taylor object represents a truncated Taylor expansion by means of three properties: the truncation order P , a 2D value array and a 3D coef array containing U 0 and U p for p = 1 to P , respectively. For the sake of generality, scalar variables are coded as 1×1 arrays. The Taylor constructor is designed to be called with a variable number of input arguments. The order is mandatory. Default array values are set to 0. Methods define how built-in operators and functions work on Taylor series objects. The current AD implementation is based on re-computations up to the current order p even operation count of Taylor-based series may be of O(P 2 ) when storing intermediate Taylor coefficients [START_REF] Chang | Solving ordinary differential equations using taylor series[END_REF]. Diamanlab 1.0 does not include such opportunities for now. Meaningful operations and functions on Taylor series are overloaded. This includes math functions such as the exponential, the logarithm, trigonometric functions and vectorial functions (norm, dot, sum, cat), as well as array and matrix multiplications for which eventual dimension disagreements are raised. Particular subsasgn and subsref methods allow for the interpretation of indexed assignment statements involving Taylor objects. Some converters from Taylor to double, and vice versa, are implemented through the get and set methods.

3.2. The CheckPoint class. The ANM continuation generates a succession of branch sections, using the end point of each section as the new U 0 point for the next section. Here, this basic principle of the ANM is implemented using checkpoints [START_REF] Griewank | Treeverse: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation[END_REF][START_REF] Charpentier | Checkpointing schemes or adjoint codes: Application to the meteorological model Meso-NH[END_REF] designed to carry series information computed for particular solutions U 0 of (1), allowing for a restart of the computations or a stability analysis.

In Diamanlab 1.0, a CheckPoint object is the aggregation of a Taylor object U0 containing the Taylor series computed at point U 0 , a tangent vector Ut indicating a traveling direction, a range of validity Amax for the series U0, and some representations of the solution branch for plotting purposes. The CheckPoint class contains two methods only. The eval method provides a discrete "point-by-point representation" of the branch. The endpoint method sets the solution point U end to U (a max ), the value of series evaluated at the limit of validity of U0, and the tangent direction U tend pointing outward to dU da (a max ) .

3.3.

The Syst superclass and user-defined subclasses. The Syst superclass provides methods related to the generic system (1) of nonlinear equations. A Syst object has two "problem-dependent" properties that should be provided at runtime: a name to be used in the plots, for instance, and the number of equations of the system, namely ninc. Other ones are methodological parameters, set to default values. The Syst methods are Jacobian, tangentvector, NRcorrections and ANMseries. The Jacobian method builds the Jacobian R 1 at point U (0) using the canonical basis. This technical procedure is convenient for small problems only, sparse Jacobian evaluation will be implemented soon. The tangentvector method computes an oriented unitary tangent vector to the branch using this Jacobian.

The NRcorrections method implements Newton-Raphson corrections to improve the accuracy of a solution if desired. Devoted to series computation, ANMseries is the key method of Diamanlab. Inputs are the Syst object related to the system under study and defined through a Syst subclass hereafter denoted by UserSyst, the Taylor variable U0 which value property is known, and the oriented tangent vector Ut. Outputs are the updated series U0 and the estimated range of validity Amax. ANMseries first calls the Jacobian and the tangentvector methods. Then, iterations are performed from order p = 1 to P to compute the Taylor coefficients R p of R. Each of the iterations consists in the evaluation of the right-hand-side term {R p |U p = 0} and the solution of system (4). The range of validity Amax is deduced from the computed series [START_REF] Cochelin | Mthode Asymptotique Numrique[END_REF].

The system of nonlinear equations under study is implemented as a UserSyst class. This UserSyst class inherits properties and methods from the Syst class, and contains methods that are specific to the user's system. The R method coded in UserSyst defines the actual system of equation to be solved: the input is a Taylor objet U the output is the AD computed Taylor object R to be used in the Syst methods such as ANMseries, Jacobian, and so forth. For the sake of generality, the R method result is a double vector when the input is a double vector. The UserSyst class may also contain some user displays to plot and to interpret results in a specific manner, detail is reported in paragraph 4.3. A benchmark of user's classes is included in Diamanlab. • forwardcontinuation, F orward >> on the GUI, to perform the number of continuation steps indicated in the text box above.

The ANMthreshold is the accuracy required for the parametric representation [START_REF] Arquier | Manlab : logiciel de continuation interactif[END_REF]. It is used to estimate the range of validity a m and may be modified by the user.

The frame Correction contains

• NRcorrections to perform Newton-Raphson corrections on the "current point" when the accuracy is over the NRthreshold parameter. This threshold may be modified in the related text area.

The Current Point frame contains push buttons that act on the current point location:

• the Reverse tangent button reverses the continuation direction, Four actions are operated from the Diagram frame. The Load and Save methods are file I/O functions to import and to export the diagram data, respectively. Diagram data are the (params structure, the UserSyst and ContDriver objects. The last one notably includes the checkpoint list. The Cancel all method allows for a reset of the checkpoint list. Particular checkpoints may be removed from the list and the bifurcation diagram, simultaneously, using Cancel section button and selecting the related branch sections. .

•

Interactive continuation examples

As discussed in paragraph 3.3, Diamalab is provided with several examples. A user may either run a predefined problem, or take advantage of one of the UserSyst examples to implement his smooth nonlinear problem in a natural way as a R method of a new subclass of the Syst class.

4.1. The params structure array. A very few continuation parameters, Table 1, are involved in the ANM process. The first two are the order truncature of the series and the required accuracy for the ANM continuation. The last three are related to Newton corrections. Continuation parameters may be set at the command level when launching a continuation, or modified through the GUI.

User-defined problem and class.

A user-defined problem may be coded implementing a class that inherits from the Syst class. One notices that the check for analyticity and the eventual regularization is under the user's responsibility. The user creates a class directory named @USERSYST in a directory, Diamalabv1.0/EXAMPLES/USERSYST for instance, that should be on the Matlab path. This directory contains at least two methods, the constructor USERSYST that indicates the number of equations of the user's system, and a function R containing the equations. A user-defined disp function (see paragraph 4.3) may be added for complementary plots. A script, called usersyst.m for instance, may be implemented to run Diamanlab with user's continuation parameters and display options. Diamanlab v1.0 is provided with several examples stored in the EXAMPLES directory and described with detail in the user guide [START_REF] Cochelin | Diamanlab userguide[END_REF].

As an example, let us consider the Brusselator problem [START_REF] Seydel | Practical Bifurcation and Stability Analysis[END_REF], implemented in the EXAMPLES/Brusselator directory, which equations are written in Fig. 1 as a R method. Actual residual equations may be written in a natural way using either ALGORITHM 1: Function R.m for the Brusselator equations function R1 = R(obj,U) % Brusselator (Seydel, 1994) global Ck %Current order of differentiation if isa(U,'Taylor'), R1=Taylor(Ck,zeros(6,1)); end u1=U(1); u2=U(2); u3=U(3); u4=U(4); u5=U(5); u6=U [START_REF] Charpentier | On higher-order differentiation in nonlinear mechanics[END_REF]; ulam=U [START_REF] Charpentier | The diamant approach for an efficient automatic differentiation of the asymptotic numerical method[END_REF] vectors and matrices for better efficiency, or referring to a part of them through a subset of indexes. One notices that the function R may be the top function of a complex program such as usual in a finite element modeling, for instance. Inputs are a Syst object and a Taylor object. The output is a Taylor object containing the desired Taylor coefficients of R. The constructor method BRUSSELATOR.m is presented in Fig. 2.

ALGORITHM 2: Constructor method: BRUSSELATOR.m file classdef BRUSSELATOR < Syst % The 'BRUSSELATOR' class inherits from the Syst class % ninc= 7 (unknows) % This example shows the syntax to pass a parameter 'a' as argument, % even there is no need in this example properties a=0; end methods function sys = BRUSSELATOR(a) sys = sys@Syst('ninc',7); sys.a=a; end end end

The example is run using the brusselator command in the Matlab window. This opens the GUI, Fig. 2, and the diagram window, Fig. 3.a, that displays the corrected initial current point. The bifurcation diagram is built clicking on the Forward >> button of the GUI and controlling the results in the diagram window. Fig. 3.b shows the continuation path obtained after 20 forward steps. One notices a round marker on the path that indicates a simple bifurcation has been detected, the Diamanlab allows to set the current point at a bifurcation point using the Set button of the current point frame. In an automated manner, the tangent direction Ut is set to the tangent direction of the bifurcated path, Fig. 3.d. The bifurcated path is followed using the Forward >> button. The full bifurcation diagram, Fig. 3.e, made of three interconnected loops and one straight line, is obtained repeating this procedure. It requires 120 forward steps, involving 120 Taylor series computation and 120 checkpoints. 4.3. User display facilities. Additional displays may be coded to analyze a solution point U . Indeed, drawing a graphical representation of U is a valuable manner to get a good insight of the computed solution. Such an interpretation feature may be used as follows:

-the user implements his own disp.m method in his UserSyst class to produce some kind of Matlab action (graphics, video, sound, ...) from the solution point U . One notices that the method has a unique argument U . -the disp.m method is called either when a checkpoint object is computed (the "end" point being used as U by disp) or when the user selects a point in the projected bifurcation diagram using the GUI.

The Bratu example,

F ind u such that ü(x) + λe u(x) = 0 in (0, 1), u(0) = u(1) = 0, provides a basic example for such feature. The problem is discretized using a central difference scheme, what yields an algebraic system satisfying (1). Figure 4 presents the bifurcation diagram, as well as the plot of U (x) for the solution point indicated with a square on the bifurcation diagram. 

Conclusion

The interactive continuation tool Diamanlab computes solutions of a parametric nonlinear problem as Taylor-based approximations stored in checkpoints. It combines the advantages of the efficient higher-order asymptotic numerical method in its Diamant form, with AD for Taylor coefficient computations, and with objectoriented programming and GUI capabilities of MATLAB. Based on theoretical developments, our object-oriented programming involves four classes devoted to the interactive management of the continuation, to the manipulation of the generic system of nonlinear equations, to the checkpoint management and to higher-order AD, respectively. A special attention is paid to the object definition for an easy extension of Diamanlab. Future developments of Diamanlab will be oriented toward ODE system U = R(U ) and boundary value problems for which stability analysis, periodic solution finding, periodic solution stability will be addressed.
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 1 Figure 1. Class diagram and main properties

3. 4 .

 4 The ContDriver class and the GUI. The ContDriver class is targeted to the implementation of the Diamant version of the ANM continuation process. Properties are the "current point" of continuation figured by the two variables U0 and Ut, and a list of CheckPoint objects. Methods are mainly those indicated as pushbuttons on the GUI, Fig. 2. At execution time, Diamanlab launches the GUI and a Matlab figure to plot the projected bifurcation diagram. The projected bifurcation diagram is a 2D plot of one or several curves, each of them showing the evolution of one component of U versus another. On each of the

Figure 2 .

 2 Figure 2. Graphical User Interface

  the Initial button resets the current point to the initial guess point provided by the user, • the Set button enables to capture a mouse position on the projected bifurcation diagram and to set the current point to the closest solution point, • The Jump button captures a mouse position on the diagram figure. It commands a prediction-correction and update the current point position

  ; R1(1)=2-7*u1 + u1*u1*u2 + ulam*(u3-u1); R1(2)= 6*u1 -u1*u1*u2 + 10*ulam*(u4-u2); R1(3)=2-7*u3 + u3*u3*u4 + ulam*(u1+u5-2*u3); R1(4)= 6*u3 -u3*u3*u4 + 10*ulam*(u2+u6-2*u4); R1(5)=2-7*u5 + u5*u5*u6 + ulam*(u3-u5); R1(6)= 6*u5 -u5*u5*u6 + 10*ulam*(u4-u6);

1 Figure 3 .

 13 Figure 3. Interactive construction of the bifurcation diagram for the Brusselator system.

Figure 4 .

 4 Figure 4. Bratu problem: (left) the projected bifurcation diagram, (right) the plot of u(x) at a solution point

Table 1 .

 1 Continuation Parameters Variables to choose the couples of components of U that are plotted as curves in the projected bifurcation diagram, • Point and Select point to launch the user-defined display implemented in the UserSyst class, at each steps if the Point button is on, or for the point capture on the projected bifurcation diagram with Select point. Display options may be set at the command level when launching a continuation, or modified through the GUI.

	Field name	Default value Note
	order	20	command level only
	ANMthreshold	1.10 -7	AMM threshold
	NRcorrections 0	NR correction off
	NRthreshold	1.10 -8	NR method threshold
	NRitemax	15	Maximum number of iterations for NR
	on the bifurcation diagram. This allows the user to follow another branch
	of the bifurcation diagram, for instance.
	Available Display options are:	
	• Markers to indicate (or not) checkpoints,
	•		

Availability

Diamanlab is provided "as-is", without any express or implied warranty. The software is available to academic users at no charge under the end-user licence agreement. Licence terms and software will be downloaded from the Diamanlab's webpage http://Diamanlab.lma.cnrs-mrs.fr. Implementation and usage guidelines are described in the Diamanlab User Guide [START_REF] Cochelin | Diamanlab userguide[END_REF].