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Piezoelectric Relations and the Radial Deformation of a Polarized Spherical Shell

E. A, Touex
U, 8. Naval Research Loboratory, Washington, D, C.

The piezoelectric relations and equations of equilibrium for an elastic spherical shell permanently
polarized in the radial direction are derived. The solution for the radial displacement corresponding to
uniform pressures on the inner and outer surfaces of the shell and a given voltage difference between the

surfaces is obtained.

1. INTRODUCTION

N this paper we determine the radial displacement

of a polarized spherical shell as a function of its
piezoelectric and elastic moduli, the pressures exerted
on its inner and outer surfaces, and the voltage differ-
ences between these surfaces. We treat the problem
according to the linear theory of the piezoelectric effect.
The purely elastic problem of a homogeneous, isotropic
elastic spherical shell subjected to an internal pressure
1 and an external pressure . is treated in Love,! who
attributes the results to Lamé, The essential and inter-
esting differences between the problem treated here and
in the foregoing is that the polarized shell is neither
homogeneous nor isotropic, and there is, in addition to
the mechanical boundary conditions, the electrical
boundary condition for the voltage difference. Before
polarization, the ceramic shell is homogeneous and
isotropic. However, after the shell is permanently
polarized in the radial direction by applying a large
static voltage between its inner and outer surfaces, the
point symmetry of the material is transversely isotropic
with an axis of symmetry in the direction of the radius
vector to the center of the spherical shell. Thus it is
clear that the polarized material is neither isotropic nor
homogeneous. Huntington and Southwick?® have shown
by measurements of the speeds of ultrasonic waves in
polarized ceramics that the elastic coefficients indeed
acquire an anisotropic component in the polarized
material. The degree of anisotropy in the elastic coef-
ficients introduced by the polarizing process is small
for the specific materials studied by Huntington and
Southwick, but we shall not neglect any influence the
elastic anisotropy may have on our solution. In appli-
cations of the final formulas to particular materials
with this general type of symmetry, it may be war-
ranted and eonvenient to simplify the equations by the
assumption of elastic isotropy.

2. BASIC EQUATIONS AND BEOUNDARY
CONDITIONS

We shall adhere to the notations for stress, strain,
elastic moduli, etc., adopted as standards for piezo-

' A. E. H. Love, The Mathematical Theory of Elasticity (Dover
Publications, New York, 1944), fourth edition.

:H. B. Huntington and R. D). Southwick, ]. Acoust. Soc. Am.
27, 677-679 (1955).

electric theory.? The equations satisfied by the stress
T;; and the electric field E; are

aTy;
ﬁ"-=a_xj= 5 {2.1}
(curl E)i= eqjuFr, =0, (2.2)

where we shall use rectangular Cartesian coordinates x;
exclusively and the summation convention for repeated
tensor indices. The electric displacement D satisfies the
equation

{HV D=D.—ri=ﬂ. {2.3}

Let S;i=34(u; /+u; ) denote the strain tensor, where #;
is the displacement wector. We shall write the linear
piezoelectric constitutive relations between T, S, E,
and D in the form

Toi= P imSwi— i i Dy,
Ei=—higSut-050Ds,

where the coefficients in these relations have the names
and dimensions given in Table IT of reference 3. For
the problem considered here of a spherical shell with
inner radius r; and outer radius r; subjected to an
internal pressure #; and an external pressure p;, the
mechanical boundary conditions to be satisfied are

(2.4)
(2.5)

T;,ﬂ_f= - ?[‘H" (2.{5}
on the inner surface and
Tijmi=— pang (2.7)

on the outer surface, where #; is a unit vector in the
radial direction.

From (2.2) it follows that E; is expressible in terms
of the electric potential ¢ as

E=—g. (2.8)

The inner and outer surfaces of the shell are coated
with a conducting material so that they are level
surfaces of the potential field ¢. The voltage condition
takes the form

S _[' Edz;=V, (29

$IRE Standard on Piezoelectric Crystals, 1949, Proc. Inst.
Radio Engrs. 37 1378-1395 (1949).



where the integral is along any convenient path leading
from the internal surface of the shell to its outer surface.
We seek a solution of the equations of this section,
when the coefficients in the constitutive equations (2.4)
and (2.5) have the general form to be derived in the
next section.

3. ELASTIC AND PIEZOELECTRIC COEFFICIENTS
FOR THE POLARIZED SPHERICAL SHELL

Let the origin of the rectangular Cartesian coordinate
system x; be fixed at the center of the shell. Let
r=(x;x;)* denote the distance of a point from the
origin, and let #;=x;/7 be a unit vector field in the
radial direction. We shall assume that the elastic and
piezoelectric coefficients of the polarized shell are inde-
pendent of 7. The polarizing field is undoubtedly not
independent of 7, but if the shell is thin or if the polari-
zation saturates, then there is a reasonable physical
basis for this assumption. Now since the polarized shell
is invariant to arbitrary rotations about any axis
passing through the center of the shell, we see that the
elastic and piezoelectric coefficients at each point must
reduce to the form they assume in a transversely
isotropic material where #; is the axis of symmetry.
Thus we shall have

Ciiir® =NP8; 811+ 1P (8:10 10 10:1)
+ &2 (8 mimit-drmon;)
+ L (8immit8umamitdum -8 mami)

+&Pnanminy,  (3.1)
hii=18s e (Baumi=0um:) - smannr, (3.2)
BiiS=Pbs+ynin;, (3.3)

where the qua'ntities A, K, &1, &, &3, §1, $2 s 6: and Y
are constants independent of x,.

At a point in the material lying on the x; axis, the
unit vector field has the special form »;= (0,0,1), and
the coefficients (3.1), (3.2), and (3.3) assume the values

vP+2uP,

122 =119 =P,

35D = c33350 = NP+ 2uP+ 20, P+H4£P+ £5P,
c13? = c1as® =NP+-£,

€44l = Ca50s” = pP+£,2,

hiz=hiss={1,

hyz=hazs={11+ 200+ (s,

his=2h113=2¢5,

B15=Bn’=8,

BzS=PB35=p+7.

The notation on the extreme left of the formulas (3.4)
is the Voigt matrix notation for the elastic and piezeo-
electric moduli. All of the elements not listed in (3.4)
are related to those listed by symmetry or vanish

e’ =cuul=

3.4)

identically. The relations (3.4) can be solved for the
coefficients A2, u?, {4, etc.

4. DIFFERENTIAL EQUATION SATISFIED BY
RADIAL DISPLACEMENT

If a spherical shell having the material symmetry
assumed here is subjected to an inner and outer hydro-
static pressure, and if its surfaces are level surfaces of
the electric potential, then it follows simply from sym-
metry considerations that each of the vector fields #;,
E;, and D; will have a direction coincident with #,.
Thus we set

=u(r)n;, E;=E(r)n;, D;=D(r)n;, (41)
where the functions #(r), E(r), and D(r) will be deter-
mined by the conditions of equilibrium and boundary
conditions of Sec. 2. Since the material is not homo-
geneous, in computing the divergence of the stress

tensor in Eq. (2.1) we shall have

T, i=Pijns, iSt P isaSur, i— bijw, iDxv—hijaDy, 5, (4.2)

and the terms arising from the derivatives of the elastic
and piezoelectric moduli do not vanish as in homo-
geneous materials. The somewhat lengthy calculations
indicated in (4.2) are facilitated by use of the following
algorisms:

7, i=1n;, ”i.i__‘_(aij nln])_ i5)
r r
nmi=1, A;m;=0. (4.3)
Thus, for example, we have
Su=3%'r, t+o'r, mituny, 1 +un, )
u
=u’nml—|——Akz, (44)
r
D
Dy, 1=D'nmyt+—Aw, (4.5)
r

where a prime denotes differentiation with respect to
the variable 7. After some work we find that Eq. (2.1)
reduces to

LeasPu''+2¢33%u'r

—2{cssP+ (cu®— c33?)+ (€12 — c13P) yur?
— haaDl— 2 (hag— h13)Dr_1:|ﬂi= 0.

Tiji=

(4.6)

If we multiply (4.6) by »; and sum and divide the
result by ¢332, we get

(CnD— CssD)+ (512D_ 013D)
o ur—2

u"+2u'F1—2|:1+

C33

hss (33— h13)
=—D'+2——Dr .
¢33P cas?

@7



If the elastic coefficients ¢?;;; have the isotropic form,
P’ =ca?, 1P =c1;P, and Eq. (4.7) with D=0 reduces
to Lamé’s equation for the radial displacement.

The general solution of Eq. (2.3) for D; which has
the form (4.1); is

D;= (Do/r*)n,
where Dy is an arbitrary constant. If we substitute this

result into Eq. (4.7), we get a differential equation in
% only.

(4.8)

w420 r 1= 2(14v)ur—2= —2(h13/c3s?) Dor =3, (4.9)
where we have defined the quantity » by
V= [ (cr?—casP)+ (c12P—c1s®) L es:® T (4.10)

The constant » vanishes when the elastic coefficients
cP;in have the isotropic form.

The general solution of the differential equation (4.9)
is easy to obtain by standard methods and has the form

h13D0
u=Cy:+Co*t4+——1,

4.11
(1+V)Ca‘z ( )

where C; and C; are arbitrary constants and the ex-
ponents a; and as are the roots of the quadratic equation

o?+a—2(14+»)=0,

Thus
_ —14+[1+8(145) ]
a1= 2 y
(4.12)
—1-[148(1+»]?
Q= 2 .

For the isotropic case, v=0 and ay=-+1, az=—2.

5. DETERMINATION OF THE CONSTANTS C,, C.,
AND D, IN TERMS OF THE
BOUNDARY DATA
If we substitute the general solutions (4.11) and (4.8)
for #(r) and D(r) into the mechanical boundary con-
ditions (2.6) and (2.7), we obtain two linear equations
in the constants Ci, C2, and Dy. These are

(16357 +2¢152) 791711+ (96357 + 26132 ) 12221 C

2% [ 2613D (14+v) ks
]72_2Do= —ps (5.1)
(1+V)I. h13
(16332 +2¢152)r1 7 1C - (@uacssP 4+ 2¢15P) 22 1C,
his [ 26132 (l_l_V)kag
1— ]71_2D0= —Pl. (5.2)
A+l Frs

¢ Reference 1, p. 142.

From the electrical boundary condition (2.9), we obtain
a third linear equation in the three constants Ci, Cs,
and D, as follows. First note that from (2.5), (4.4),
and (4.5) we have

E(r)=— hsst' — 2h1sur—+Bs5Dor2. (5.3)

Substituting this result into the boundary condition
(2.9), we find that

r2 r2
—I E (r)dr=h33u]
1 2

r2 r2
+2h13f ur—ldr+,335D0r_1] =V.

71

(5.4)

rl

Now substitute for % in this last expression its general
solution (4.11) and evaluate the integral in the central
term on the left. Collecting the coefficients of C;, Cs,
and Dy in the result of this calculation we obtain the
equation

2 hs
—+—) (re1—r*)Cy+- (—+— (re22—r122)C,

231 31

|4
—_— (1’2 —7r1 I)Do——.

hss—2h3 53
—t (5.5)
(14v)css®  ha ha

Equations (5.1), (5.2), and (5.5) constitute a system
of three linear equations in the three constants C,, Cs,
and D,. All of the coefficients in these equations are
known in terms of the material parameters and the
inner and outer radii of the shell. Each of the constants
C,, Cs, and D, will be some linear function of the inner
and outer pressures p; and p,, and the voltage dif-
ference V. If we substitute these linear expressions for
Ci, Cs, and D, into the general solution (4.11) for %(r)
we obtain the displacement at any radius 7 as a linear
function of pi, ps, and V.

In an actual calculation of the displacement #(r;) of
the outer surface of the shell, it is convenient to intro-
duce the dimensionless constants

k31Do
Bi=r271Cy, Bo=r*"1Cy, By=——rs7;
(1+V)633D
_ 5.6)
(css+2c13) (a1cas+2c13)
= ; p=11/72.
!335633‘)(14‘1’) (7’2—’1)
We shall then have
u(rz) =7 Bi+By+ B3], (5.7)

and the equations for the determination of B;, B,, and



B3 can be written in the form

Bi+4-a1Bs+a9B;= —Pz, (58)
p* 1B +p 10 Bytp2a:Bs=— P,  (5.9)
1 _paq 1 —_ paz
)aaBl'l-( )04Bz—p_10«533= —P3, (510)
1—p 1—p

- . . -
where the dimensionless material constants a,, as, as,
a4, and @; are defined by

asCzs? +2¢,5°
Q=—
a1C33” +2¢,5°
633D I- 2613D (1 + V)hsa
Qo= — [1 - + ,
aic3s?+2c15” 3P ha

i 2 b
as= ( : ), (5.11)
BsSC:;sD (1+V) ar ks

hst? 2 by
ay= ( Jr ))
BsScss?(1+v) \Nay kg

(hss—2h31)ha
as= +[1+——].

BaScssP (1+4-»)

The displacement of the exterior surface of a radially
polarized spherical shell can be conveniently calculated
using Eqgs. (5.7)-(5.11) in terms of the inner and outer
pressures, the applied voltage, and the six dimensionless
material parameters », g5, - -, @5 Experimental data

6. CONCLUSIONS

on the value of these constants are not available.
However, the values of the corresponding constants for
homogeneously polarized rectangular blocks of ceramic
barium titanate are available and can be used for an
approximate determination of the sphere parameters v,
a1, - -+, a5 Static measurements of the decrement in
volume of a polarized barium titanate spherical shell
as a function of a variable external pressure and applied
voltage made at this laboratory indicate that such a
procedure is legitimate and that the theory of static
deformation presented in this note is correct within
the range of pressures and voltages for which these
materials behave linearly and no depolarization effects
are encountered.

Unfortunately, the explicit solution of the sphere
problem given here has little immediate application in
acoustics where dynamical solutions are of paramount
interest ; however, the piezoelectric relations (3.1)-(3.3)
remain valid in the dynamical case and Eq. (4.2)
equated to the force of acceleration pd%s/d#2 yields the
general dynamical equations of motion for the spheri-
cally polarized shell. The mathematical techniques used
in reducing Eqs. (4.2)—(4.6) for the case of the purely
radial mode should be of value also in the reduction of
these complicated equations in the dynamical case and
for arbitrary modes of vibration. Our technique avoids
the equivalent but more sophisticated mathematical
apparatus of curvilinear coordinates and covariant
differentiation.

Finally, we suggest that, aside from obvious practical
applications, the piezoelectric spkerical resonator is an
ideal source of acoustic radiation for laboratory experi-
ments which can be compared with theoretical results
since the boundary conditions are simple and solutions
of the radiation equations are available.





