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Optimization of joint p-variations
of Brownian semimartingales

Emmanuel Gobet ∗ Nicolas Landon †

Abstract

We study the optimization of the joint (pY , pZ)−variations of two continuous semi-
martingales (Y,Z) driven by the same Itô process X. The p-variations are defined on
random grids made of finitely many stopping times. We establish an explicit asymp-
totic lower bound for our criterion, valid in rather great generality on the grids, and
we exhibit minimizing sequences of hitting time form. The asymptotics is such that
the spatial increments of X and the number of grid points are suitably converging to
0 and +∞ respectively.

Keywords: p-variation; almost-sure convergence; optimal stopping times.
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1 Introduction

Setting and objectives. Let (Ω,F , (Ft)t≥0,P) be a filtered probability space support-
ing a one-dimensional Brownian motion B, with usual conditions on the filtration. Let
T > 0 be a fixed time horizon. We consider a scalar Itô semi-martingale X with dynam-
ics

dXt = bXt dt+ σXt dBt, (1.1)

and two general continuous semi-martingales Y and Z both driven by X,

dYt = bYt dAYt + σYt dXt, dZt = bZt dAZt + σZt dXt, (1.2)

where AY and AZ are continuous finite variation processes. In this setting, X should be
viewed as a common control for Y and Z. Consider the weighted pY - and pZ -variations
of Y and Z, defined by

YnT :=
∑

τni−1<T

wYτni−1
|Yτni − Yτni−1

|p
Y

, pY ∈ (0, 2),

ZnT :=
∑

τni−1<T

wZτni−1
|Zτni − Zτni−1

|p
Z

, pZ ∈ (2,+∞),
(1.3)

where T n = {τn0 = 0 < τn1 < · · · < τnNnT
= T} is a random grid, namely a finite sequence

of stopping times, and wY , wZ are non-negative stochastic processes. The integer n is a
convergence parameter explained later: essentially, as n→ +∞, the [0, T ]-partition T n
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Optimization of joint p-variations of Brownian semimartingales

gets more and more dense.
Our aim is to minimize, asymptotically as n→ +∞, the product

(YnT )1/p(ZnT )1/q (1.4)

for appropriate positive exponents p and q, over a large class of sequences of stopping
times. By a simple rescaling, we are reduced to the case 1/p+1/q = 1: hence, from now
on, we assume this case of conjugate exponents p and q. Since pZ > 2, ZnT converges in
probability to 0 as n→ +∞ (see [Lév40, Tay72, JP12]), thus ZnT can be interpreted as an
error or a functional performance. On the contrary, due to pY < 2, under mild conditions
YnT converges in probability to +∞ and thus, YnT can be viewed as a functional cost.

Applications. For instance, for a given n, T n is a sequence of decisions, and the
objective is to achieve the best performance (measured by ZnT ) with the minimal cost
(i.e. YnT ) among a set of admissible decisions: therefore, solving asymptotically the
above optimization problem helps to exhibit an approximative optimal solution for fixed
n.
Besides, it turns out that the minimizing sequence achieving the lower bound is related
to hitting times for the control process X: thus, simply by observing X enables to find
the best trade-off between cost and performance related to Y and Z.
Lastly, as explained in [Fuk11], the above minimization problem also allows to optimize
a more general criterion of the form C(YnT ,ZnT ), where the function C is increasing w.r.t.
both variables.
In the limit case pY = 0 (discarded by our assumptions) with wY ≡ 1 (so that YnT = Nn

T ),
the problem is interpreted as the optimal discretization of Z with minimal number of
discretization times, see for instance [Fuk11][GL13].
If we denote by LT the asymptotic lower bound of (1.4), our work provides a general
non trivial lower-bound relation between p-variations of Y and Z,

ZnT ≥
LqT

(YnT )q/p
,

which is valid asymptotically as n→ +∞.

Litterature background and our contributions. So far, we have been voluntarly
vague about the sense of the limit: actually it is either in a.s. sense either in probabil-
ity, depending on the chosen asymptotics. We now define the set Tadm.

ρN of admissible
sequences of random grids, emphasizing the role of the control process X: it depends
on a given deterministic positive sequence (εn)n converging to 0. The set Tadm.

ρN is pa-
rameterized by a deterministic parameter ρN satisfying 1

1 ≤ ρN < (1 +
θX
2

) ∧ 4

3
. (1.5)

Definition 1.1. We denote by T the set of sequences of random grids T = {T n : n ≥ 0},
i.e. T n = {τn0 = 0 < τn1 < · · · < τnNnT

= T} is built with a finite sequence of increasing

stopping times on [0, T ]. We say that T ∈ T is an admissible sequence (and we denote it
by T ∈ Tadm.

ρN ) if in addition the assumptions (AX) and (AN) are fulfilled.

(AX) (spatial control) For a finite r.v. C, sup
1≤i≤NnT

sup
τni−1≤t≤τni

|Xt−Xτni−1
| ≤ Cεn for any n, a.s. .

(AN) (number of stopping times) For a finite r.v. C, Nn
T ≤ Cε−2ρNn for any n, a.s. .

1the parameter θX ∈ (0, 1] is related to the smoothness of σX , defined later in (Hi).
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Optimization of joint p-variations of Brownian semimartingales

The larger ρN , the larger the set Tadm.
ρN considered for the minimization of (1.4). In

[GL13], it is proved that Tadm.
ρN is quite large, since it contains most usual deterministic

partitions (provided that ρN > 1) and exit times of various random sets with radius εn,
i.e. all the usual stopping times we wish to consider in applications. For example, the
general class of hitting times of the form

τn0 := 0, τni := inf
{
t > τni−1 : Xt −Xτni−1

/∈]− εnf (1)τni−1
, εnf

(2)
τni−1

[
}
∧ T, (1.6)

for two continuous adapted positive processes (f
(1)
t )t≥0 and (f

(2)
t )t≥0, belongs to the

admissible sequences Tadm.
1 ⊂ Tadm.

ρN , provided that
∑+∞
n=0 ε

2
n < +∞; see [GL13] for

details.
The main results are stated in Section 2 and proved in Section 3. Our Theorem 2.1

states that lim infn→+∞(YnT )1/p
∗
(ZnT )1/q

∗
has a.s. a non-degenerate lower bound over the

set Tadm.
ρN , for suitable p∗ and q∗. For other (p, q), the limit of (1.4) is degenerate (Theo-

rem 2.2). In addition, in Theorems 2.3 and 2.4, we show the existence of an admissible
sequence of random grids of the hitting time form attaining the a.s. lower bound. All
these sharp a.s. results are obtained under the stringent condition

∑
n≥0 ε

2
n < +∞. Our

arguments are inspired by a.s. asymptotic results from [GL13] (with some reinforce-
ment). Then, assuming only εn →n→+∞ 0, we get a lower bound in probability with
a convergence in probability of the optimal sequence, see Theorem 2.5. However, it
is worth noting that, here, obtaining directly this type of convergence is a tough task
because our set Tadm.

ρN of admissible sequences of random grids is firstly far too large
and secondly, it is not described in a way to apply standard results (like those of [JP12,
Section 2.2]). Actually, one of the breakthrough of our work is the use of a.s. arguments
to prove probability statements via a subsequence principle (see proof of Theorem 2.5);
it may seem odd at first glance, actually almost sure convergence results are in this
broad framework very efficient, practical and bespoke tools. Specifically, we can ob-
tain a.s. uniform estimates of the increments |Mτni

−Mτni−1
| between two dates and a.s.

convergence of quadratic quantities like
∑
τni−1<t

wτni−1
|Mτni ∧t −Mτni−1

|2 to
∫ t
0
wsd〈M〉s

under the additional assumption
∑+∞
n=0 ε

2
n < +∞, for any local martingale M and any

continuous process w.
To our best knowledge, the first author dealing with this kind of optimization cri-

terion is Fukasawa in [Fuk11], but rather with an expectation viewpoint. Extension
to jump processes has recently been done in [RT13]. We refer to the introduction of
[GL13] for the advantages of the current a.s. approach.

• We discard the case pY = 0 from our current work, it requires a quite different
analysis which has been partly done in [GL13]. On the other hand, for the first
time, in this article we consider general p-variations of Y and Z.

• The pure quadratic variation cases (pY = 2 or pZ = 2) are uninteresting regarding
the optimization of T n, since YnT or ZnT in (1.3) then converges to a limit indepen-
dent of T n (see Proposition 1.4).

Notations

• C stands for a finite non-negative random variable, which will change from line to
line, independent of n.

• Let (αn)n≥0, (βn)n≥0 be two sequences of random variables. We write αn = O(βn)

(resp. o(βn)), if supn≥0(|β−1n αn|) < +∞ a.s. (resp. |β−1n αn|
a.s.−→

n→+∞
0).

• For any càdlàg process U , we define |U |∗ := sup0≤t≤T |Ut|: we say that U is finite
a.s. if |U |∗ < +∞ a.s. . In addition, we set |∆U |∗ := sup1≤i≤NnT

supτni−1≤t≤τni |∆Ut|,
where ∆Ut := Ut − Uϕ(t) and ϕ(t) := max{τnj ; τnj ≤ t}.
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Standing assumptions on the processes X,Y, Z,wY , wZ

(Hi) The so-called control process X is defined in (1.1): its coefficients bX and σX are
scalar continuous adapted processes, with σX satisfying the ellipticity condition
σX > 0 a.s. and the smoothness assumption |σXs − σXt | ≤ C|t − s|θX/2 for any
0 ≤ s, t ≤ T , with θX > 0.
To simplify, we directly assume bX ≡ 0, since bX can be removed by a change
of measure (under mild assumptions on the integrability of bX/σX) and we study
convergences in a.s. sense or in probability (valid under any equivalent measure).

(Hii) The coefficients bY , bZ , σY , σZ of Y and Z defined in (1.2) are scalar continuous
adapted processes, where σY > 0, σZ > 0, |σYs −σYt | ≤ C|t−s|θY /2 and |σZs −σZt | ≤
C|t− s|θZ/2 for any 0 ≤ s, t ≤ T , with θY , θZ > 0.

(Hiii) The weights wY and wZ are non-negative continuous adapted stochastic pro-
cesses.

Remark 1.2. The smoothness assumptions in (Hi-Hii) are little demanding. For in-
stance, regarding X, if σXt = σ(t,Xt) with |σ(t, x) − σ(s, y)| ≤ cσ(|y − x|2 + |t − s|)θ/2
(for two constants cσ > 0 and θ > 0) and σ is bounded, it is an easy exercice using the
Garsia-Rodemich-Rumsey lemma to prove that (Hi) is valid for any θX ∈ (0, θ).

We now highlight two nice general properties available for admissible sequences of
random grids, this is repeatedly used in this work.

Proposition 1.3 ([GL13, Corollary 2.3]). Let ρN be a parameter as in (1.5) and T =

{T n : n ≥ 0} be in Tadm.
ρN for a sequence (εn)n satisfying

∑+∞
n=0 ε

2
n < +∞. Let ((Mn

t )0≤t≤T )n≥0

be a sequence of scalar continuous local martingales such that 〈Mn〉t =
∫ t
0
αnr dr for a

non-negative measurable adapted αn satisfying the following inequality: there exists a
non-negative a.s. finite random variable Cα and a parameter θ ≥ 0 such that

0 ≤ αnr ≤ Cα|∆r|θ, ∀ 0 ≤ r ≤ T, ∀n ≥ 0, a.s..

Then, the following estimates hold, for any ρ > 0:

i) Under (AX), sup
n≥0

(
ε
ρ− 1+θ

2
n sup

1≤i≤NnT
sup

τni−1≤t≤τni
|∆Mn

t |
)
< +∞, a.s. .

ii) Under (AX)-(AN), sup
n≥0

(
ερ−(1+θ)n sup

1≤i≤NnT
sup

τni−1≤t≤τni
|∆Mn

t |
)
< +∞, a.s. .

The interest in the p-variation of stochastic processes was initiated by Lévy’s result
[Lév40] on the quadratic variation of Brownian motion along dyadic grids:

lim
n→+∞

2n−1∑
i=0

(
Bi/2n −B(i+1)/2n

)2
= 1, a.s..

Generalizations of this result to different grids and martingales lead to complications
(see [Dud73, FDlV74, Tay72]). In our setting, we obtain the a.s. convergence of
weighted quadratic variations under mild conditions; the next result is proved in Ap-
pendix.

Proposition 1.4. Let T ∈ T be a sequence of random grids satisfying (AX) for a se-
quence (εn)n satisfying

∑+∞
n=0 ε

2
n < +∞. Let (Hn

t )0≤t≤T and H be scalar continuous

adapted processes such that supt∈[0,T ] |Hn
t −Ht|

a.s.−→
n→+∞

0, and let (Mt)0≤t≤T be a scalar
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continuous local martingale such that 〈M〉t =
∫ t
0
αrdr with sup0≤t≤T |αt| < +∞ a.s. .

Then ∑
τni−1<T

Hn
τni−1

(∆Mτni
)2

a.s.−→
n→+∞

∫ T

0

Htd〈M〉t.

2 Main results

2.1 Almost sure convergence

Our first result gives a lower bound for a generic criterion in the a.s. sense.

Theorem 2.1. Assume
∑
n≥0 ε

2
n < +∞. Set p∗ = pZ−pY

pZ−2 and q∗ = pZ−pY
2−pY . Let T be an

admissible sequence of random grids in Tadm.
ρN with, in addition to (1.5),

ρN < 1 +
1

2


pY

p∗ − pY
∧ θY p

Y

p∗
∧ 1

q∗ − 1
∧ θZ
q∗

if pY ∈ (0, 1),

1

q∗ − 1
∧ 1

p∗ − 1
∧ θY
p∗
∧ θZ
q∗

if pY ∈ [1, 2).

Then, setting Lt := (wYt (σYt )p
Y

)1/p
∗
(wZt (σZt )p

Z

)1/q
∗
, we have

lim inf
n→+∞

(YnT )1/p
∗
(ZnT )1/q

∗
≥
∫ T

0

Ltd〈X〉t := LT , a.s..

Moreover, the above conjugate exponents p∗ and q∗ are in some sense optimal.

Theorem 2.2. Assume
∑
n≥0 ε

2
n < +∞, our standing assumptions with X = Y = Z and

ωY ωZ 6= 0 a.s. . Then, for any conjugate p and q,

• if p < p∗ and q > q∗, the liminf of (YnT )1/p(ZnT )1/q is +∞ a.s. for any T ∈ Tadm.
ρN with

ρN as in (1.5);
• if p > p∗ and q < q∗, the liminf of (YnT )1/p(ZnT )1/q is a.s. 0 for all the sequences of

random grids defined by (1.6), where f (1) and f (2) are continuous adapted positive
processes (which yield admissible sequences of random grids in Tadm.

1 ).

We now provide an optimal admissible sequence of random grids such that our cri-
terion converges a.s. to the above lower bound. Let χ(.) be a smooth function such that
1]−∞,1/2] ≤ χ(.) ≤ 1]−∞,1] and for µ ∈ (0, 1], set χµ(x) = χ(x/µ).

Theorem 2.3. Assume the assumptions of Theorem 2.1 and let µ ∈ (0, 1]. For any
n ∈ N, define the random grids T nµ by τn0 := 0 and

τni := inf

{
t ≥ τni−1 :|Xt −Xτni−1

|

> εn

(wYτni−1
(σYτni−1

)p
Y

+ µχµ
(
wYτni−1

(σYτni−1
)p
Y )

wZτni−1
(σZτni−1

)pZ + µχµ
(
wZτni−1

(σZτni−1
)pZ
)) 1

pZ−pY
}
∧ T.

Then, Tµ = {T nµ : n ≥ 0} belongs to Tadm.
1 and is asymptotically µ-optimal in the follow-

ing sense:

lim sup
n→+∞

∣∣∣(YnT )1/p
∗
(ZnT )1/q

∗
−
∫ T

0

Ltd〈X〉t
∣∣∣

≤ Cµ
1

(p∗∨q∗)2
(∫ T

0

{
χµ(wZt |σZt |p

Z

) + χµ(wYt |σYt |p
Y

)
}

d〈X〉t
) 1
p∗∨q∗ →

µ→0
0.

In particular, on the event {∀t ∈ [0, T ] : wZt |σZt |p
Z ∧ wYt |σYt |p

Y ≥ µ}, (YnT )1/p
∗
(ZnT )1/q

∗

converges a.s. to
∫ T
0
Ltd〈X〉t.
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Theorem 2.4. Assume the assumptions of Theorem 2.1 with in addition ρN > 1. Let ρµ

satisfy ρµ ∈]0, (ρN − 1)/2] and ρµ < 2/(pZ − 2) and set µn = ε
ρµ(p

Z−pY )
n . For any n ∈ N,

define the sequence of stopping times T ∗,nρµ by τn0 := 0 and

τni := inf

{
t ≥ τni−1 : |Xt −Xτni−1

| >

ε1+ρµn

(wYτni−1
(σYτni−1

)p
Y

+ µnχ
(
wYτni−1

(σYτni−1
)p
Y )

wZτni−1
(σZτni−1

)pZ + µnχ
(
wZτni−1

(σZτni−1
)pZ
)) 1

pZ−pY
}
∧ T. (2.1)

Then, T ∗ρµ = {T ∗,nρµ : n ≥ 0} belongs to Tadm.
ρN and is asymptotically optimal:

(YnT )1/p
∗
(ZnT )1/q

∗ a.s.−→
n→+∞

∫ T

0

Ltd〈X〉t.

This is an improvement to the type of results proved in [GL13], where only µ-
optimality is established. With the current arguments, we could also derive optimal
sequences in [GL13]. Actually, the optimal sequence T ∗ρµ is not in Tadm.

1 (see the proof
of Theorem 2.4): for ρN = 1, so far we can prove only the existence of a µ-optimal
sequence (Theorem 2.3).

2.2 Convergence in probability

Theorem 2.5. Assume only that εn →n→+∞ 0.
1) Consider the notation and definition of Theorem 2.1; for any admissible sequence of
random grids T ∈ Tadm.

ρN , we have

∀δ > 0, lim
n→+∞

P
(

(YnT )1/p
∗
(ZnT )1/q

∗
≥
∫ T

0

Ltd〈X〉t − δ
)

= 1.

2) For the admissible sequence T ∗ρµ defined in Theorem 2.4, we have

∀δ > 0, lim
n→+∞

P
(∣∣∣(YnT )1/p

∗
(ZnT )1/q

∗
−
∫ T

0

Ltd〈X〉t
∣∣∣ ≤ δ) = 1.

Proof. To go from a.s. results to convergence in probability results, we use the subse-
quence principle of [Bil95, Theorem 20.5], stated as follows.

• Xn
in prob.−→
n→+∞

X if, and only if, for any subsequence (Xσ(n))n of (Xn)n, we can extract

another subsequence (Xσ◦σ′(n))n such that Xσ◦σ′(n)
a.s.−→

n→+∞
X .

Then, for any T ∈ Tadm.
ρN , set Xn = min

(
0, (YnT )1/p

∗
(ZnT )1/q

∗ −
∫ T
0
Ltd〈X〉t

)
and consider

an arbitrary subsequence (Xσ(n))n: take another subsequence (εσ◦σ′(n))n≥0 such that∑+∞
n=0 ε

2
σ◦σ′(n) < +∞, then apply Theorem 2.1 to show that Xσ◦σ′(n)

a.s.−→
n→+∞

0. Thus, we

conclude that Xn
in prob.−→
n→+∞

0, which proves our first statement.

The argument is similar for T ∗ρµ and yields our second statement.

3 Proofs of a.s. convergence results

3.1 Proof of Theorem 2.1

We split the proof into three steps: decomposition of the criterion (1.4), lower bound
for the main contribution, justification of neglected terms.
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Step 1: decomposition of YnT and of ZnT . We follow a standard approach which
consists in approximating the increments of the semi-martingales Y and Z by the incre-
ments of their local martingale components and showing that the residual terms (i.e.
the increments of their finite variation parts) tend to 0 quickly enough :

YnT :=
∑

τni−1<T

wYτni−1
|∆Yτni |

pY =
∑

τni−1<T

wYτni−1
|σYτni−1

∆Xτni
|p
Y

+ EnY,1,T , (3.1)

ZnT :=
∑

τni−1<T

wZτni−1
|∆Zτni |

pZ =
∑

τni−1<T

wZτni−1
|σZτni−1

∆Xτni
|p
Z

+ EnZ,1,T , (3.2)

where

EnY,1,T :=
∑

τni−1<T

wYτni−1

(
|∆Yτni |

pY − |σYτni−1
∆Xτni

|p
Y
)
,

EnZ,1,T :=
∑

τni−1<T

wZτni−1

(
|∆Zτni |

pZ − |σZτni−1
∆Xτni

|p
Z
)
.

Step 2: lower bound for the main term. The aim of this step is to provide a simple
proof of the lower bound stated in Theorem 2.1. The Hölder inequality immediately
yields a lower bound for the product of the two main terms of (3.1) and (3.2), that is( ∑

τni−1<T

wYτni−1
|σYτni−1

∆Xτni
|p
Y
)1/p( ∑

τni−1<T

wZτni−1
|σZτni−1

∆Xτni
|p
Z
)1/q

≥
∑

τni−1<T

(wYτni−1
(σYτni−1

)p
Y

)1/p(wZτni−1
(σZτni−1

)p
Z

)1/q|∆Xτni
|p
Y /p+pZ/q. (3.3)

Then, for pY /p∗ + pZ/q∗ = 2, we obtain a non trivial lower bound. Since we restrict to

conjugate exponents, this corresponds to p∗ = pZ−pY
pZ−2 and q∗ = pZ−pY

2−pY and then,( ∑
τni−1<T

wYτni−1
|σYτni−1

∆Xτni
|p
Y
)1/p∗( ∑

τni−1<T

wZτni−1
|σZτni−1

∆Xτni
|p
Z
)1/q∗

≥
∑

τni−1<T

Lτni−1
(∆Xτni

)2
a.s.−→

n→+∞

∫ T

0

Ltd〈X〉t.

The last convergence follows from Proposition 1.4.

Step 3: the renormalized errors ε(p
Z−2ρN )(p∗−1)

n EnY,1,T and ε
(pY −2ρN )(q∗−1)
n EnZ,1,T con-

verge to 0 a.s. . If we admit the above convergences, then in view of (3.1), (3.2) and
Step 2, we easily complete the proof of Theorem 2.1. Details are left to the reader.

• Proof of ε(p
Z−2ρN )(p∗−1)

n EnY,1,T
a.s.−→

n→+∞
0. We distinguish two cases.

� Case pY ≥ 1. Use Taylor’s theorem applied to the function x 7→ xp
Y

to get

ε(p
Z−2ρN )(p∗−1)

n |EnY,1,T |

≤ ε(p
Z−2ρN )(p∗−1)

n

∑
τni−1<T

wYτni−1
pY
(
|∆Yτni |

pY −1 ∨ |σYτni ∆Xτni
|p
Y −1

) ∣∣∣∆Yτni − σYτni ∆Xτni

∣∣∣
≤ ε(p

Z−2ρN )(p∗−1)
n pY |wY |∗

(
|∆Y |p

Y −1
∗ ∨ |σYϕ(.)∆X|

pY −1
∗

)
×
(
Nn
T

∣∣∣ ∫ .

ϕ(.)

∆σYs dXs

∣∣∣
∗

+ |bY |∗
∑

τni−1<T

|∆AYτni |
)
.
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Owing to Proposition 1.3, the first term is O
(
ε
(pZ−2ρN )(p∗−1)+pY −1−ρ−2ρN+1+θY −ρ
n

)
, for

any ρ > 0. It converges a.s. to 0 as soon as

0 < (pZ − 2ρN )(p∗ − 1) + pY − 2ρN + θY

= (pZ − 2)(p∗ − 1) + pY − 2 + 2(1− ρN )(p∗ − 1) + θY + 2(1− ρN ) = 2(1− ρN )p∗ + θY ,

which holds by taking ρN < 1 + θY
2p∗ . Similarly, the second term converges a.s. to 0

provided that 0 < (pZ−2ρN )(p∗−1)+pY −1 = 2(1−ρN )(p∗−1)+1, i.e. ρN < 1+ 1
2(p∗−1) .

� Case pY ∈ (0, 1). Using

|bp − ap| ≤ |b− a|p for (a, b) ∈ R2
+ and p ∈]0, 1], (3.4)

we have

ε(p
Z−2ρN )(p∗−1)

n |EnY,1,T | ≤ ε(p
Y −2ρN )(q∗−1)

n

∑
τni−1<T

wYτni−1

∣∣∣∆Yτni − σYτni ∆Xτni

∣∣∣pY

= ε(p
Z−2ρN )(p∗−1)

n

∑
τni−1<T

wYτni−1

∣∣∣ ∫ τni

τni−1

∆σYt dXt +

∫ τni

τni−1

bYt dAYt

∣∣∣pY

≤ ε(p
Z−2ρN )(p∗−1)

n |wY |∗
(
Nn
T

∣∣∣ ∫ .

ϕ(.)

∆σYs dXs

∣∣∣pY
∗

+ |bY |p
Y

∗

∑
τni−1<T

|∆AYτni |
pY
)
.

In view of Proposition 1.3, the first term is O(ε
(pZ−2ρN )(p∗−1)−2ρN+(1+θY )pY −ρ
n ), for any

ρ > 0, thus it converges to 0 provided that 0 < (pZ − 2ρN )(p∗ − 1)− 2ρN + (1 + θY )pY =

2(1 − ρN )(p∗ − 1) + 2(1 − ρN ) + θY p
Y = 2(1 − ρN )p∗ + θY p

Y , which holds under our
assumptions. For the second term, we use Hölder’s inequality

ε(p
Z−2ρN )(p∗−1)

n

∑
τni−1<T

|∆AYτni |
pY ≤ ε(p

Z−2ρN )(p∗−1)
n

( ∑
τni−1<T

|∆AYτni |
)pY

(Nn
T )1−p

Y

= O(ε(p
Z−2ρN )(p∗−1)−2ρN (1−pY )

n ).

It converges to 0 since the exponent of εn is equal to 2(1− ρN )(p∗ − 1)− 2ρN (1− pY ) +

2− pY = 2(1− ρN )(p∗ − pY ) + pY > 0.

• Proof of ε(p
Y −2ρN )(q∗−1)

n EnZ,1,T
a.s.−→

n→+∞
0. The computations are identical to those for

EnY,1,T , when pY ≥ 1, we skip details.

3.2 Proof of Theorem 2.2

� Case p < p∗ and q > q∗, i.e. pY /p + pZ/q < 2. Using a lower bound as for (3.3)
specialized to the assumption X = Y = Z, we deduce

(YnT )1/p(ZnT )1/q ≥
∑

τni−1<T

(wYτni−1
)1/p(wZτni−1

)1/q|∆Xτni
|p
Y /p+pZ/q

≥ |∆X|p
Y /p+pZ/q−2
∗

∑
τni−1<T

(wYτni−1
)1/p(wZτni−1

)1/q|∆Xτni
|2.

On the one hand, |∆X|p
Y /p+pZ/q−2
∗

a.s.−→
n→+∞

+∞ because of (AX); on the other hand, the

above sum converges a.s. to a positive r.v. thanks to Proposition 1.4 and wY wZ 6= 0. We
are done.
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� Case p > p∗ and q < q∗, i.e. pY /p + pZ/q > 2. The sequence T n
f(1),f(2) of increasing

stopping times defined in (1.6) is such that Tf(1),f(2) = {T n
f(1),f(2) : n ≥ 0} belongs to

Tadm.
1 , see [GL13, proof of Proposition 2.4]. Then( ∑

τni−1<T

wYτni−1
|∆Xτni

|p
Y
)1/p( ∑

τni−1<T

wZτni−1
|∆Xτni

|p
Z
)1/q

= O(εp
Y /p+pZ/q−2
n )

a.s.−→
n→+∞

0.

Hence, for each element Tf(1),f(2) , the limit of (YnT )1/p(ZnT )1/q equals 0.

3.3 Proof of Theorem 2.3

We repeatedly use the inequality x+ µ ≥ x+ µχµ(x) ≥ µ/2,∀x ≥ 0.

Firstly, we check the admissibility of Tµ: the verification of the assumption (AX) is
immediate thanks to µ > 0. Clearly T nµ is a sequence of increasing stopping times.
Regarding the assumption (AN), we point out that

ε2nN
n
T = ε2n +

∑
1≤i≤NnT−1

[
wYτni−1

(σYτni−1
)p
Y

+ µχµ(wYτni−1
(σYτni−1

)p
Y

)

wZτni−1
(σZτni−1

)pZ + µχµ(wZτni−1
(σZτni−1

)pZ )

] −2

pZ−pY

(∆Xτni−1
)2

a.s.−→
n→+∞

∫ T

0

[
wYt (σYt )p

Y

+ µχµ(wYt (σYt )p
Y

)

wZt (σZt )pZ + µχµ(wZt (σZt )pZ )

] −2

pZ−pY

d〈X〉t

using Proposition 1.4, available under (AX) only. This proves that Nn
T = O(ε−2n ) and

finally, Tµ ∈ Tadm.
1 .

Secondly, let us show the µ-optimality. Define for t ≥ 0,

Lµt :=
(
wYt (σYt )p

Y

+ µχµ(wYt (σYt )p
Y

)
)1/p∗ (

wZt (σZt )p
Z

+ µχµ(wZt (σZt )p
Z

)
)1/q∗

.

Starting from the decompositions (3.1)-(3.2), write

ε2−p
Y

n YnT =
∑

1≤i≤NnT−1

Lµτni−1
(∆Xτni

)2 + ε2−p
Y

n

(
EnY,1,T + EnY,2,T + EnY,3,T

)
, (3.5)

EnY,2,T :=
∑

1≤i≤NnT−1

[
wYτni−1

|σYτni−1
∆Xτni

|p
Y

− εp
Y −2
n Lµτni−1

(∆Xτni
)2
]
,

EnY,3,T := wYNnT−1|σ
Y
NnT−1

∆XT |p
Y

,

ε2−p
Z

n ZnT =
∑

1≤i≤NnT−1

Lµτni−1
(∆Xτni

)2 + ε2−p
Z

n

(
EnZ,1,T + EnZ,2,T + EnZ,3,T

)
, (3.6)

EnZ,2,T :=
∑

1≤i≤NnT−1

[
wZτni−1

|σZτni−1
∆Xτni

|p
Z

− εp
Z−2
n Lµτni−1

(∆Xτni
)2
]
,

EnZ,3,T := wZNnT−1|σ
Z
NnT−1

∆XT |p
Z

.

We now aim at establishing a.s. boundedness of ε2−p
Y

n YnT and ε2−p
Z

n ZnT . So far, we

know that
∑

1≤i≤NnT−1
Lµτni−1

(∆Xτni
)2

a.s.−→
n→+∞

∫ T
0
Lµt d〈X〉t (see Proposition 1.4). Further-

more, we have already established (see proof of Theorem 2.1, Step 3) that EnY,1,T =

o(ε
−(pZ−2ρN )(p∗−1)
n ) = o(εp

Y −2
n ) (using ρN ≥ 1) and EnZ,1,T = o(ε

−(pY −2ρN )(q∗−1)
n ) = o(εp

Z−2
n )

for any admissible sequence of random grids.
Moreover, EnY,3,T = O(εp

Y

n ) = o(εp
Y −2
n ) and EnZ,3,T = O(εp

Z

n ) = o(εp
Z−2
n ).
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Finally, regarding EnY,2,T and EnZ,2,T , we obtain that |ε2−pYn EnY,2,T | is bounded by

ε2−p
Y

n

∑
1≤i≤NnT−1

∣∣∣wYτni−1
|σYτni−1

∆Xτni
|p
Y

− εp
Y −2
n Lµτni−1

(∆Xτni
)2
∣∣∣

=
∑

1≤i≤NnT−1

µχµ(wYτni−1
|σYτni−1

|p
Y

)

(
wZτni−1

(σZτni−1
)p
Z

+ µχµ(wZτni−1
(σZτni−1

)p
Z

)

wYτni−1
(σYτni−1

)pY + µχµ(wYτni−1
(σYτni−1

)pY )

)1/q∗

(∆Xτni
)2

≤ Cµ1/p∗
∑

1≤i≤NnT−1

χµ(wYτni−1
|σYτni−1

|p
Y

)(∆Xτni
)2.

Moreover and similarly, |ε2−pZn EnZ,2,T | ≤ Cµ1/q∗
∑

1≤i≤NnT−1
χµ(wZτni−1

|σZτni−1
|pZ )(∆Xτni

)2.

Thus,

lim sup
n→+∞

|ε2−p
Y

n EnY,2,T | ≤ Cµ1/p∗
∫ T

0

χµ(wYt |σYt |p
Y

)d〈X〉t, a.s.,

lim sup
n→+∞

|ε2−p
Z

n EnZ,2,T | ≤ Cµ1/q∗
∫ T

0

χµ(wZt |σZt |p
Z

)d〈X〉t, a.s..

Let us summarize: setting LµT :=
∫ T
0
Lµt d〈X〉t, LT :=

∫ T
0
Ltd〈X〉t, we have established

lim sup
n→+∞

∣∣ε2−pYn YnT − L
µ
T

∣∣ ≤ Cµ1/p∗
∫ T

0

χµ(wYt |σYt |p
Y

)d〈X〉t,

lim sup
n→+∞

∣∣ε2−pZn ZnT − L
µ
T

∣∣ ≤ Cµ1/q∗
∫ T

0

χµ(wZt |σZt |p
Z

)d〈X〉t.

Then, using the inequality (3.4) , by simple computations we conclude that

lim sup
n→+∞

∣∣∣(YnT )1/p
∗
(ZnT )1/q

∗
− LT

∣∣∣
≤ lim sup

n→+∞

∣∣∣ε2−pZn ZnT − LT
∣∣∣1/q∗ lim sup

n→+∞

(
ε2−p

Y

n YnT
)1/p∗

+ L
1/q∗

T lim sup
n→+∞

∣∣∣ε2−pYn YnT − LT
∣∣∣1/p∗

≤ C
[
LµT − LT + µ1/q∗

∫ T

0

χµ(wZt |σZt |p
Z

)d〈X〉t
]1/q∗[

LµT + µ1/p∗
∫ T

0

χµ(wYt |σYt |p
Y

)d〈X〉t
]1/p∗

+ CL
1/q∗

T

[
LµT − LT + µ1/p∗

∫ T

0

χµ(wYt |σYt |p
Y

)d〈X〉t
]1/p∗

≤ C
[
µ1/q∗

∫ T

0

χµ(wZt |σZt |p
Z

)d〈X〉t + µ1/p∗
∫ T

0

χµ(wYt |σYt |p
Y

)d〈X〉t
]1/p∗

+ C
[
µ1/q∗

∫ T

0

χµ(wZt |σZt |p
Z

)d〈X〉t + µ1/p∗
∫ T

0

χµ(wYt |σYt |p
Y

)d〈X〉t
]1/q∗

.

Theorem 2.3 is proved.

3.4 Proof of Theorem 2.4

� Admissibility of the sequence (2.1). We set Rn(t) :=
wYt (σYt )p

Y
+µnχ

(
wYt (σYt )p

Y
)

wZt (σZt )pZ+µnχ
(
wZt (σZt )pZ

) and

we repeatedly use the a.s. inequality (for a r.v. C ≥ 1)

1

C
(µn ∧ 1) ≤ Rn(t) ≤ C(µn ∧ 1)−1, ∀n ≥ 0, ∀t ∈ [0, T ], (3.7)

which comes from the property of χ and the boundedness of wY , wZ , σY , σZ . Then

sup
n≥0

(
ε−1n sup

1≤i≤NnT
sup

t∈(τni−1,τ
n
i ]

|∆Xt|
)
≤ sup
n≥0

(
ερµn sup

1≤i≤NnT

(
Rn(τni−1)

) 1

pZ−pY
)
< +∞, a.s.,
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which validates the assumption (AX). Moreover, writing Nn
T = 1 +

∑
1≤i≤NnT−1

1, using
(3.7) and Proposition 1.4, we obtain a.s.

ε2ρNn Nn
T ≤ ε2ρNn + ε2(ρN−(1+ρµ))n sup

1≤i≤NnT

(
Rn(τni−1)

) −2

pZ−pY
∑

1≤i≤NnT−1

|∆Xτni
|2

≤ C
(
ε2ρNn + ε2(ρN−(1+ρµ))−2ρµn

∑
1≤i≤NnT−1

|∆Xτni
|2
)
≤ Cε2(ρN−(1+2ρµ))

n .

Since ρN ≥ 1 + 2ρµ, the assumption (AN) is fulfilled, thus T ∗ρµ belongs to Tadm.
ρN .

� Asymptotic optimality. Let η := ρµ
(2−pY )(pZ−2)

pZ−pY . Using a similar decomposition to
(3.5)-(3.6), write

L̃µt :=
(
wYt (σYt )p

Y

+ µχ(wYt (σYt )p
Y

)
)1/p∗ (

wZt (σZt )p
Z

+ µχ(wZt (σZt )p
Z

)
)1/q∗

,

ε2−p
Y +ηp∗

n YnT =
∑

1≤i≤NnT−1

L̃µnτni−1
(∆Xτni

)2 + ε2−p
Y +ηp∗

n

(
EnY,1,T + ẼnY,2,T + EnY,3,T

)
,

ẼnY,2,T :=
∑

1≤i≤NnT−1

[
wYτni−1

|σYτni−1
∆Xτni

|p
Y

− εp
Y −2−ηp∗
n L̃µnτni−1

(∆Xτni
)2
]
,

ε2−p
Z−ηq∗

n ZnT =
∑

1≤i≤NnT−1

L̃µnτni−1
(∆Xτni

)2 + ε2−p
Z−ηq∗

n

(
EnZ,1,T + ẼnZ,2,T + EnZ,3,T

)
,

ẼnZ,2,T :=
∑

1≤i≤NnT−1

[
wZτni−1

|σZτni−1
∆Xτni

|p
Z

− εp
Z−2+ηq∗
n L̃µnτni−1

(∆Xτni
)2
]
.

• Terms EnY,1,T and EnZ,1,T . Because T ∗ρµ ∈ Tadm.
ρN , the convergences to 0 given in Step 3 of

the proof of Theorem 2.1 remain true: we argue that they imply the convergences to 0
of our renormalized terms. Indeed, on the one hand, observe that (pZ − 2ρN )(p∗ − 1) ≤
(pZ − 2)(p∗ − 1) = 2− pY < 2− pY + ηp∗. On the other hand, simple computations show
that (pY − 2ρN )(q∗ − 1) ≤ 2 − pZ − ηq∗ if and only if ρµ(2 − pY ) ≤ 2(ρN − 1), which

holds true in view of our assumption ρµ ≤ (ρN − 1)/2. Consequently, ε2−p
Y +ηp∗

n EnY,1,T
and ε2−p

Z−ηq∗
n EnZ,1,T both converge to 0 a.s. .

• Terms EnY,3,T and EnZ,3,T . Easily, ε2−p
Y +ηp∗

n EnY,3,T = O(ε2+ηp
∗

n ) = o(1) and ε2−p
Z−ηq∗

n EnZ,3,T =

O(ε2−ηq
∗

n ) = o(1) since 2− ηq∗ > 0⇐⇒ ρµ < 2/(pZ − 2) which we assume.

• Terms ẼnY,2,T and ẼnZ,2,T . The touchy point concerns these terms. Writing

wYτni−1
|σYτni−1

∆Xτni
|p
Y

=
((
wYτni−1

(σYτni−1
)p
Y

+ µnχ(wYτni−1
(σYτni−1

)p
Y

)
)
|∆Xτni

|p
Y −2

− µnχ(wYτni−1
(σYτni−1

)p
Y

))|∆Xτni
|p
Y −2

)
(∆Xτni

)2,

and remarking that 2− pY + ηp∗ + (1 + ρµ)(pY − 2) = 0 by definition of η, we obtain that

|ε2−pY +ηp∗

n ẼnY,2,T | is bounded by

ε2−p
Y +ηp∗

n

∑
1≤i≤NnT−1

∣∣∣wYτni−1
|σYτni−1

∆Xτni
|p
Y

− εp
Y −2−ηp∗
n L̃µnτni−1

(∆Xτni
)2
∣∣∣

=
∑

1≤i≤NnT−1

µnχ(wYτni−1
|σYτni−1

|p
Y

)
(
Rn(τni−1)

)−1/q∗
(∆Xτni

)2

≤ Cµ1/p∗

n

∑
1≤i≤NnT−1

χ(wYτni−1
|σYτni−1

|p
Y

)(∆Xτni
)2 = O(µ1/p∗

n )
a.s.−→

n→+∞
0.

Similarly, we can obtain |ε2−pZ−ηq∗n ẼnZ,2,T | = O(µ
1/q∗

n )
a.s.−→

n→+∞
0.
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• End of proof. The above justifies that ε2−p
Y +ηq∗

n YnT and ε2−p
Z−ηq∗

n ZnT both converge
a.s. to limn→+∞

∑
1≤i≤NnT−1

L̃µnτni−1
(∆Xτni

)2 = LT owing to Proposition 1.4. The proof is
done.

A Proof of Proposition 1.4

As mentioned in the introduction, we use profusely results on almost sure conver-
gence. This is an easy variant of [GL13, Proposition 2.3], we give details for the sake of
completeness. The proof necessitates the following result.

Proposition A.1 ([GL13, Corollary 2.1]). Let p > 0 and let {(Mn
t )0≤t≤T : n ≥ 0} be a

sequence of scalar continuous local martingales vanishing at zero. Then,∑
n≥0

〈Mn〉p/2T
a.s.−→

n→+∞
⇐⇒

∑
n≥0

sup
0≤t≤T

|Mn
t |p

a.s.−→
n→+∞

.

We are now in a position to prove Proposition 1.4. Itô’s lemma yields

∑
τni−1<T

Hn
τni−1

(∆Mτni
)2 = 2

∫ T

0

Hn
ϕ(t)∆MtdMt +

∫ T

0

Hn
ϕ(t)d〈M〉t.

The second term in the above r.h.s. readily converges a.s. to
∫ T
0
Htd〈M〉t. Thus, it

remains to show that the stochastic integral w.r.t. dMt converges a.s. to 0. Owing to
Proposition A.1, it is enough to study the series of quadratic variations, i.e. to show

that
∑
n≥0

[ ∫ T
0

(∆Mt)
2(Hn

ϕ(t))
2d〈M〉t

]3 a.s.−→
n→+∞

, and since α and Hn are a.s. bounded,

uniformly in n, it is sufficient to show

∑
n≥0

[ ∫ T

0

|∆Mt|2dt
]3 a.s.−→

n→+∞
. (A.1)

Clearly
[ ∫ T

0
|∆Mt|2dt

]3
is bounded by T 3|∆M |6∗ ≤ Cε2n owing to Proposition 1.3 (item

i)) for θ = 0 and ρ = 1
6 . The convergence (A.1) is proved and we are done.
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