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TLM Extension to Electromagnetic Field Analysis
of Anisotropic and Dispersive Media:
A Unified Field Equation

Arij Léo Farhat, Sandrick Le Maguer, Patrick Quéffélec, and Michel Ney

Abstract—The transmission-line matrix (TLM) method, in time
domain, is extended to account for the presence of anisotropic and
dispersive media in electromagnetic structures or devices. The
model is thoroughly constructed by using Maxwell’s equations
that make it a unified general TLM formulation. Numerical results
are compared with experimental measurements; hence, in the case
of ferrite-based structures, validating the model and showing the
accuracy of the approach.

Index Terms—Anisotropic and dispersive media, ferrites, non-
reciprocal circuits, permeability, time-domain analysis, transmis-
sion-line matrix (TLM) method.

I. INTRODUCTION

O VER THE last few years, the rapid development of
communication applications has generated a growing
interest for miniaturization and cost reduction of microwave de-
vices. The increase of operating frequencies and tunability are
additional constraints that require more complex and accurate
models for computer-aided design (CAD) of communication
system components.

Among those components, circulators and isolators use the
anisotropic properties of ferrite materials to insure the required
nonreciprocal character of the wave propagation. Their field-de-
pendent permeability provides some tunability of circuits, such
as filters and phase shifters. More recently, their high refractive
index has found interest in the size reduction of patch antennas.
It has been demonstrated that antennas with a magneto-dielec-
tric substrate that exhibits a permeability greater than its per-
mittivity has better performances than those deposited on pure
dielectric substrates [1].

To assist the design of ferrite-based microwave devices, one
needs to have a proper design tool enabling the prediction of
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the microwave behavior of ferrite samples whatever their mag-
netization state. For instance, it is considered to use hexaferrite
materials that operate at the remanent state to work out self-bi-
ased circulators [2]. It would also be very interesting to be able
to predict the variation of the performances of patch antennas
deposited on a ferrite substrate as a function of its magnetiza-
tion state.

Magnetized ferrites are anisotropic media. Their electromag-
netic properties must be represented by a tensor quantity, called
the permeability tensor. The usual permeability model based on
the Polder formulations [3] is only valid for a saturated sample.
Designing ferrite microwave devices requires the knowledge of
the permeability tensor TZ of the magnetic materials used as a
substrate, which directly influence the guided wavelengths and
the performances of the devices.

The objective of this paper is twofold: first, to develop a rig-
orous model for field computation in the presence of complex
media and second to insert a new model of nonsaturated ferrites
[4] into the algorithm.

Presently there is no commercial simulator capable to account
for the complex physical phenomena appearing in the electro-
magnetic structures using magnetized magnetic materials, such
as the following:

* nonhomogenous internal polarization field implying a

space variation of the permeability;

* nonsaturated zones in plate ferrite samples due to demag-
netizing fields even for substrates biased with a strong dc
field;

* dynamic interactions between magnetic domains in non-
saturated regions of the ferrite substrate and between grains
whatever the magnetization state;

* magnetostatic modes.

The above phenomena must be accounted for in the model, as
they strongly affect the performances of the device in terms of
bandwidth, insertion losses, etc. They can also preclude minia-
turization of circulators. We have observed that a cutoff band
appeared in the experimental response of miniaturized Y-junc-
tion circulators [5]. This degradation was missing in the trans-
mission signal predicted by commercial softwares.

Finally, the time-domain character of the TLM not only al-
lows a wideband characterization, but also accounts for the pres-
ence of potential nonlinearities.

To predict the dynamic behavior of polycrystalline ferrites for
an arbitrary magnetization state, one proposes a theoretical ap-
proach that provides all tensor components. They are functions
of the dc bias field strength and direction, the sample geometry,



and static magnetic characteristics such as saturation magneti-
zation and magnetocrystalline anisotropy field. Finally, sample
structural properties (magnetic domains and grains shape) are
accounted for by the model. Details of the proposed theoretical
approach can be found in [4].

In this paper, the TLM is first extended to general disper-
sive and anisotropic media. Some pioneer work, based on circuit
analogy, was presented for the TLM model [6]-[8]. This paper
focuses on a formulation based directly on Maxwell’s equations
[9]. It gives a clear and systematic derivation that constitutes a
general approach, which can be applied to any type of media.
Two different types of media are then studied: unmagnetized
plasma considered as a dispersive medium and a nonsaturated
ferrite (with an arbitrary magnetization state).

II. TLM THEORETICAL MODEL

A. Formulation: Unified Field Equation

Let us consider a general anisotropic and dispersive medium
in which electromagnetic quantities are governed by the general
Maxwell curl equations in time domain
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where subscript e and 1 stand for electric and magnetic, respec-
tively, * denotes the convolution operation, double underlined
quantities are tensors, ¢y is the speed of light in vacuum, and the
other electromagnetic quantities are defined in Table 1.

For the symmetrical condensed node (SCN) TLM, the pres-
ence of materials affects the field values at the node center, while
arm impedances are all kept at free-space value. The applica-

TABLE I
ELECTROMAGNETIC QUANTITIES

Quantity Symbol Units
Electric field E Vm'
Magnetic ficld H Am’
Electric current density I, Am?
Magnetic voltage density I Vm?
Electric flux density D Cm?
Magnetic flux density B Wb m?
Free eleciric current density Jer Am?
Free magnetic voltage density Tt Vm?
Magnetization M ou T (ou Qe 77)

4nM

Electric susceptibility Ko
Magnetic susceptibility Y
Electric conductivity G, Sm’!
Magnetic resistivity Gy Qm’
Relative permeability n
Relative permittivity b

for general media is new and not straightforward. However, it
has the advantage to allow the development for all TLM nodes
such as hybrid symmetrical condensed node (HSCN) or super
condensed symmetrical condensed node (SSCN) nodes, by fol-
lowing the same general procedure.

Equation (1) can be written as (2), shown at the bottom of this
page.

1) Maxwell-Ampere: Consider the z-component of the
Maxwell-Ampere’s curl equation in (2),
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The above relation can be sampled in the plane yOz, ac-

ax
cording to the illustration shown in Fig. 1, and showri in (4) at . E}
the bottom of this page. y W7
By multiplying this equation by ZoAyAz, one can write (5) Lp
shown at the bottom of this page. gy o ',z'j'.-"(
Rearranging (5) yields (6), shown at the bottom of this page. w7 E;‘gt,/" T
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d Ep 7 ~ By
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Fig. 1. Field component sampling for discretization of Maxwell-Ampere’s
curl’s equation #-component.

_ EY+EfL + ES+ E§ + YqTElj 8) Equation (6) becomes (9), shown at the bottom of the fol-
o 44+Y., lowing page. Now, one can introduce the incident arm voltage
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a; at time n — 1/2 and link them to field components at the node
center and at time 7,
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The subscript nor indicates field components computed from
incident voltages a;, sourcc is the excitation that can exist at the
note location and 7 is the resulting field at the node center.
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Fig. 2. Field component sampling for discretization of Maxwell-Faraday’s
curl’s equation x-component.

Convolution products can be eliminated via Laplace trans-
form and (14) can be written in the compact form
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where s = j w is the Laplace parameter.

2) Maxwell-Faraday: One can follow the similar procedure
by using Faraday-Maxwell’s equation with the field sampling
illustrated in Fig. 2.

Consider the z-component of the Maxwell-Faraday’s curl
equation in (2),
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According to the illustration shown in Fig. 2, (16) can be |:ZOALL‘H(")] _ AzAy D, ZoAzJ )
sampled in the plane yOz, as shown in (17) at the bottom of T louce  2Z5A1 "
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Equation (17) can be written as (21), shown at the bottom of products, and (26) can be written in the compact form
this page.
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In compact matrix notation, the process can be written as fol-
lows:

AyE, AyE,
AzZE, _ AZE,
ZoAxH, = (Ha] + [o] + s[M]) ZoAxH, (28)
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Hence, the right-hand-side vector of (28) gives the updated
value of all field components at the node center and time 7 by
inverting the matrix such as (31), shown at the bottom of this
page. One defines the tensor

[t] = ([Id) + [o] + s[M]) . (32)

Usually, elements of (32) are complex valued expressions and
approaches such as Prony’s decomposition should be used.

One now has all quantities to compute updated field values
at the node center through the use of thez-transform to obtain
[#] lin time domain

B, E,

E. _ E.

H; = [t]mitcrial @ HT (33)
H, m,

Hzl,, ozl

Once the discrete-time system is characterized, one can deter-
mine the updated fields in the node arms for the next time itera-
tion. Note that, in this formulation, these quantities are defined
as updated to distinguish them from the reflected voltages on
the transmission lines. In previous formulations [6]-[8], these
quantities are called the reflected fields.

B. Digital Filtering

Once elements of the tensor (32) are determined, it is nec-
essary to transform it to the discrete time domain to make it
compatible with the TLM algorithm. This is achieved by using
thez-transform. However, tensor’s element expressions have to
be first approximated by polynomial ratios expressed in fre-
quency domain.

1)  Frequency-Domain  Prony Method: Given a
set of NF complex frequency-domain data samples,
{Fo,Fy, Iy, ..., Fyp_1}, Prony’s method [10], [11] yields
a least square approximation by using exponential basis
functions. Let NP be the number of poles,C; be the residue,
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and s,; be the complex frequency of theith pole, the starting
point for this procedure is the approximation

NP1
f4y=">" G, (34)
=0
Taking the Laplace transform yields
NP-1
NP1 Z bis*
F(s) = - = 35
()= p— (35)

NP '
E a; 8"
i=0

Equation (35) is modified by increasing the order of the numer-
ator by one for physical reasons. The goal of the Prony method
is to identify the Padé coefficients ¢’s and b’s.

After applying the procedure detailed in [12] to solve (35),
Padé coefficients can be determined. Solving for the roots of
the numerator and denominator lead to

NP1
bnp H (s — s2i)
Fs) = _\IPiU
H (s = spi)
i=0

bap(s—8.0)(s—5.1)(s—$22) ... (s—sz(Np,l)) .

(s=8p0)(5=5p1)(5—5p2) - .. (5= 5pxP—1))

(36)

2) Z-Transform Method: Once the approximation has been
obtained as expressed in (36), the discrete-time model is devel-
oped by using the z-transform technique. The bilinear z-trans-
form for a single zero is

(37)
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where z is the time-shift operator and the z-domain zero is at
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Applying (37) on (36) yields, after some manipulations,
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where

NP1
By = bnp H ( m) ;
i—0

Qpi
B; = B, — By A, and setting Ag = 1.

3) State Space Equation: The transfer function that repre-
sents the reflectivity E., /Fy can now be written in the fol-

lowing form:
NP
E,> Bz

Eup = BoE, + ———. (39)
14 Z Azt
i=0
The output equation of the state-space system is
NP
Eup = BoE, + Y B X; (40)
i=1

where X; are the state variables. Combining (39) and (40) yields
the state equation

NP B NP
E, Z — == Z B X;. 1)
i=1 1+ Z Aizil =1
i=0
Evaluation of this expression for each variable leads to
NP
Xi=z'E, -2z AX, (42)
i=1
Xo=2"'X4 (43)
Xs=—21X,,..., Xnp =2 ' Xnp_1. (44)
Expressing (42) and (44) in matrix form yields
X1
Xo
E. = ByE, +[B; B, B Bypl| X3 | “5)
Xnp
and
X1
Xo
X
Xnp
A1 —Ay —Ag —Axp-1 —Axp]
1
_ -1 1
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X5 0
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Fig. 3. Representation of the state space equations.
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Fig. 4. Prony approximation of the tensor element (amplitude and phase).

Using compact notation, the general system of these equations
is
Bup = BoE, + B; X
X=z"AX+:"E, 47)

The flow graph shown in Fig. 3 illustrates the general state space
system corresponding to (47).

III. ANISOTROPIC AND DISPERSIVE MEDIA

To demonstrate the novelty and relevance of the proposed
technique, two different types of dispersive and anisotropic ma-
terials are studied: an unmagnetized plasma considered as a dis-

Resonance spectrum

T L T T T T T

: : : : Modified TLM
4+ coeeecthearetical

FFT

9 10 1" 12 13 14 15 16
Frequency (GHz)

Fig. 5. Plasma-filled metal cavity resonance spectrum. Vertical lines show the-
oretical solutions.

TABLE II
COMPARISON BETWEEN TLM AND THEORETICAL RESULTS

Resonance Theoretical Simulated Relative
Modes Resonance Resonance Error
Frequencies of | Frequencies of [%0]
the cavity the cavity
[GHz] [GHz]
101 10.2915 10.2698 0.210
102 11.1653 11.1608 0.040
103 12.4865 12.4893 0.022
104 14.1302 14.1008 0.208
105 15.9973 15.9867 0.066

persive medium and a nonsaturated ferrite (with an arbitrary
magnetization state) characterized by an anisotropic and disper-
sive extra diagonal tensor.

A. Isotropic and Dispersive Media

One can consider an unmagnetized plasma with the following
electric susceptibility:

t, 0 0
Xe=éez—1=[0 x, 0|~ [14] (48)
0 0 &y
where i, = 1—(w})/(w(w — jup)),w, is the plasma pulsation

resonance and v, is the plasma collision frequency.

The plasma is considered as a dispersive dielectric with no
conductivity ¢ = (). Equating (48) and (32) gives the resulting
tensor

[t]plasma
145 xe 0 0 !
0 145 xe
_ I+ 5-xe
1
1 0
0 0 1

(49)
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Fig. 6. Prony approximation of tensor’s elements (absolute values of fi, f=, f3, and f1).

The inverse matrix is given by inverting each diagonal element

[t];lzlisma
L 0 0
1+ 5 xe
0 1
145 ve
_ 1
14 s-xe
1

1 0

0 N 0 1
(50)

The element of the tensor is estimated using the frequency-do-
main Prony method. Starting with the function known analyti-
cally in the frequency domain, which is, in this case, each ele-
ment of the tensor [t] 71,
N 1
fls) = 1+ 5-xe

Note that this is a first-order function.

(51

By applying Prony’s decomposition, the approximation of the
function f(s) is then performed. Fig. 4(a) shows a comparison
of the analytic and approximated amplitude function. The Prony
approximation also gives a very good fit of the phase of the
function, as shown in Fig. 4(b).

Finally, a digital filtering is performed by applying a z-trans-
formation to obtain (33) in time domain. as described in
Section II.

The studied plasma sample has the following characteristics:

wy, = 4140 107 rad/s v, = 1 GHz.

The medium fills a rectangular metal cavity and resonance
frequencies have to be determined. One of the dimensions
(along the height) is small so that only TE,,q, modes are
excited. The cavity is excited by a Gaussian pulse and a fast
Fourier transform (FFT) is performed to determine mode
resonance frequencies.

Fig. 5 shows the mode spectrum, and resonance frequencies
are compared with theoretical results. As can be observed in
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Fig. 7. Rectangular waveguide measurement cell.

Table II, comparison between both methods yields some excel-
lent agreement.

B. Anisotropic and Dispersive Magnetic Media

Depending on the strength of the applied magnetic dc field,
a ferrite medium can be set in various states of magnetization:
completely demagnetized, fully saturated [3], remanent, or
partially saturated [13]-[15]. In the latter case, the ferrite is
subdivided into Weiss domains, and thus must be considered
as heterogeneous medium. This makes the calculation of the
tensor quite complicated. To circumvent this difficulty, empir-
ical models of permeability tensor were proposed [15], [16].
These models have the disadvantage of not presenting all the
elements of the permeability tensor in a single course. That is
why a new statistic model that provides all the elements of the
tensor of ferrites in a single calculation process and that takes
the hysteresis phenomenon into account was needed.

The permeability tensor model developed in our laboratory
[4], [17] has the advantage, compared to theoretical approaches
previously proposed in the literature, of not considering the
partly magnetized medium as composed of independent do-
mains, but rather made of interactive grains composed of
coupling domains.

Assuming that a dc magnetic field is applied along the
y-direction, the permeability tensor in the Cartesian coordinate
system takes the following well-known form:

Fig. 8. Experimental test device.

ferrite

Confining ofthe energy

o X
Fig.9. Confining of the energy along the -axis in the waveguide cross section:
waves propagated in the positive and negative directions.

’

where all tensor components p; = u/ — j[L”,FL =Kk - jl’i/
and p, = u; - u; in a real medium are complex quantities
owing to the existence of magnetic losses. Equating (52) and
(32) gives the resulting tensor shown in (53) at the bottom of

v 0 =gk the this page, where the electric susceptibility is related to its
p=po | 0 py 0 (52) relative permittivity by x. = £, — 1 and the magnetic suscepti-
g0 I bility is X =p, —1.
1+ 8- xe -1
145 xe 0
1 + 5 Xe
t errite — .
[ ]f’ ! 1 T8 Xm —Jk- 8 (53)
0 T+s- Xmy
IR 8 14+ 5.xm
fi(s)
J1(s) 0
_ f] (5)
Hrersite = , , (54)
[ ]fenlte f2 (@) ]L3(5)
0 f4(§)
—f3(s) f2(s)
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Approximations of functions fi, fa, f3, and f4 are performed
by applying Prony’s decomposition with different values of NP.
Fig. 6 shows that Prony’s approximation gives an adequate fit to
functions for NP > 2. One can follow the same procedure de-
tailed in Section II-B to perform the digital filtering for ferrites.

The above model is tested for validation by considering the
reflection/transmission of a rectangular waveguide partly filled
with ferrite, as shown in Fig. 7. The simulated S-parameters at
X -band frequencies (8—12 GHz) will be compared with those
measured for ferrites with well-known properties.

The experimental propagation structure is a waveguide
loaded with ferrite that is positioned between the poles of an
electromagnet to magnetize the sample as shown in Fig. 8.

When a uniform static magnetic field is applied along the side
of the waveguide (y-axis of the Cartesian coordinate system),
the field displacement occurs along the large side of the guide
(z-axis) (Fig. 9). The nonreciprocity of the field displacement
along they-axis, which depends on the wave propagation direc-
tion, breaks the symmetry and the reciprocity of the cell. The
condition of nonreciprocity of the cell has been proven by exper-
imentation for different ferrites and values of the applied static
field [19].

The validation of the proposed method consists in verifying
that the S-parameters simulated with the TLM are in accor-
dance with the ones measured for the ferrite biased by various
strengths of the applied dc field.

The experimental results were obtained with an X -band rect-
angular waveguide (dimensions a = 10.16 and b = 22.86 mm)
made of brass. S-parameters were measured for different values
of the applied static magnetic field. The cell was loaded with
a ferrite of a saturation magnetization 4w M, 0.5 T, an
anisotropy field H, = 15915.5 A/m, and a resonance linewidth
AH = 39788 A/m.

The network analyzer (HP 8510B) calibration procedure,
necessary to achieve accurate measurements at high frequen-
cies, is a thru-reflect-line (TRL) [20].

Measurements illustrated in Fig. 10 proved the nonreciprocity
of the measurement device. One can also observe a good agree-
ment between the measurement and simulations over a wide fre-
quency band and for different magnetization states of the ferrite.
In the X -band, the theoretical and experimental S-parameters
magnitudes are very close. Moreover, measurements and sim-
ulations show the same shift for the resonance frequency ap-
pearing in the reflection parameter.

The study of the cell sensitivity has allowed us to observe sig-
nificant variations in the values and frequency behavior of S-pa-
rameters when the electromagnetic characteristics of the ferrite
or the magnetic static field magnitude changes. This confirms
the good accuracy of the theoretical results.

IV. CONCLUSION

The permeability tensor model of polycrystalline ferrites as a
function of the dc bias field has been, for the first time, derived
from a self-consistent theoretical approach and integrated in the
TLM algorithm.

The TLM algorithm was implemented in the case of general
anisotropic and dispersive media. The theoretical derivation was
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revisited, starting with Maxwell’s equations, without invoking
circuit analogy. The procedure is general and can be applied to
derive the algorithm for extended TLM nodes.

Preliminary results computed in the case of a dispersive
plasma medium show that the model is accurate when com-
pared with theoretical results.

To illustrate the interest of this theoretical approach for prac-
tical applications, an example of a waveguide partly filled with
a ferrite in different polarization states has been given. Compar-
ison between experimental measurements and TLM simulations
yielded a good agreement.

The ultimate objective is to insert a new pseudoanalytical
model for ferrites in different magnetization states that are used
for planar nonreciprocal devices implemented in low-tempera-
ture co-fired ceramic (LTCC).
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