
HAL Id: hal-00853599
https://hal.science/hal-00853599v1

Preprint submitted on 23 Aug 2013 (v1), last revised 20 Sep 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Diamanlab - An interactive Taylor-based continuation
tool in MATLAB

Isabelle Charpentier, Bruno Cochelin, Komlanvi Lampoh

To cite this version:
Isabelle Charpentier, Bruno Cochelin, Komlanvi Lampoh. Diamanlab - An interactive Taylor-based
continuation tool in MATLAB. 2013. �hal-00853599v1�

https://hal.science/hal-00853599v1
https://hal.archives-ouvertes.fr

39

Diamanlab – An interactive Taylor-based continuation tool in MATLAB

ISABELLE CHARPENTIER, Centre National de la Recherche Scientifique

BRUNO COCHELIN, Centrale Marseille

KOMLANVI LAMPOH, Centre National de la Recherche Scientifique

With the interactive continuation tool Diamanlab, solution branches of a parametric nonlinear problem are
computed as sets of Taylor-based solutions stored in checkpoints. Theoretical aspects and implementation
are generic, taking advantage of the efficient higher-order asymptotic numerical method in its Diamant form
that interprets the generic nonlinear problem as a sequence of linear ones, of Automatic Differentiation (AD)
for Taylor coefficient computations, of object-oriented programming and graphical user interface capabilities
of MATLAB. The implementation involves four classes devoted to the interactive management of the contin-
uation, to the manipulation of a generic system of nonlinear equations, to the checkpoint management and
to higher-order AD, respectively.

In practice, any analytical nonlinear system of equation may be implemented in a natural way as a
subclass of the generic system class, then solved in an easy manner using the graphical user interface.
A benchmark of classical nonlinear problems is provided to serve as a basis for the implementation user-
defined problems. Diamanlab usage and bifurcation detection are discussed on the Brusselator problem
whose solution involves three interconnected loops. Additional user-defined graphics are presented for the
Bratu problem.

Categories and Subject Descriptors: G.4 [Mathematical Software]: Algorithm design and analysis; User
interfaces; G.1.5 [Numerical analysis]: Roots of Nonlinear Equations - Continuation methods; G.1.4 [Nu-

merical Analysis]: Quadrature and Numerical Differentiation - Automatic differentiation

General Terms: Design

Additional Key Words and Phrases: Asymptotic numerical method, automatic differentiation, MANLAB,
Diamant, graphical user interface

ACM Reference Format:

Charpentier, I., Cochelin, B., and Lampoh, K.. 2012. Diamanlab: a Taylor-based continuation MATLAB tool.
ACM Trans. Math. Softw. 9, 4, Article 39 (March 2010), 11 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

Numerical continuation and bifurcation analysis of nonlinear equation solutions
are classical numerical tools in many scientific areas. During the last thir-
ties, general-purpose software, free and commercial ones, have been proposed to
engineers and scientists to draw bifurcation diagrams without embarking into
the risky and heavy task of programming their own continuation algorithm.

Author’s addresses: I. Charpentier, Laboratoire d’Etude des Microstructures et de Mécanique des
Matériaux, UMR 7239, Ile du Saulcy, F-57045 Metz cedex 01, France; Laboratoire Icube, UMR 7357,
300 bd Sbastien Brant - BP 10413 - F-67412 Illkirch Cedex; email: isabellecharpentier@hotmail.com;
B. Cochelin, LMA, UPR CNRS 7051, Centrale Marseille, F-13402 Marseille cedex 20, France; email:
bruno.cochelin@centrale-marseille.fr; K. Lampoh, LMA, UPR CNRS 7051, F-13402 Marseille cedex 20,
France; email: lampoh@lma.cnrs-mrs.fr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2010 ACM 0098-3500/2010/03-ART39 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Mathematical Software, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:2 I. Charpentier, B. Cochelin and K. Lampoh

Most of them rely on the first order predictor-corrector principles described in
[Allgower and Georg 1990; Doedel et al. 1991; Seydel 2009]. Software are nowadays
provided with a Graphical User Interface (GUI) allowing interactions with the user.
We refer to [Govaerts and Kuznetzov 2007] for an overview of existing packages for
continuation and bifurcation analysis. In any case, a good knowledge of the underly-
ing continuation strategy is generally needed for a good tuning of the methodological
parameters of such predictor-corrector algorithms.

The Asymptotic Numerical Method (ANM) is an alternative to first order predictor-
corrector methods. Solution branches are approximated as higher-order truncated Tay-
lor expansions for which the range of validity is estimated a posteriori from the re-
mainder of the series. Under analyticity assumptions, this allows for an automatic
and adaptive computation of the continuation step size that ensures the robustness of
the method. Hence, no methodological parameter need to be tuned. The Matlab pack-
age MANLAB [Arquier et al. 2005] provides an object-oriented implementation of the
ANM as well as a GUI. It manages “automatic” series calculations for user-defined
problems written in a quadratic formalism, what has constituted the main limitation
to the dissemination of MANLAB as a general purpose continuation tool.

Automatic Differentiation (AD) [Griewank and Walther 2008] is the more practica-
ble approach to higher-order differentiation, providing generality, efficiency and ease
of use. Diamant, the AD version of the ANM [Charpentier and Potier-Ferry 2008;
Charpentier 2012], computes series from the user’s equation in a straightforward
manner. The Diamanlab tool described in the paper combines the robustness, object-
oriented programming and interactivity of the MANLAB tool with the AD abilities of
Diamant. The implementation involves four classes devoted to the interactive man-
agement of the continuation, to the manipulation of a generic system of nonlinear
equations, to the checkpoint management and to higher-order AD, respectively. Dia-
manlab relies on operator overloading as the vehicle of attaching higher-order deriva-
tive computations to the arithmetic operators and intrinsic functions provided by the
programming language [Berz et al. 1996; Griewank et al. 1996; Pryce and Reid 1998;
Charpentier and Utke 2009]. A Diamanlab user implements his equation system as a
classical Matlab function, sets the initial guess, and uses the GUI to plot his bifurca-
tion diagram. Moreover, object-oriented programming allows for the implementation
of user-defined graphics for particular analysis of the computed solution branches.

The layout of the paper is as follows. Fundamentals of ANM-based continuation
tools, including Diamant, are briefly presented in Section 2. Section 3 discusses with
detail the object-oriented implementation of the Diamanlab package. A few examples
of interactive continuation usage are provided in Section 4. Finally, Section 5 provides
a summary and an outlook.

2. ANM-BASED CONTINUATION TOOLS

Let R(U) = R(u, λ) define a nonlinear algebraic system comprising n equations, where
u is a state vector of dimension n, λ is a scalar control parameter, and U = (u, λ) for
the sake of concision. Solutions of (1),

Find U = (u, λ) ∈ C
n × R such that R(U) = 0, (1)

are one-dimensional continua of solution points, called solution branches, which may
intersect at bifurcation points.

Continuation algorithms constitute a classical answer to solution branch computa-
tions. Under differentiability assumption, the problem (1) may be solved through a first
order predictor-corrector method that computes the solution branch as a collection of
converged solution points [Allgower and Georg 1990; Doedel et al. 1991; Seydel 2009].
To be effective, an elaborate strategy is mandatory for a control of the step-size that

ACM Transactions on Mathematical Software, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Diamanlab – An interactive Taylor-based continuation tool in MATLAB 39:3

guarantees a good compromise between the number of corrections per step and the
size of each step.

Under analyticity assumption, higher-order order methods
[Thompson and Walker 1968] such as the ANM [Cochelin et al. 1994;
Cochelin et al. 2007] provide solution branches as a collection of continuous paramet-
ric representations written as truncated Taylor expansions,

U(a) =

P
∑

p=0

ap 1

p!

∂pU

∂ap
(0) =

P
∑

p=0

apUp, ∀a ∈ (0, am), (2)

where a is a path parameter, generally the pseudo-arc length parameter, am is the
range of validity of the series in which U(a) satisfies the accuracy required by the user,
Up is the unknown Taylor coefficient of U at order p, and P the truncation order. In the
ANM, series (2) are introduced in the actual user-defined equations. This yields a se-
quence of linear problems sharing the same Jacobian matrix but different right-hand-
side terms, which solution enables the computation of the sequence of {Up}p=1,..,P in
an iterative manner. The step size control strategy relies on an automated calculation
of the range of validity am [Cochelin 1994] from the remainder of the current series
(2). The solution point U(am) is used as initial guess to compute the next parametric
representation (2). By construction, the ANM is a robust and efficient continuation
process. A Newton-Raphson (NR) correction may be performed when the accuracy of
the initial guess U0 exceeds a user-prescribed value.

Great improvement in terms of generality is achieved through Diamant
[Charpentier 2012]. Series (2) are introduced in the generic problem (1). Follow-
ing Faá di Bruno’s generalization of the chain rule to higher-order derivatives
[Charpentier et al. 2008; Koutsawa et al. 2008], this yields a sequence of P linear sys-
tems,

Rp = R1Up + {Rp|Up = 0}U1 = 0, p = 1, .., P, (3)

where the Jacobian R1 is the same over the orders. The higher-order derivative
{Rp|Up = 0} is the Taylor coefficient Rp evaluated with the value of the unknown
Up set to 0. Following (3), the linear system at order p ≥ 1 is

(

R1

U ′

1A

)

Up =

(

−{Rp|Up = 0}
δ1p

)

, (4)

where δ1p is the Kronecker’s delta, U ′

1 the transpose of vector U1, and A a matrix im-
plementing some path equation [Cochelin et al. 2007].

From a computer point of view, the Jacobian and the higher-order terms are calcu-
lated applying AD on the residual function R provided by the user.

3. IMPLEMENTATION

Diamanlab is implemented for MATLAB version 7.0 or higher. No additional toolbox
is necessary. Key aspects of the Diamanlab implementation are generality, efficiency
and interactivity. Generality and efficiency are present at different stages taking ad-
vantage of Diamant, AD and object-oriented programming. First, any set of actual
analytic nonlinear equations (1) is represented as a generic function named R in both
the Diamant framework and its Matlab implementation. Second, the user’s equations
are coded deriving the class UserSyst from the class Syst of Diamanlab, see the class
diagram Fig. 1. Third, the AD operator overloading library coded in the Taylor class al-
lows for the automation of the Jacobian and Taylor coefficient computations appearing
in (4). The continuation is implemented in the ContDriver class meanwhile informa-
tion about computed series are stored in CheckPoint objects. A particular attention is

ACM Transactions on Mathematical Software, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:4 I. Charpentier, B. Cochelin and K. Lampoh

Properties
 order
 value
 coef

Taylor

Properties
 U0
 Ut

 U0now
 Utnow
 chkpts

Properties

ContDriver CheckPoint

Properties
 name
 ninc

Properties
 name
 ninc

 Amax

UserSyst

Syst

Fig. 1. Class diagram and main properties

paid to class, method and property names which are indicated using typewriter char-
acters. Interactivity is provided by a Graphical User Interface (GUI) and real time
visualization tools for bifurcation analysis. In this section, classes are presented from
the lower level ones, Taylor and CheckPoint for series representation, to the higher
level ones, Syst and ContDriver dealing with the generic nonlinear system of equa-
tion.

3.1. The Taylor class

This class implements an operator overloading library devoted to higher-order AD. A
Taylor object represents a truncated Taylor expansion by means of three properties:
the truncation order P , a 2D value array and a 3D coef array containing U0 and Up for
p = 1 to P , respectively. For the sake of generality, scalar variables are coded as 1×1
arrays. The Taylor constructor is designed to be called with a variable number of input
arguments. The order is mandatory. Default array values are set to 0. Methods define
how built-in operators and functions work on Taylor series objects. The current AD
implementation is based on re-computations up to the current order p even operation
count of Taylor-based series may be of O(P 2) when storing intermediate Taylor coef-
ficients [Chang and Corliss 1982]. Diamanlab 1.0 does not include such opportunities
for now. Meaningful operations and functions on Taylor series are overloaded. This in-
cludes math functions such as the exponential, the logarithm, trigonometric functions
and vectorial functions (norm, dot, sum, cat), as well as array and matrix multipli-
cations for which eventual dimension disagreements are raised. Particular subsasgn
and subsref methods allow for the interpretation of indexed assignment statements
involving Taylor objects. Some converters from Taylor to double, and vice versa, are
implemented through the get and set methods.

3.2. The CheckPoint class

The ANM continuation generates a succession of branch sections, using the end
point of each section as the new U0 point for the next section. Here, this basic prin-
ciple of the ANM is implemented using checkpoints [Griewank and Walther 1997;
Charpentier 2001] designed to carry series information computed for particular so-
lutions U0 of (1), allowing for a restart of the computations or a stability analysis.

In Diamanlab 1.0, a CheckPoint object is the aggregation of a Taylor object U0 con-
taining the Taylor series computed at point U0, a tangent vector Ut indicating a trav-
eling direction, a range of validity Amax for the series U0, and some representations
of the solution branch for plotting purposes. The CheckPoint class contains two meth-

ACM Transactions on Mathematical Software, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Diamanlab – An interactive Taylor-based continuation tool in MATLAB 39:5

ods only. The eval method provides a discrete “point-by-point representation” of the
branch. The endpoint method sets the solution point Uend to U(amax), the value of se-
ries evaluated at the limit of validity of U0, and the tangent direction Utend pointing
outward to dU

da
(amax) .

3.3. The Syst superclass and user-defined subclasses

The Syst superclass provides methods related to the generic system (1) of nonlinear
equations. A Syst object has two “problem-dependent” properties that should be pro-
vided at runtime: a name to be used in the plots, for instance, and the number of equa-
tions of the system, namely ninc. Other ones are methodological parameters, set to
default values. The Syst methods are Jacobian, tangentvector, NRcorrections and
ANMseries. The Jacobian method builds the Jacobian R1 at point U(0) using the canon-
ical basis. This technical procedure is convenient for small problems only, sparse Ja-
cobian evaluation will be implemented soon. The tangentvector method computes an
oriented unitary tangent vector to the branch using this Jacobian. The NRcorrections
method implements Newton-Raphson corrections to improve the accuracy of a solution
if desired. Devoted to series computation, ANMseries is the key method of Diamanlab.
Inputs are the Syst object related to the system under study and defined through a
Syst subclass hereafter denoted by UserSyst, the Taylor variable U0 which value prop-
erty is known, and the oriented tangent vector Ut. Outputs are the updated series U0
and the estimated range of validity Amax. ANMseries first calls the Jacobian and the
tangentvector methods. Then, iterations are performed from order p = 1 to P to com-
pute the Taylor coefficients Rp of R. Each of the iterations consists in the evaluation
of the right-hand-side term {Rp|Up = 0} and the solution of system (4). The range of
validity Amax is deduced from the computed series [Cochelin et al. 2007].

The system of nonlinear equations under study is implemented as a UserSyst class.
This UserSyst class inherits properties and methods from the Syst class, and contains
methods that are specific to the user’s system. The R method coded in UserSyst defines
the actual system of equation to be solved: the input is a Taylor objet U , the output is
the AD computed Taylor object R to be used in the Syst methods such as ANMseries,
Jacobian, and so forth. For the sake of generality, the R method result is a double
vector when the input is a double vector. The UserSyst class may also contain some
user displays to plot and to interpret results in a specific manner, detail is reported in
paragraph 4.3. A benchmark of user’s classes is included in Diamanlab.

3.4. The ContDriver class and the GUI

The ContDriver class is targeted to the implementation of the Diamant version of
the ANM continuation process. Properties are the “current point” of continuation fig-
ured by the two variables U0 and Ut, and a list of CheckPoint objects. Methods are
mainly those indicated as pushbuttons on the GUI, Fig. 2. At execution time, Diaman-
lab launches the GUI and a Matlab figure to plot the projected bifurcation diagram.

The projected bifurcation diagram is a 2D plot of one or several curves, each of them
showing the evolution of one component of U versus another. On each of the curves,
the “current point” is indicated by a square marker and an arrow figuring U0 and Ut,
respectively. The continuation steps appear to be performed from the representation(s)
of the point U0 in the arrow direction(s).

The interactive continuation is managed through the GUI and monitored on the pro-
jected bifurcation diagram. The GUI is divided into fives frames, namely Continuation,
Correction, Current point, Display and Diagram. The frame Continuation contains the
method :

ACM Transactions on Mathematical Software, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:6 I. Charpentier, B. Cochelin and K. Lampoh

Fig. 2. Graphical User Interface

— forwardcontinuation, Forward >> on the GUI, to perform the number of continua-
tion steps indicated in the text box above.

The ANMthreshold is the accuracy required for the parametric representation (2). It is
used to estimate the range of validity am and may be modified by the user.

The frame Correction contains

— NRcorrections to perform Newton-Raphson corrections on the ”current point” when
the accuracy is over the NRthreshold parameter. This threshold may be modified in
the related text area.

The Current Point frame contains push buttons that act on the current point loca-
tion:

— the Reverse tangent button reverses the continuation direction,
— the Initial button resets the current point to the initial guess point provided by the

user,
— the Set button enables to capture a mouse position on the projected bifurcation dia-

gram and to set the current point to the closest solution point,
— The Jump button captures a mouse position on the diagram figure. It commands a

prediction-correction and update the current point position on the bifurcation dia-
gram. This allows the user to follow another branch of the bifurcation diagram, for
instance.

Available Display options are:

— Markers to indicate (or not) checkpoints,
— Variables to choose the couples of components of U that are plotted as curves in the

projected bifurcation diagram,

ACM Transactions on Mathematical Software, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Diamanlab – An interactive Taylor-based continuation tool in MATLAB 39:7

Table I. Continuation Parameters

Field name Default value Note
order 20 command level only
ANMthreshold 1.10−7 AMM threshold
NRcorrections 0 NR correction off
NRthreshold 1.10−8 NR method threshold
NRitemax 15 Maximum number of iterations for NR

— Point and Select point to launch the user-defined display implemented in the
UserSyst class, at each steps if the Point button is on, or for the point capture on
the projected bifurcation diagram with Select point.

Display options may be set at the command level when launching a continuation, or
modified through the GUI.

Four actions are operated from the Diagram frame. The Load and Save methods are
file I/O functions to import and to export the diagram data, respectively. Diagram data
are the (params structure, the UserSyst and ContDriver objects. The last one notably
includes the checkpoint list. The Cancel all method allows for a reset of the check-
point list. Particular checkpoints may be removed from the list and the bifurcation di-
agram, simultaneously, using Cancel section button and selecting the related branch
sections.

.

4. INTERACTIVE CONTINUATION EXAMPLES

As discussed in paragraph 3.3, Diamalab is provided with several examples. A user
may either run a predefined problem, or take advantage of one of the UserSyst exam-
ples to implement his smooth nonlinear problem in a natural way as a R method of a
new subclass of the Syst class.

4.1. The params structure array

A very few continuation parameters, Table I, are involved in the ANM process. The
first two are the order truncature of the series and the required accuracy for the ANM
continuation. The last three are related to Newton corrections. Continuation param-
eters may be set at the command level when launching a continuation, or modified
through the GUI.

4.2. User-defined problem and class

A user-defined problem may be coded implementing a class that inherits from the Syst
class. One notices that the check for analyticity and the eventual regularization is un-
der the user’s responsibility. The user creates a class directory named @USERSYST in a
directory, Diamalabv1.0/EXAMPLES/USERSYST for instance, that should be on the Mat-
lab path. This directory contains at least two methods, the constructor USERSYST that
indicates the number of equations of the user’s system, and a function R containing
the equations. A user-defined disp function (see paragraph 4.3) may be added for com-
plementary plots. A script, called usersyst.m for instance, may be implemented to run
Diamanlab with user’s continuation parameters and display options. Diamanlab v1.0
is provided with several examples stored in the EXAMPLES directory and described with
detail in the user guide [Cochelin and Charpentier 2013].

As an example, let us consider the Brusselator problem [Seydel 2009], implemented
in the EXAMPLES/Brusselator directory, which equations are written in Fig. 1 as a R
method. Actual residual equations may be written in a natural way using either vec-
tors and matrices for better efficiency, or referring to a part of them through a subset of
indexes. One notices that the function R may be the top function of a complex program

ACM Transactions on Mathematical Software, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:8 I. Charpentier, B. Cochelin and K. Lampoh

ALGORITHM 1: Function R.m for the Brusselator equations

function R1 = R(obj,U) % Brusselator (Seydel, 1994)
global Ck %Current order of differentiation
if isa(U,’Taylor’), R1=Taylor(Ck,zeros(6,1)); end
u1=U(1); u2=U(2); u3=U(3); u4=U(4); u5=U(5); u6=U(6); ulam=U(7);
R1(1)=2-7*u1 + u1*u1*u2 + ulam*(u3-u1);
R1(2)= 6*u1 - u1*u1*u2 + 10*ulam*(u4-u2);
R1(3)=2-7*u3 + u3*u3*u4 + ulam*(u1+u5-2*u3);
R1(4)= 6*u3 - u3*u3*u4 + 10*ulam*(u2+u6-2*u4);
R1(5)=2-7*u5 + u5*u5*u6 + ulam*(u3-u5);
R1(6)= 6*u5 - u5*u5*u6 + 10*ulam*(u4-u6);

such as usual in a finite element modeling, for instance. Inputs are a Syst object and
a Taylor object. The output is a Taylor object containing the desired Taylor coefficients
of R. The constructor method BRUSSELATOR.m is presented in Fig. 2.

ALGORITHM 2: Constructor method: BRUSSELATOR.m file

classdef BRUSSELATOR < Syst
% The ’BRUSSELATOR’ class inherits from the Syst class
% ninc= 7 (unknows)
% This example shows the syntax to pass a parameter ’a’ as argument,
% even there is no need in this example

properties
a=0;

end
methods

function sys = BRUSSELATOR(a)
sys = sys@Syst(’ninc’,7);
sys.a=a;

end
end

end

The example is run using the brusselator command in the Matlab window. This
opens the GUI, Fig. 2, and the diagram window, Fig. 3.a, that displays the corrected
initial current point. The bifurcation diagram is built clicking on the Forward >> but-
ton of the GUI and controlling the results in the diagram window. Fig. 3.b shows the
continuation path obtained after 20 forward steps. One notices a round marker on
the path that indicates a simple bifurcation has been detected, the corresponding tan-
gent direction is also computed. After 35 steps, Fig. 3.c, the path forms a closed loop,
checkpoint markers are not plotted for a better observation of the diagram. Two simple
bifurcation are detected on this continuation path.

Diamanlab allows to set the current point at a bifurcation point using the Set but-
ton of the current point frame. In an automated manner, the tangent direction Ut
is set to the tangent direction of the bifurcated path, Fig. 3.d. The bifurcated path is
followed using the Forward >> button. The full bifurcation diagram, Fig. 3.e, made
of three interconnected loops and one straight line, is obtained repeating this proce-
dure. It requires 120 forward steps, involving 120 Taylor series computation and 120
checkpoints.

ACM Transactions on Mathematical Software, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Diamanlab – An interactive Taylor-based continuation tool in MATLAB 39:9

3.45 3.5 3.55 3.6 3.65 3.7
2.88

2.9

2.92

2.94

2.96

2.98

3

3.02

3.04

3.06
a

λ

u 1

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6
b

λ
u 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6
c

λ

u 1

−1 0 1 2 3 4 5
0

1

2

3

4

5

6
d

λ

u 1

−1 0 1 2 3 4 5
0

1

2

3

4

5

6
e

λ

u 1

Fig. 3. Interactive construction of the bifurcation diagram for the Brusselator system.

0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

6

7

8

λ

u

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3
u(x) at the marker point

λ

u
(x

)

Fig. 4. Bratu problem: (left) the projected bifurcation diagram, (right) the plot of u(x) at a solution point

4.3. User display facilities

Additional displays may be coded to analyze a solution point U . Indeed, drawing a
graphical representation of U is a valuable manner to get a good insight of the com-
puted solution. Such an interpretation feature may be used as follows:

- the user implements his own disp.m method in his UserSyst class to produce some
kind of Matlab action (graphics, video, sound, ...) from the solution point U . One
notices that the method has a unique argument U .

- the disp.m method is called either when a checkpoint object is computed (the “end”
point being used as U by disp) or when the user selects a point in the projected
bifurcation diagram using the GUI.

The Bratu example,

Find u such that ü(x) + λeu(x) = 0 in (0, 1), u(0) = u(1) = 0, (5)

provides a basic example for such feature. The problem is discretized using a central
difference scheme, what yields an algebraic system satisfying (1). Figure 4 presents
the bifurcation diagram, as well as the plot of U(x) for the solution point indicated
with a square on the bifurcation diagram.

ACM Transactions on Mathematical Software, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:10 I. Charpentier, B. Cochelin and K. Lampoh

5. CONCLUSION

The interactive continuation tool Diamanlab computes solutions of a parametric non-
linear problem as Taylor-based approximations stored in checkpoints. It combines the
advantages of the efficient higher-order asymptotic numerical method in its Diamant
form, with AD for Taylor coefficient computations, and with object-oriented program-
ming and GUI capabilities of MATLAB. Based on theoretical developments, our object-
oriented programming involves four classes devoted to the interactive management of
the continuation, to the manipulation of the generic system of nonlinear equations, to
the checkpoint management and to higher-order AD, respectively. A special attention
is paid to the object definition for an easy extension of Diamanlab. Future develop-
ments of Diamanlab will be oriented toward ODE system U̇ = R(U) and boundary
value problems for which stability analysis, periodic solution finding, periodic solution
stability will be addressed.

Availability

Diamanlab is provided “as-is”, without any express or implied warranty. The soft-
ware is available to academic users at no charge under the end-user licence agree-
ment. Licence terms and software will be downloaded from the Diamanlab’s web-
page http://Diamanlab.lma.cnrs-mrs.fr. Implementation and usage guidelines are
described in the Diamanlab User Guide [Cochelin and Charpentier 2013].

REFERENCES

ALLGOWER, E. L. AND GEORG, K. 1990. Numerical Continuation Methods: an Introduction. Springer-
Verlag, New-York.

ARQUIER, R., COCHELIN, B., AND VERGEZ, C. Manuel utilisateur (2005). Manlab : logiciel de continuation
interactif. Available at http://manlab.lma.cnrs-mrs.fr.

BERZ, M., MAKINO, K., SHAMSEDDINE, K., HOFFSTÄTTER, G., AND WAN, W. 1996. COSY INFINITY and
its applications in nonlinear dynamics. In Computational Differentiation: Techniques, Applications, and
Tools, M. Berz, C. Bischof, G. Corliss, and A. Griewank, Eds. SIAM, Philadelphia, PA, 363–365.

CHANG, Y. AND CORLISS, G. F. 1982. Solving ordinary differential equations using taylor series. ACM
Trans. Math. Software 8, 114–144.

CHARPENTIER, I. 2001. Checkpointing schemes or adjoint codes: Application to the meteorological model
Meso-NH. SIAM J. Sci. Comput. 22, 2135–2151.

CHARPENTIER, I. 2012. On higher-order differentiation in nonlinear mechanics. Optim. Method. Softw. 27,
221–232.

CHARPENTIER, I., LEJEUNE, A., AND POTIER-FERRY, M. 2008. The diamant approach for an efficient au-
tomatic differentiation of the asymptotic numerical method. In Advances in Automatic Differentiation,
C. H. Bischof, H. M. Bücker, P. D. Hovland, U. Naumann, and J. Utke, Eds. Springer, Berlin, 139–149.

CHARPENTIER, I. AND POTIER-FERRY, M. 2008. Différentiation automatique de la méthode asymptotique
numérique typée: l’approche Diamant. C. R. Mecanique 336, 336–340.

CHARPENTIER, I. AND UTKE, J. 2009. Interactive continuation tools. Optim. Method. Softw. 24, 1–14.

COCHELIN, B. 1994. A path-following technique via an asymptotic-numerical method. Computers & Struc-
tures 53, 5, 1181 – 1192.

COCHELIN, B. AND CHARPENTIER, I. 2013. Diamanlab userguide. Available at http://Diamanlab.lma.cnrs-
mrs.fr.

COCHELIN, B., DAMIL, N., AND POTIER-FERRY, M. 1994. Asymptotic-numerical methods and Padé approx-
imants for non-linear elastic structures. Int. J. Numer. Meth. Eng. 37, 1187–1213.

COCHELIN, B., DAMIL, N., AND POTIER-FERRY, M. 2007. Mthode Asymptotique Numrique. Hermes Science
Publications, Paris.

DOEDEL, E., KELLER, H., AND KERNEVEZ, J. 1991. Numerical analysis and control of bifurcation problems
(i) bifurcation in finite dimensions. Int. J. Bifurcat. Chaos 1, 493–520.

GOVAERTS, W. AND KUZNETZOV, Y. 2007. Interactive continuation tools. In Numerical Continuation Meth-
ods for Dynamical Systems, B. Krauskopf, H. Osinga, and J. Galan-Vioque, Eds. Springer Netherlands,
Chapter 2, 51–75.

ACM Transactions on Mathematical Software, Vol. 9, No. 4, Article 39, Publication date: March 2010.

http://Diamanlab.lma.cnrs-mrs.fr

Diamanlab – An interactive Taylor-based continuation tool in MATLAB 39:11

GRIEWANK, A., JUEDES, D., AND UTKE, J. 1996. ADOL–C, a package for the automatic differentiation of
algorithms written in C/C++. ACM T. Math. Software 22, 2, 131–167.

GRIEWANK, A. AND WALTHER, A. 1997. Treeverse: An implementation of checkpointing for the reverse or
adjoint mode of computational differentiation. ACM Trans. Math. Software 26, 200–0.

GRIEWANK, A. AND WALTHER, A. 2008. Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation 2nd Ed. Number 105 in Other Titles in Applied Mathematics. SIAM, Philadelphia, PA.

KOUTSAWA, Y., CHARPENTIER, I., DAYA, E., AND CHERKAOUI, M. 2008. A generic approach for the solution
of nonlinear residual equations. Part I: the Diamant toolbox. Comput. Method. Appl. M. 198, 572–577.

PRYCE, J. AND REID, J. 1998. AD01, a Fortran 90 code for automatic differentiation. Tech. Rep. RAL-TR-
1998-057, Rutherford Appleton Laboratory, Chilton, Oxfordshire, England.

SEYDEL, R. 2009. Practical Bifurcation and Stability Analysis 3rd Ed. Number 5 in Interdisciplinary Ap-
plied Mathematics. Springer.

THOMPSON, J. AND WALKER, A. 1968. The nonlinear perturbation analysis of discrete structural systems.
Int. J. Solids Struct. 4, 757–768.

Received February 2007; revised March 2009; accepted June 2009

ACM Transactions on Mathematical Software, Vol. 9, No. 4, Article 39, Publication date: March 2010.

	Introduction
	ANM-based continuation tools
	Implementation
	The Taylor class
	The CheckPoint class
	The Syst superclass and user-defined subclasses
	The ContDriver class and the GUI

	Interactive continuation examples
	The params structure array
	User-defined problem and class
	User display facilities

	Conclusion

