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ACOUSTICAL AND OPTICAL ACTIVITY IN ALPHA QUARTZ

R. D. MINDLIN

Department of Civil Engineering, Columbia University, New York, New York
and

R. A. TourIN

IBM Thomas J. Watson Research Center, Yorktown Heights, New York

Abstract—It is shown that a theory of elastic dielectrics, in which the stored electromechanical energy depends
on the polarization gradient, accounts for both acoustical and optical activity. Formulas for the acoustical and
optical rotatory powers of a-quartz are derived and the values of new material constants appearing in them are
calculated from experimental data.

1. INTRODUCTION

ACOUSTICAL activity (rotation of the direction of mechanical displacement along the path
of a transverse, elastic wave) has recently been observed by Pine [1] and by Joffrin and
Levelut [2] in «~-quartz. The possibility of the phenomenon appears first to have -been
mentioned by Silin [3]. It was accounted for by one of us [4] on the basis of the theory
of elasticity in which the stored energy is a function of the gradient of the strain, in addition
to the strain. Portigal and Burstein [5] found an equivalent result by assigning dependence
of the elastic stiffness on the wave vector. The purpose of the present paper is to show
that both acoustical and optical activity are accounted for in the theory of elastic dielectrics
in which the stored electromechanical energy is a function of the polarization gradient [6]
in addition to the usual strain and polarization. It has already been shown [7] that the
differential equations of the resulting theory, rather than the equations of the classical
theory of piezoelectricity, are the correct, long wave, low frequency limit of the finite
difference equations of a lattice of shell model atoms if the shell-shell interaction between
adjacent atoms is taken into account. It has also been shown that the polarization gradient
can account [6] for the surface energy of deformation and polarization and it can also
account [7] for an anomaly observed in measurements of electrical capacitance of thin,
dielectric films. In the present paper, the field equations are exhibited for the coupled
elastic—electric-magnetic system, the problem of shear waves along the trigonal axis of
a-quartz is solved, formulas are obtained for the optical and acoustical rotatory powers
and numerical values of the new material constants, in the formulas, are calculated from
experimental data. Essentially, the theory has it that the appearance of optical activity
depends on an interaction between the polarization and the polarization gradient; the
appearance of acoustical activity depends on interactions of the strain with both the
polarization and the polarization gradient, and is absent if either interaction is missing



—provided, of course, that the phenomenon does not depend on the strain gradient, as
assumed, tentatively, in this paper.

2. COUPLED ELASTIC, ELECTRIC AND MAGNETIC FIELDS

The linear equations of an elastic, dielectric continuum, with the contribution of the
polarization gradient taken into account, but without the coupling to the magnetic field,
may be written as [6]

T;'j,i = paj?
E‘!,‘+E§+E]=O, ( )
1
gk = 0,
gk +P; =0,
where
T; = aWL/'asij, EJI-‘ = -6WL/5PJ-, E; = (7WL/6P>J (2)
and
Wk = %aijPin"r'%bijtu,iPz,k“*‘%Cﬂkzsijsm‘*’dijkzpj,iskz +/iwPsS g+ JiPiPr. js (3)
S = %(uj,i"‘ui,j)- 4)

In (1), u; is the mechanical displacement, P, is the polarization density, E; is the Maxwell
electric self-field, p is the mass density, &, is the permittivity of a vacuum and ¢ is the
alternating tensor. In (3), W' is the stored energy density of deformation and polarization
in which b;j,, d;j3, and j;; are constants associated with the polarization gradient, P;,
while a;;, f;; and ¢}, belong to the classical theory of piezoelectricity and are related to
the LR.E. standard [8] symbols for the reciprocal dielectric susceptibility, y;;, the piezo-
electric stress constant, e, , and the elastic stiffness at constant electric field, cf;,;, according
to [9]

_ -1 a1 P _ E -1
Aij =€ Yij»  Jix = —&0  Au€ijks Cijkt = Cijkl T €0 " Amn€mijCnki- (5)

To couple (1) to the equations of the magnetic field, it is only necessary to replace the
third of (1) by

EijkEk,j+Bi =0 (6)

and add the equations
to ‘eipBi j— o Ei— B = 0, N
B, =0, (8)

where B, is the magnetic flux density and u, is the magnetic permeability, assumed to be
that of a vacuum.

It is convenient to eliminate B, by subtracting the curl of (6) from the time derivative
of (7), with the result

Eju—E ;= Eoﬂof"jj'*‘#oﬁ i 9

The last of (1) and (8) are not independent of (7) and (6), respectively, and may be disregarded
for the present purpose.



Thus, (9), along with the first two of (1):
’I;'j,i = pu_}’
E;+E;+E; =0, (10)
Ej,ii“Ei,ji = 80#0E,~+,uopj,

are the field equations governing mechanical and electromagnetic waves, coupled through
the constitutive equations:

I; = cg'klskl + feiiPe+ AraiiPrys
—E} = fiuSu+auPi+jpaPri (11)
E; = dijuiSia+jiiPet bijaPigs

which are obtained from (2) and (3).

For a crystal of class 32 (international) or D; (Schoenflies) [10], to which a-quartz
belongs, the constitutive equations take the form shown in Fig. 1, in which x; has been
taken as the trigonal axis and x, one of the digonal axes. In Fig. 1, an abridged notation
is used for the subscripts attached to the material constants:

11-1, 22-2, 3353, 2354, 3257, 31-5 13-8 1256, 21-9.

3. PLANE WAVES ALONG THE TRIGONAL AXIS

We consider plane, transverse waves propagating along the x5-axis; ie. u;, P, and E;
are functions of x5 and ¢ only, but u;, P; and E; are zero. Then the field equations (10)
reduce to

Ti3,3 = piiy, Ty3,3 = piy,
E31’3 +Elf+E1 = 0, E32,3+E%+E2 == 0, (12)
E 3 = eottoE s + poPy E; 33 = goptok s+ poP,

and the constitutive equations (11) reduce to
Ty = chatz 3+ f1aP1 +d74Po 3,
Tyy = chatty 3—f1aP2 +d74P1 3,
—EY = fiauz3+€5 %11 Py +ji9Po s
L -1 . (13)
—E3 = —fiauy 3+& X11P2—Jj17P1.3,
E;; = dyauy 3+j17P+bssPy 3,

Eyy = dqjatty 3—j17P2+bssPy 3.
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Inserting (13) in (12), we have
Chatty 33— f1aPy 3 +d14Py 33 = pily,
Challz 33+ f1aPy 3 +d3aPy 35 = pily,
draty 33— 2f17P2,3+bssPy 33— fiata 3~ 65 ‘X1 PL+E; = 0, (14)
dr41333+217Py 3+ bssPy 33+ fratty 3 =0 X111 P2+ E; = 0,
E1 33 = eotoBy + 0Py,
Ej3 33 = gottoks + poP;.

Now, take
uy = Ay sin{(x3—vt), u, = A, cos {(x;—ut),
P, = B sin {{x;—vt), P, = B, cos {{x;—vt), (15)
E, = C, sin {{x; — 1), E, = C,co8 {(x5—vt)
and substitute these functions in (14) to find
(cha—pv*) A — f14B2+d7,{B; =0,
(cha—pv*) Az~ f14B1+d74(B; = 0,
d740% A1~ f14lAx+(bss +e0 ' x11)B1 ~ 217{B,—C, = 0,
d140% Ay = f1a0A1 +(bssC? + 65 ' 11)B2—2j17{B1 ~C, = 0,
HoV* By +(goptov® —1)Cy = 0,

(16)

Ho* By +(eoov® —1)C; = 0.
Adding and subtracting these equations in pairs, we have

(cha—pv?)(A; + A))+(d74l F f14)(By £ By) = 0,
(@70 F fra)(A1 2 A)+(bss0P+ 65 111 F2170(B1 £B,)—(C £ C,) = 0, (17)
HoV*(By + By) + (gopiot” — 1)(C, £C,) = 0.

Thus, there are two solutions, each corresponding to circularly polarized waves
[11, p. 222] since the amplitudes must satisfy

Al == iAz, Bl = iBz, Cl = iCZ (18)

with either all upper signs or all lower signs. Upon substituting (18) into (15), we see that

the upper and lower signs give right and left circular polarization, respectively. The

velocities are obtained by setting the determinant of the coefficients of the amplitudes in
{17) equal to zero:

chy—pv? d:,{F f1a 0
d740F f1a bss{®+eg 11 F21+L 1 =0. (19)

0 1 Ho v 2 —gq



This is a quadratic equation in v?, so that there are two pairs of oppositely circularly
polarized waves. Each pair of such waves combines to produce a linearly polarized wave
with a rotating direction of polarization [11, p. 222]. Thus, we have two cases of rotary
polarization. These may be identified as optical and acoustical by separating out first the
electromagnetic part of (19) and then the electromechanical part. The two may, in fact,
be considered separately owing to the large ratio of the frequencies (of the order of 10%)
at which the two effects are observed.

4. OPTICAL ACTIVITY

The electromagnetic part of the determinant in (19) is the minor of the upper left
element. Thus, the pair of optical velocities is given by

| bssC?+e5 ' 11 F21n 1 |
| =0, (20)
1 p ot —g,
which yields the dispersion formula (cf. [11, p. 426))
ni —1 = (x1: F260j12{ +80bss(D) 7, (21)
where n, are the indices of refraction:
Ny =c/vy (22)
and c¢ is the velocity of light in vacuo:
¢ = (gopo) . (23)
From (21), we have
(2 =17t =i —1)7" = degjyqL. 24)
Now, define n = {(n, +n_) and assume
Iny—n_l«n,+n_. (25)

Then (24) becomes, approximately,
e =n_ = 2n*—1)eqj4{o, (26)

where {(= {/n) is the wave number in vacuo.
The optical rotatory power, in radians per unit length, is given by [11, p. 222]

op = 3{o(n_—n.). 27
Accordingly, from (26) and (27),
Oop = —(n* —1)%eqj15(3 (28)

is the formula for the optical rotatory power in terms of the average index of refraction, n,
along the optic axis, the wave length in vacuo, Ao(= 2n/(,), the fundamental constant &,
and the material constant j,,(= j,3,) which, as may be seen in (3), measures the interaction
between the polarization and the polarization gradient.



5. ACOUSTICAL ACTIVITY

The electromechanical part of the determinant in (19) is the minor of the lower right
element, so that we have

C£4"P’-72 d740F f1a
=0 (29)
d740F fra bss{+eg 311 F2i14L

for the equation determining the velocities of the two acoustical waves, as influenced
by the quasi-static polarization and polarization gradient. From (29),

pvi = cha—(d1al F f1a2MbssC +e5 111 F2j170)- (30)

In view of (18) and the inequality of v, and v_, the superposition of the two waves results
in rotary polarization (acoustical activity) with acoustical rotatory power

O4c = Jo='—03Y), (31)

where w is the circular frequency.
Both waves are dispersive. At the zero frequency (long wave) limit, from (30) and (5),

gi_{% Pvft = Ci4“£0f%4/%11 = 054’ (32)

which is the result (without acoustical activity, since v, = v_) that would be obtained if
the contribution of the polarization gradient were omitted, i.e. if d,4,bs55 and j,, were
assumed to be zero. As the frequency increases from zero, the absolute velocity difference,
v, —v_|, at first increases, so that the acoustical activity appears and increases. With
further increase of frequency, the velocity difference again approaches zero, since

lim pv} = ciy—d3a/bss, (33)

{—~o

so that the acoustical activity diminishes; but this is undoubtedly beyond the range of
applicability of the continoum theory. Up to moderately large wave numbers, (30) and (5)
give, to the first order in £,

vo/vy = 1F(dra—j17€14)e14l/Cha (34)

where v} = ck4/p. In this range, the frequency is approximately proportional to the wave
number: w = vy{; so that, from (31) and (34),

O4c = (d74—j17e14)e14pw2/(c§4)2. (3%5)

Thus, at frequencies up to, say, 10'° cps, the acoustical rotatory power is approximately
proportional to the square of the frequency and depends on the constants p, e;, and
cE,, which are commonly encountered in piezoelectricity theory, and also on the constants
d,, and j,, which control the coupling of the polarization gradient with the strain and
polarization, respectively.



6. APPLICATION TO QUARTZ

For a-quartz, all the quantities in the formula (28) for optical rotatory power are known
except j,,. Thus, for left-handed quartz and the sodium D line,

0pp = — 379 rad./m [11,p. 481],
do = 5893x107%m [11,p. 481],
n = 15533 [11,p. 481],

6o = 8854x 10" 2F/m  [10].
Hence,
j17 = “'601)/1(2)/475280(712" 1)2 = 0‘19 mZ/F (36)

With the value of j,; known, all quantities in the formula (35) for acoustical rotatory
power are known except d-,. In particular, Pine [1] finds that the acoustical and optical
activities have opposite signs and the acoustical rotary power along the trigonal axis is
about 220 rad./m at one gigahertz. Thus, for left handed a-quartz,

0, = 220 rad./m [,
w = 27 x 10° rad./sec (11,
p = 2.65x 10° kg/m? [12],
ck, = 5794 x 10° Newton/m?  [13),
e,s = —0.0406 C/m? [13].
Hence,
dqg = 0,4c5)? e ap0® + 10,4 = —174-00077 V. (37

The second term, j;-,€,,4, is negligible in comparison with the first, so that we may drop
the dependence of acoustical rotatory power on j, ; and replace (35) with

O4c = drse1ap?[(cha). (38)

Thus, according to this theory, the presence of acoustical activity in a-quartz depends
on the existence of the piezoelectric stress constant e, (= e,,3) and the interaction constant
d.4(= d3,,3) between strain and polarization gradient, whereas the presence of optical
activity depends only on the existence of the interaction constant j,.(= j,3;) between
polarization and polarization gradient.
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AGCTpakT—YKAILIBAETCA, 4TO TEOPHA YNPYTHX OMWIEXTPHKOB, B KOTOPRIX COXPAMACHAS INEKTpOMExa-
HHYECKAA IHEPTHA JABHCHT OT TPANMEHTA MONSPHIALHM, OTBEYACT TAK 34 AKTHEHOCTE AKYCTHHECKYIO,
KK H ONTHYISCKYID. Dﬂmm GOpMynsl 00 AKYCTHHECKEOR MOLWHOCTH H ONTHYSCKOR MOLIHOCTH
BphiueHA, WA kKBapua 2. [lOOCYMTHBAIOTCA W3 JKCHEPWMEHTANEMEIX [AWHEIX JHAMEHHA HOBBIX
NOCTOAHHBEIN MATEPHANA, CYWECMBYIOUINX B ITHX BRIAMEHHAX.





