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I. INTRODUCTION

O VER THE last few years, the rapid development of communication applications has generated a growing interest for miniaturization and cost reduction of microwave devices. The increase of operating frequencies and tunability are additional constraints that require more complex and accurate models for computer-aided design (CAD) of communication system components.

Among those components, circulators and isolators use the anisotropic properties of ferrite materials to insure the required nonreciprocal character of the wave propagation. Their field-dependent permeability provides some tunability of circuits, such as filters and phase shifters. More recently, their high refractive index has found interest in the size reduction of patch antennas. It has been demonstrated that antennas with a magneto-dielectric substrate that exhibits a permeability greater than its permittivity has better performances than those deposited on pure dielectric substrates [START_REF] Mosallaei | Magneto-dielectrics in electromagnetics: Concept and applications[END_REF].

To assist the design of ferrite-based microwave devices, one needs to have a proper design tool enabling the prediction of A. L. Farhat is with Cobham Microwaves, 91978 Villebon-sur-Yvette, France (e-mail: arij.farhat@telecom-bretagne.eu).
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the microwave behavior of ferrite samples whatever their magnetization state. For instance, it is considered to use hexaferrite materials that operate at the remanent state to work out self-biased circulators [START_REF] Oliver | Integrated self biased hexaferrite microstrip circulators for millimeter-wavelength applications[END_REF]. It would also be very interesting to be able to predict the variation of the performances of patch antennas d e p o s i t e do naferrite substrate as a function of its magnetization state.

Magnetized ferrites are anisotropic media. Their electromagnetic properties must be represented by a tensor quantity, called the permeability tensor. The usual permeability model based on the Polder formulations [START_REF] Polder | On the theory of ferromagnetic resonance[END_REF] is only valid for a saturated sample. Designing ferrite microwave devices requires the knowledge of the permeability tensor of the magnetic materials used as a substrate, which directly influence the guided wavelengths and the performances of the devices.

The objective of this paper is twofold: first, to develop a rigorous model for field computation in the presence of complex media and second to insert a new model of nonsaturated ferrites [START_REF] Gelin | Generalized permeability tensor model: Application to barium hexaferrite in a remanent state for self-biased circulators[END_REF] into the algorithm.

Presently there is no commercial simulator capable to account for the complex physical phenomena appearing in the electromagnetic structures using magnetized magnetic materials, such as the following:

• nonhomogenous internal polarization field implying a space variation of the permeability; • nonsaturated zones in plate ferrite samples due to demagnetizing fields even for substrates biased with a strong dc field; • dynamic interactions between magnetic domains in nonsaturated regions of the ferrite substrate and between grains whatever the magnetization state; • magnetostatic modes. The above phenomena must be accounted for in the model, as they strongly affect the performances of the device in terms of bandwidth, insertion losses, etc. They can also preclude miniaturization of circulators. We have observed that a cutoff band appeared in the experimental response of miniaturized Y-junction circulators [START_REF] Guennou | Influence of the magnetic field nonuniformity on an -band microstrip Y-junction circulator bandwidth: Theory/experiment comparison[END_REF]. This degradation was missing in the transmission signal predicted by commercial softwares.

Finally, the time-domain character of the TLM not only allows a wideband characterization, but also accounts for the presence of potential nonlinearities.

To predict the dynamic behavior of polycrystalline ferrites for an arbitrary magnetization state, one proposes a theoretical approach that provides all tensor components. They are functions ofthedcbiasfield strength and direction, the sample geometry, and static magnetic characteristics such as saturation magnetization and magnetocrystalline anisotropy field. Finally, sample structural properties (magnetic domains and grains shape) are accounted for by the model. Details of the proposed theoretical approach can be found in [START_REF] Gelin | Generalized permeability tensor model: Application to barium hexaferrite in a remanent state for self-biased circulators[END_REF].

In this paper, the TLM is first extended to general dispersive and anisotropic media. Some pioneer work, based on circuit analogy, was presented for the TLM model [START_REF] Paul | Generalized material models in TLM-Part 1: Materials with frequency-dependent properties[END_REF]- [START_REF] Paul | Generalized material models in TLM-Part 3: Materials with nonlinear properties[END_REF]. This paper focuses on a formulation based directly on Maxwell's equations [START_REF] Peña | A general formulation of a three-dimensional TLM condensed node with the modeling of electric and magnetic losses and current sources[END_REF]. It gives a clear and systematic derivation that constitutes a general approach, which can be applied to any type of media. Two different types of media are then studied: unmagnetized plasma considered as a dispersive medium and a nonsaturated ferrite (with an arbitrary magnetization state).

II. TLM THEORETICAL MODEL

A. Formulation: Unified Field Equation

Let us consider a general anisotropic and dispersive medium in which electromagnetic quantities are governed by the general Maxwell curl equations in time domain [START_REF] Mosallaei | Magneto-dielectrics in electromagnetics: Concept and applications[END_REF] where subscript and stand for electric and magnetic, respectively, * denotes the convolution operation, double underlined quantities are tensors, is the speed of light in vacuum, and the other electromagnetic quantities are definedinT ableI.

For the symmetrical condensed node (SCN) TLM, the presence of materials affects the field values at the node center, while arm impedances are all kept at free-space value. The application of the general procedure described by Peña and Ney in [START_REF] Peña | A general formulation of a three-dimensional TLM condensed node with the modeling of electric and magnetic losses and current sources[END_REF] TABLE I ELECTROMAGNETIC QUANTITIES for general media is new and not straightforward. However, it has the advantage to allow the development for all TLM nodes such as hybrid symmetrical condensed node (HSCN) or super condensed symmetrical condensed node (SSCN) nodes, by following the same general procedure.

Equation ( 1) can be written as ( 2), shown at the bottom of this page.

1) Maxwell-Ampere: Consider the -component of the Maxwell-Ampere's curl equation in ( 2),

(2)

The above relation can be sampled in the plane , ac-cordingtotheillustrationshowninFig.1,andshownin(4)at the bottom of this page.

By multiplying this equation by , one can write ( 5), shown at the bottom of this page.

Rearranging ( 5) yields ( 6), shown at the bottom of this page. Now, by setting and [START_REF] Paul | Generalized material models in TLM\Part 2: Materials with frequency-dependent properties[END_REF] with and ( 8) Equation ( 6) becomes ( 9), shown at the bottom of the following page. Now, one can introduce the incident arm voltage (4)

(5) [START_REF] Paul | Generalized material models in TLM-Part 1: Materials with frequency-dependent properties[END_REF] at time and link them to field components at the node center and at time , [START_REF] Van Blaricum | A technique for extracting the poles and residues of a system directly from its transient response[END_REF] by setting [START_REF] Ko | A combination of FDTD and Prony's methods for analyzing microwave integrated circuits[END_REF] and

The subscript indicates field components computed from incident voltages , is the excitation that can exist at the note location and is the resulting field at the node center.

Equation ( 13) yields ( 14), shown at the bottom of this page. Convolution products can be eliminated via Laplace transform and ( 14) can be written in the compact form [START_REF] Green | Microwave characterization of partially magnetized ferrites[END_REF] where is the Laplace parameter. 2) Maxwell-Faraday: One can follow the similar procedure by using Faraday-Maxwell's equation with the field sampling illustrated in Fig. 2.

Consider the -component of the Maxwell-Faraday's curl e q ua t i oni n( 2) , [START_REF] Igarashi | Tensor permeability of partially magnetized ferrites[END_REF] (9) [START_REF] Schlömann | Microwave behavior of partially magnetized ferrites[END_REF] According to the illustration shown in Fig. 2 

Equation ( 22) becomes ( 26), shown at the bottom of the following page.

Applying the Laplace transform eliminates the convolution products, and (26) can be written in the compact form

(27) (17) (21) (22)
In compact matrix notation, the process can be written as follows:

(28) with being the identity matrix, and where

Hence, the right-hand-side vector of (28) gives the updated value of all field components at the node center and time by inverting the matrix such as (31), shown at the bottom of this page. One defines the tensor (32) Usually, elements of (32) are complex valued expressions and approaches such as Prony's decomposition should be used.

One now has all quantities to compute updated field values at the node center through the use of the -transform to obtain in time domain (33)

Once the discrete-time system is characterized, one can determine the updated fields in the node arms for the next time iteration. Note that, in this formulation, these quantities are defined as updated to distinguish them from the reflected voltages on the transmission lines. In previous formulations [START_REF] Paul | Generalized material models in TLM-Part 1: Materials with frequency-dependent properties[END_REF]- [START_REF] Paul | Generalized material models in TLM-Part 3: Materials with nonlinear properties[END_REF], these quantities are called the reflected fields.

B. Digital Filtering

Once elements of the tensor (32) are determined, it is necessary to transform it to the discrete time domain to make it compatible with the TLM algorithm. This is achieved by using the -transform. However, tensor's element expressions have to be first approximated by polynomial ratios expressed in frequency domain.

1)

Frequency-Domain Prony Method: Given a set of NF complex frequency-domain data samples, , Prony's method [START_REF] Van Blaricum | A technique for extracting the poles and residues of a system directly from its transient response[END_REF], [START_REF] Ko | A combination of FDTD and Prony's methods for analyzing microwave integrated circuits[END_REF] yields a least square approximation by using exponential basis functions. Let be the number of poles, be the residue,

(31) and be the complex frequency of the th pole, the starting point for this procedure is the approximation (34) Taking the Laplace transform yields (35) Equation ( 35) is modified by increasing the order of the numerator by one for physical reasons. The goal of the Prony method is to identify the Padé coefficients 's and 's.

After applying the procedure detailed in [START_REF] Brittingharam | Pole extraction from real-frequency information[END_REF] to solve (35), Padé coefficients can be determined. Solving for the roots of the numerator and denominator lead to Using compact notation, the general system of these equations is (47)

The flow graph shown in Fig. 3 illustrates the general state space system corresponding to (47).

III. ANISOTROPIC AND DISPERSIVE MEDIA

To demonstrate the novelty and relevance of the proposed technique, two different types of dispersive and anisotropic materials are studied: an unmagnetized plasma considered as a dis- persive medium and a nonsaturated ferrite (with an arbitrary magnetization state) characterized by an anisotropic and dispersive extra diagonal tensor.

A. Isotropic and Dispersive Media

One can consider an unmagnetized plasma with the following electric susceptibility: The inverse matrix is given by inverting each diagonal element . . .

. . . (50)

The element of the tensor is estimated using the frequency-domain Prony method. Starting with the function known analytically in the frequency domain, which is, in this case, each element of the tensor , (51)

Note that this is a first-order function.

By applying Prony's decomposition, the approximation of the function is then performed. Fig. 4(a) shows a comparison of the analytic and approximated amplitude function. The Prony approximation also gives a very good fit of the phase of the function, as shown in Fig. 4(b).

Finally, a digital filtering is performed by applying a -transformation to obtain (33) in time domain. as described in Section II.

The studied plasma sample has the following characteristics:

rad s GHz

The medium fills a rectangular metal cavity and resonance frequencies have to be determined. One of the dimensions (along the height) is small so that only modes are excited. The cavity is excited by a Gaussian pulse and a fast Fourier transform (FFT) is performed to determine mode resonance frequencies.

Fig. 5 shows the mode spectrum, and resonance frequencies are compared with theoretical results. As can be observed in Table II, comparison between both methods yields some excellent agreement.

B. Anisotropic and Dispersive Magnetic Media

Depending on the strength of the applied magnetic dc field, a ferrite medium can be set in various states of magnetization: completely demagnetized, fully saturated [START_REF] Polder | On the theory of ferromagnetic resonance[END_REF], remanent, or partially saturated [START_REF] Rado | Theory of the microwave permeability tensor and Faraday effect in non saturated ferromagnetic materials[END_REF]- [START_REF] Green | Microwave characterization of partially magnetized ferrites[END_REF]. In the latter case, the ferrite is subdivided into Weiss domains, and thus must be considered as heterogeneous medium. This makes the calculation of the tensor quite complicated. To circumvent this difficulty, empirical models of permeability tensor were proposed [START_REF] Green | Microwave characterization of partially magnetized ferrites[END_REF], [START_REF] Igarashi | Tensor permeability of partially magnetized ferrites[END_REF]. These models have the disadvantage of not presenting all the elements of the permeability tensor in a single course. That is why a new statistic model that provides all the elements of the tensor of ferrites in a single calculation process and that takes the hysteresis phenomenon into account was needed.

The permeability tensor model developed in our laboratory [START_REF] Gelin | Generalized permeability tensor model: Application to barium hexaferrite in a remanent state for self-biased circulators[END_REF], [START_REF] Gelin | Effect of domain and grain shapes on the dynamic behavior of polycristalline ferrites. Application to the initial permeability[END_REF] has the advantage, compared to theoretical approaches previously proposed in the literature, of not considering the partly magnetized medium as composed of independent domains, but rather made of interactive grains composed of coupling domains.

Assuming that a dc magnetic field is applied along the -direction, the permeability tensorintheCartesiancoordinate system takes the following well-known form:

(52) where all tensor components and in a real medium are complex quantities owing to the existence of magnetic losses. Equating (52) and (32) gives the resulting tensor shown in (53) at the bottom of the this page, where the electric susceptibility is related to its relative permittivity by and the magnetic susceptibility is .

(53) (54) 6 shows that Prony's approximation gives an adequate fitto functions for . One can follow the same procedure detailed in Section II-B to perform the digital filtering for ferrites.

The above model is tested for validation by considering the reflection/transmission of a rectangular waveguide partly filled with ferrite, as shown in Fig. 7. The simulated -parameters at -band frequencies (8-12 GHz) will be compared with those measured for ferrites with well-known properties.

The experimental propagation structure is a waveguide loaded with ferrite that is positioned between the poles of an electromagnet to magnetize the sample as shown in Fig. 8.

When a uniform static magnetic field is applied along the side of the waveguide ( -axis of the Cartesian coordinate system), the field displacement occurs along the large side of the guide ( -axis) (Fig. 9). The nonreciprocity of the field displacement along the -axis, which depends on the wave propagation direction, breaks the symmetry and the reciprocity of the cell. The condition of nonreciprocity of the cell has been proven by experimentation for different ferrites and values of the applied static field [START_REF] Quéffélec | Nonreciprocal cell for the broad band measurement of tensorial permeability of magnetized ferrites: Direct problem[END_REF].

The validation of the proposed method consists in verifying that the -parameters simulated with the TLM are in accordance with the ones measured for the ferrite biased by various strengths of the applied dc field.

The experimental results were obtained with an -band rectangular waveguide (dimensions and mm) made of brass. -parameters were measured for different values of the applied static magnetic field. The cell was loaded with a ferrite of a saturation magnetization T, an anisotropy field A/m, and a resonance linewidth A/m. The network analyzer (HP 8510B) calibration procedure, necessary to achieve accurate measurements at high frequencies, is a thru-reflect-line (TRL) [START_REF] Engen | Thru-reflect-line: An improved technique for calibrating the dual six-port automatic network analyzer[END_REF].

Measurements illustrated in Fig. 10 proved the nonreciprocity of the measurement device. One can also observe a good agreement between the measurement and simulations over a wide frequency band and for different magnetization states of the ferrite. In the -band, the theoretical and experimental -parameters magnitudes are very close. Moreover, measurements and simulations show the same shift for the resonance frequency appearinginthereflection parameter.

The study of the cell sensitivity has allowed us to observe significant variations in the values and frequency behavior of -parameters when the electromagnetic characteristics of the ferrite or the magnetic static field magnitude changes. This confirms the good accuracy of the theoretical results.

IV. CONCLUSION

The permeability tensor model of polycrystalline ferrites as a function of the dc bias field has been, for the first time, derived from a self-consistent theoretical approach and integrated in the TLM algorithm.

The TLM algorithm was implemented in the case of general anisotropic and dispersive media. The theoretical derivation was revisited, starting with Maxwell's equations, without invoking circuit analogy. The procedure is general and can be applied to derive the algorithm for extended TLM nodes.

Preliminary results computed in the case of a dispersive plasma medium show that the model is accurate when compared with theoretical results.

To illustrate the interest of this theoretical approach for practical applications, an example of a waveguide partly filled with a ferrite in different polarization states has been given. Comparison between experimental measurements and TLM simulations yielded a good agreement.

The ultimate objective is to insert a new pseudoanalytical model for ferrites in different magnetization states that are used for planar nonreciprocal devices implemented in low-temperature co-fired ceramic (LTCC).
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