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1. Preface

Every student of physics knows that rays of light generally change direction
on passing from one transparent substance into another and that the phenomenon
is called refraction. It is also well known that for water at rest, or glass in an
undistorted state, a single incident ray gives rise to only one ray upon refraction.
When a ray of light enters a crystal, however, it generally is split into two waves
which propagate with different speeds and are polarized at right angles to each
other. Substances which split light in this manner are said to be doubly refracting or



birefringent. Many materials which are not birefringent in undistorted states
become birefringent upon deformation; this phenomenon is called induced bire-
fringence.*

Although a fluid which has been at rest for a reasonable length of time can be
expected to show no birefringence, many fluids exhibit birefringence when flowing,
even at low rates of shear. It appears that such streaming birefringence of fluids
was first observed by MAXweLL [1873, 1] and MacH [1872, 1]. The former de-
scribed an experimental method used to this day:

“In 1866 I made some attempts to ascertain whether the state of strainin a
viscous fluid in motion could be detected by its action on polarized light. I had
a cylindrical box with a glass bottom. Within this box a solid cylinder could
be made to rotate. The fluid to be examined was placed in the annular space
between this cylinder and the sides of the box. Polarized light was thrown up
through the fluid parallel to the axis, and the inner cylinder was then made to
rotate. I was unable to obtain any result with a solution of gum or sirup of
sugar, though I observed an effect on polarized light when I compressed some
Canada balsam which had become very thick and almost solid in a bottle.”

Our goal here is to develop a general phenomenological theory of streaming
birefringence. The theory we give has a mathematical structure closely related
to that of the dynamical theory of “simple fluids with fading memory”. In that
theory, a material is characterized by a functional & which gives the stress when
the history J* of the relative strain is specified. Here, in addition to & we have,
for each material, a functional .4#" which relates the dielectric properties of the
material to J*.

2. Fresnel’s Theory of Double Refraction

A successful description of the propagation of light in birefringent bodies was
achieved by FRESNEL in 1827. *# To introduce the reader to the language used by
the experimenters who make quantitative studies of birefringence, in this chapter
we attempt a brief outline of FRESNEL’S theory. In the theory it is assumed that
light propagates as transverse harmonic waves. One associates with each point x
of the material a symmetric, positive definite, tensor L, which we may call the
Fresnel tensor. If one chooses a Cartesian coordinate system (&, 7, {) with its
origin at x and axes along the proper vectors k,, k,, k; of L, then the equation,

V2 +oin®+oili=1, (2.1)

with v? the proper number of L corresponding to k;, describes a figure called the
Fresnel ellipsoid. The positive numbers v,, v,, v; are called the principal wave
speeds, and the vectors k, k,, k; are called the principal axes of refraction. The
tensor L, and hence the quadric (2.1), depend, in general, on the material and its

# Barly rational theories of induced birefringence in elastic solids are those of NEUMANN
[1841, 1] and MAXwELL [1853, 11; apparently the phenomenon was first observed in solids by
BREWSTER [1816, 1].

## 11827, 1]. A history of the subject is given by WHITTAKER [1951, 1].



deformation history. When a harmonic light wave passes through the point x,
the plane normal to the direction of propagation of the wave (i.e. the “wave front”’)
intersects the Fresnel ellipsoid in an ellipse E. Fresnel’s theory requires that the
amplitude vector of the wave be directed along one of the axes of E. There are
thus, in general, two harmonic waves possible for a given direction of propagation;
each has its amplitude vector directed along one axis of E. The lengths of the semi-
axes of E are the reciprocals of the speeds of these two harmonic waves.

Consider now a single, fixed, Cartesian coordinate system (x, y, z), and suppose
that the body £ under consideration has the form of a strip bounded by the
parallel planes z= +1J2, z= —Ij2. We permit the Fresnel tensor L to vary with x
and y in & but assume that Lis independent of z and is everywhere such that it
has a proper vector, k5, parallel to the z-axis. When a planar harmonic wave
propagating along the z-axis enters 4, it is, according to Fresnel’s theory, split
into two harmonic waves with mutually perpendicular amplitude vectors. These
two waves continue to propagate in the z-direction, but with different speeds
vy, v,. Each wave has its amplitude parallel to a proper vector of L, and the
speed of the wave equals the square root of the corresponding proper number
of L. The numbers

n,=vii, i=1,2 (2.2)

are called principal indices of refraction; here c is the velocity of light in vacuo.
During its traverse of %, each wave experiences an absolute retardation r;, given by

ri=I(m;—1), i=1,2. 2.3)
The relative retardation of waves when they leave & is
r=r;—r,=l(n;—n,). (2.9

We have here assumed that £ is such that one principal axis of refraction, k;,
is everywhere parallel to the z-axis of the system (x, y, z). One can determine r and
the direction of the two remaining principal axes, k,, k,, by using a plane polari-
scope, i.e. by placing # between two crossed * polarizing devices which can be
rotated in planes parallel to the (x, y)-plane in such a way that the polarizing axes
of the devices remain at right angles; the first polarizing device, i.e. that between
% and the light source, is called the polarizer, and the second polarizing device is
called the analyzer. Whenever the polarizer has its polarizing axis parallel to k;
or k,, each light wave transmitted by the polarizer passes through # with no
change in the direction of its amplitude vector; such a light wave is blocked by the
analyzer. If k, and k, vary from point to point in the (x, y)-plane, then the locus
of the points in this plane for which either k, or k, is parallel to an axis of the
polarizer appears as a dark figure when viewed through the analyzer. This dark
figure, which depends on the orientation of the polarizer, usually takes the form

* Other arrangements of the polarizing devices can be used; that which we describe appears
to be the most popular.



of a pair of curved lines, called isoclinic lines or isoclines. By rotating the polarizer
and analyzer in unison, a family of such lines, called the isoclinic fringe pattern,
is obtained. Observation of this pattern enables one to determine the axes of
refraction for & as functions of x and y. Whenever the axis of the polarizer is not
parallel to a principal axis of refraction, each of the two harmonic waves trans-
mitted by & is resolved by the analyzer into two waves: a component parallel
and a component perpendicular to the polarizing axis. Of course, only components
along the axis of the analyzer pass through it. Thus, the analyzer transmits two
waves with colinear, but oppositely directed amplitude vectors of equal magnitude;
these two transmitted waves will interfere (i.e. cancel) whenever the relative
retardation r obeys the formula

r=N1, (2.5)

with N an integer and A the wavelength of the light in vacuo. For each integer N,
the locus of (x, y)-values with r=NA forms a figure which appears dark when
viewed through the analyzer; this dark figure, which often is a curved line or set
of curved lines, is referred to as the N isochromatic line or isochromatic fringe.
The family of all isochromatic fringes (i.e. N=0, 11, ...} is called the isochromatic
fringe pattern. Through observations of the isochromatic fringe pattern, the relative
retardation r can be determined at several values of x and y. It is clear from
equation (2.4) that if the thickness / of # is known, then measurement of r yields
the difference 4 between the indices of refraction n,, n,:

Ad=efn1‘—‘n2=“%. (2.6)

The number A4 is called the birefringence of # (at x and y) for propagation in the
direction k;.

The above description of the properties of isoclinic and isochromatic lines is
summarized and extended in a single formula which, for given values of A and /,
describes the variation of the intensity 7 of the light transmitted by the analyzer
as a function of the birefringence 4 and the angle ¢ between k; and the axis
of the polarizer: *

I=Asin?(2¢)sin’ ("T’ A). Q2.7

Here A is a constant which depends upon the loss of light through reflection,
absorption, and scattering. It is clear from (2.7) that I vanishes wherever ¢ equals
0° or 90° and wherever / 4/ is an integer; i.e. on the isoclinic and the isochromatic
lines. Under appropriate circumstances one can use (2.7) to determine the bire-
fringence from intensity measurements at (x, y)-values which are not on an iso-
chromatic fringe. An often simpler method of obtaining A4 away from the iso-
chromatic fringe pattern involves the insertion of a compensator between % and
the analyzer. The compensator, when properly aligned with respect to k, and k,,

#* Cf. e.g. BORN & WoLFE [1959, 1] § 14.4.3.



gives an additional and controllable relative retardation R to the light reaching
the analyzer; one adjusts the compensator so that the total relative retardation,
r-+ R, equals an integral multiple of 4, and then calculates 4, using (2.6).

The indices of refraction n, and #n,, at given values of x and y, can be measured
with an interferometer. As usually employed, such a device splits the incident
wave into two waves; one is polarized along a principal axis of refraction k, for
% and is passed through # to incur a retardation r;. The second wave is directed
through a medium which induces a controllable retardation. The two waves are
then recombined and are found to interfere whenever the difference in their
retardations is an integral multiple of A. Thus, if A is known, r, and r, can be
determined. Once ry, r,, and the thickness / of # are measured, the indices of
refraction n, and n, may be calculated from (2.3).

3. The Classical Theory of Streaming Birefringence

It has long been known that viscous fluids can exhibit birefringence when
flowing. ¥ It follows from results we shall present in Section 11 that, for an in-
compressible simple fluid with fading memory,** in the limit of slow flow, each
proper vector d; of the rate of deformation tensor D *** is also a principal axis
of refraction k;, and the principal indices of refraction »; are determined by the
proper numbers d; of D through equations of the form

n,-=n°+211Ndi, i=1,2,3, (3.1)
with n° and 7, material constants. This yields the relation
4=2ny(d,—d,) (3.2

for the birefringence 4=n, —n, for wave propagation along k.

In quantitative experimental work on streaming birefringence, one usually
follows MaxweLL [1873, 1] and uses Couette flow. In this circular flow of a
fluid confined between coaxial cylinders, at each point x, one proper vector of D,
say dj, is parallel to the common axis of the cylinders, and the remaining two
form angles of 45° with the radial vector to x. One studies this flow with a polari-
scope so arranged that the polarized light propagates in the direction d5. If the gap
between the bounding cylinders is small, then each isocline is a straight line lying
along a radius vector.* # *# The clockwise angle y from the axis of the polarizer
to the isoclinic line nearest to it is called the extinction angle. If the proper vectors
of D are also axes of refraction, as in the “slow flow” approximation behind
equation (3.1), then | x|=45°. Steady flow experiments on many ‘“non-Newtonian

# As we indicated in the Preface, MAXWELL [1873, 1] observed the effect in Canada balsam
in 1866. MAcH [1872, 1] independently observed it in molten glass.
*%* The concepts of “fading memory™ and “slow flow” employed here are those used by
CoLEMAN & NoLL [1960, 1] [1962, 2].
##%# D also called the stretching tensor, is equal to the symmetric part of the velocity gradient.
### % For more details see Section 8, particularly Figure 8.1.



fluids” show that |x| is not, in general, equal to 45°, but approaches this value
as the rate of shear tends to zero.*

In the same limit of slow motion for which (3.1) holds, the stress in a general
incompressible simple fluid with fading memory obeys constitutive relations of
the type employed to define Navier-Stokes fluids; ** i.e. the principal axes of
stress equal the proper vectors of D, and for the principal stresses ¢; there hold

the equations o=—p+ansd;, =123, (33)

where p is a hydrostatic pressure, and 7 is a positive material constant called the
viscosity. It follows that, in the limit of slow motions, each principal axis of stress
is also a principal axis of refraction, and the birefringence n, —n, is given by a
relation of the form

4=p(¢,—0;), (3.4)
with B=1ny/ns.

There is no reason to believe that the “classical” formulae (3.1) and (3.3), or
their corollary (3.4), hold for arbitrary fluids at arbitrary rates of shear. Further-
more, although it is true that in the limit of slow flow the principal axes of re-
fraction should lie along the principal axes of stress, there is no theoretical
principle or reliable experimental evidence indicating that such an elementary
rule holds in general. * **#

We here seek a simple theory of birefringence in fluids consistent with the
general principles of mechanics and electromagnetism and broad enough to
permit a rational discussion of the streaming birefringence of ““non-Newtonian
fluids” away from “slow-flow limits”. Hence we must drop the linear approxima-
tions made in classical theories of mechanics and must allow the past kinematical
history to influence present optical and mechanical behavior. However, any theory
which accounts for past deformations of the medium and non-vanishing rates of
shear is beset with difficulties that arise from the fact that motion must be dis-
cussed. Of course, we shall here neglect relativistic effects of order u?/c?, where u
is the speed of the material points and ¢ the speed of light in vacuo. Yet even in
this approximation, the Maxwell-Lorentz equations for the electromagnetic field
in moving media are more complicated than for the familiar case of stationary
media. A simple theory of birefringence emerges only if one can safely neglect
the dragging of light by the medium. Fortunately, for the fluid speeds ordinarily
encountered in viscoelastic flows, such dragging is truly negligible.

4. Concepts from Electromagnetic Theory

Fresnel’s theory of double refraction in transparent media can be shown to
rest upon the foundation of Maxwell’s electromagnetic theory of light. * *# # As we

# It appears that KunDT[1881, 1] was the first to report departuresof | x| from45°; solutions
of collodion in ether were among the substances for which he observed large departures. It most
likely was DE METZz [1888, 1] [1906, 1] who made the first quantitative measurements of the
birefringence n; — n, in Couette flow.

## Cf. (1960, 1].
### CoLEMAN & ToupIN [1962, 3]; see Sections 7 and 11 of this essay.
*##% MaxweLL [1865, 1] §§ 102— 105, [1873, 2]; see also BorN & WoLr [1959, 1] and
TRUESDELL & TOUPIN [1960, 2].



are here concerned with non-magnetic, non-conducting, electrically polarizable
media, we may write the basic field equations of electromagnetic theory in the
form

d .
W—-curlh, divd=0,
4.1
ab .
W——curle, divb=0,
with
d=e,e+p, h=p 'b+uxp. 4.2)

Here e is the electric field, b is the magnetic flux density, p is the polarization
density, and u is the velocity of the medium. The two vectors d and h are called,
respectively, the electric displacement and the magnetic field. The positive numbers
¢, and p, are fundamental constants which depend upon only the choice of units
and obey the relation u_gs,=c 2, with c the speed of light in vacuo. If h, d, e, or b
experiences a saltus, [h], [d], etc., across a surface with unit normal v, then the
following jump conditions must hold:

vx[h]=0, V'[d]=0,
vx[e]=0, v.[b]=0. 4.3)

The simplest electromagnetic theory of light in moving media is based upon
the constitutive equation *

p=¢,Z(e+uxb), with Z=K-1; “4.4)

here 1 is the unit tensor, and K is a symmetric, positive definite, linear transforma-
tion, called the dielectric tensor and assumed to be independent of e, b, and u.
(We shall discuss later the way K is related to the history of the deformation.)
On substituting (4.4) into (4.2), one finds that

poh=b+c *uxZ(uxb)+c *uxZe
d=¢,Ke+e,Z(uxb).

@.5)

The doubly underlined term here is O (1%/c?), and may be safely neglected when
the speed of the medium is small compared with the velocity of light. The singly
underlined terms give rise to the dragging of light by the medium. * # It is hoped
that for the analysis of light waves in slowly moving media, not only the doubly,
but also the singly underlined terms can be neglected. In the present essay we
make such an approximation and take

h=p>'b,

d=¢,Ke, (4.6)

as our starting electromagnetic constitutive equations.

# Cf. TRUESDELL & TouriN [1960, 2] p. 737.
# % Cf TrUesDELL & TOUPIN [1960, 2] p. 740.



From a more general point of view, our starting assumptions (4.6) involve
approximations beyond the neglect of relativistic effects and the dragging of light.
Since we have assumed K to be independent of e and b (and their past histories)
and have implicitly set the electric current and the magnetization equal to zero,
application of our theory should be restricted to weak fields (i.e. to light waves
of ““normal™ intensity) and to media which neither absorb strongly nor rotate
light. Materials obeying constitutive relations of the form (4.6) are called perfect
dielectrics.

If the dielectric tensor K is constant in space and time, then Fresnel’s con-
struction, discussed in Section 2, gives a correct description of a single planar
harmonic electromagnetic wave governed by the equations (4.1) and (4.6), provided
one identifies the Fresnel tensor Lwith c2K™!:

L=c*K"', K=J7>L . 4.7

That is, the principal axes of refraction k; are the proper vectors of K, and the
principal wave speeds v, are related as follows to the proper numbers k; of K:

vi=ctK;t, i=1,2,3. 4.8)
By (4.8) and (2.2), each principal index of refraction n; obeys the simple formula
nf=x;,, i=1,2,3. (4.9)

The problem of describing a plane electromagnetic wave propagating in the
direction k, through the strip £ of Section 2 may be solved by applying the jump
conditions (4.3) to the incident, reflected, and transmitted waves at both surfaces
of #. The exact solution is complicated.* If, however, the material is such that
there is but a small loss of light by reflection at the entering and exiting surfaces,
then the conclusions of Section 2 give a very good approximation to the exact
solution. Thus, under the conditions expected in applications, a planar polarized
wave incident normal to & is resolved into two waves which have mutually
perpendicular amplitude vectors along k, and k, and which, during their traverse
of &, experience a relative retardation r given by (2.4).

The optical properties of a perfect dielectric are completely determined when
its dielectric tensor K is specified. However, any invertible function of K, such as
the Fresnel tensor L, will do equally well. It appears to us that the theory of
induced birefringence takes its simplest form if one works with the refraction
tensor N, defined as the positive definite square root of K:

def

N=K?. (4.10)

By (4.7) and (4.9), the proper vectors of N are the principal axes of refraction k;,
while the proper numbers of N are the principal indices of refraction n;. Of course,
N determines L and K through the relations

L=c*N"%, K=N2 (4.11)

# See BorN & WoLF [1959, 1] § 7.6.1, and DiLL & FowLkEs [1966, 3].



5. Incompressible Fluids

Consistent with our linear treatment of the electromagnetic field, we suppose
that the field is so weak that it has no effect on the motion of the material. We
assume that Cauchy’s stress principle is valid and that the equation of motion
has the classical form

divS+pf=px, G.1)

with p the density of mass, f the body force per unit mass, and S the stress tensor.
When it is assumed that the electromagnetic field does not influence the motion,
the principle of angular momemtum, together with (5.1) and the usual assumptions
regarding the absence of distributed moments and couples, implies that Cauchy’s
stress tensor is symmetric:

S=s". (5.2)

We here take (5.2) as a postulate.

Consider now a material point P of a body &£ that is in motion. Let x be the
spatial positioh of P at time ¢, and let & (x, t) be the spatial position of P at
time t. The function ¢, is called the relative deformation function. The tensor
F,(7), defined by

F,(v)=grad, & (x,7), (5.3)

is the deformation gradient at P at time ¢ computed employing the configuration
at time 7 as reference. Thus F,(7) describes the change of local configuration at P
between times ¢ and 7. Since x=¢,(x, 1),

F,(f)=1. (5.4)
The tensor function F: defined by
F/(s)=F,(t—s), s€[0, o), (5.5

is called the history up to t of the relative deformation gradient at P. It follows
from (5.4) that
F{(0)=1. (5.6)

A motion is isochoric if and only if for each material point and time

|detF; (s)|=1, (5.7
for all s20.
In our present theory an incompressible simple fluid is a material which obeys
three constitutive equations whose content may be stated in words as follows:
(I) Only isochoric motions are permitted.

(II) The refraction tensor N in (4.10) is determined by the history F; of the
relative deformation gradient.

(III) F} determines the stress tensor S to within an arbitrary hydrostatic
pressure.



The first of these constitutive equations is (5.7); the second and third are
N@®)=R(F,), (5.8
Sp(H)=8G(F;). 5.9)*

Here S, is the deviator of the stress tensor S, i.e.

S,=8—11trS, (5.10)
while t and & are constitutive functionals which characterize the fluid under
consideration.

It follows from (5.8) and (4.10) that the electromagnetic constitutive equation
(4.6), can be written
d()=e, R(F) (). 5.1

Throughout this essay we shall assume that the fluid body # under con-
sideration is materially homogeneous in the sense that the functionals )t and &
do not vary from point to point in #; of course, in a given motion the arguments
F; and the values N(¢) and Sp(f) of % and & will depend not only on time but
also on location.

6. Frame-Indifference

In classical mechanics a change of frame is a one-parameter family of trans-
formations of space onto itself, with time the parameter, such that at each instant
the mapping x — x* preserves distances.* ¥ It can be proved that each change of
frame has the form

x*=c()+Q®)[x—q] (6.1)

where, for each time ¢, ¢(¢) is a point in space and Q(¢) is an orthogonal tensor;
q is a point in space which can be taken independent of . It follows that the unit
normal to a surface is transformed into

n*=Q()n, (6.2)
and F,(7) in (5.3) is carried into * # ¥
F,(0)*=0@F()Q®". (6.3)
Putting
R(s)=Q(t—s), sef0, ), 6.4)

we conclude from (6.3) that the history F; defined in (5.5) is transformed by the
change of frame into a new history F'" given by

Fi(s)*=R(s)Fi(s)R(0)"", se[0, c0). (6.5)

# The constitutive equation (5.9) was proposed and studied by NoLL [1958, 1]; see also
CoLEMAN & NoLL [1959, 2] [1961, 1] and the expositions of TRUESDELL & NoLL [1965, 1] and
CoLEMAN, MARkoOvVITZ, & NoLL [1966, 1]. The equation (5.8) was proposed by CoLEMAN & Tou-
PIN [1962, 3].

## Cf. NoLL [1958, 1].
*## Tor details see the elementary discussion of COLEMAN, MARKOVITZ, & NOLL [1966, 1].



It is assumed, in classical mechanics, that contact forces transform as point
differences under changes of frame, i.e. if s is the stress vector, then s — s*, where

*=Q()s. (6.6)

Since s=Sn, it follows from (6.2) and (6.6) that the stress tensor S is transformed
into

SM*=0(MSMHAM™, (6.7
or, in the notation of (6.4),

S()*=R(©0)S(H)R(0)™ . (6.8)

We here assume, further, that, under a change of frame, e and d transform as
point differences, while b and h transform as axial vectors (i.e. the polar vectors
of skew tensors); thus e— e*, d > d*, b— b*, and h— h* with

e*=Q(t)e=R(0)e,
d*=Q(1)d=R(0)d,
b*=[detQ(1)] Q(1) b=[detR(O)IR(0) b,
K* =[det Q(1)] Q(t) h=[det R(0)] R(0) k.

In classical continuum physics, the idea that material properties should be
independent of the observer, or frame of reference, is rendered mathematical by
assuming the following postulate.

(6.9)

Principle of Material Frame-Indifference:* If a given process is compatible with
a constitutive assumption, then all processes obtained from that process by
changes of frame must be compatible with the same constitutive assumption.

We here employ this principle. In so doing, we impose on our theory the
space-time structure of classical mechanics and, further, make assumptions which
imply that the simultaneous spinning of a dielectric and its electromagnetic field
has no effect upon the polarization of the dielectric. The use of classical space-time
seems appropriate to a theory which is to be applied only in situations involving
“small speeds”.* *

Let us consider first the electromagnetic constitutive equations (4.6). If h, b,
d, and e obey these equations, and if k*, b*, d*, and e* are given by (6.9), then
b* and h* obey (4.6),, i.e. B*=p;* b*, while e* and d* obey the equation

d*=¢ K*e* with K*=R(0)KR(0) .. (6.10)

Thus, the defining equations of a perfect dielectric are compatible with the principle
of material frame-indifference if and only if we assume that for changes of frame
the dielectric tensor obeys the same transformation rule as the stress tensor, i.e.
K - K*, where

K(@®*=RO)K(H)R©O)™*. (6.11)

* Also called the “Principle of Objectivity”; see NoLL [1958, 1].
* # See the discussion after (4.5).



It follows that the refraction tensor N, defined in (4.10) also obeys this rule; i.e.
N — N*, where
N@®*=RON®R©O)™". (6.12)

Frame-indifference requires that the constitutive functionals 9%t and S in (5.8)
and (5.9) be such that these equations remain valid whenever N(¢), S(¢), and F;
are replaced by their transforms N (¢)*, S(2)*, F" under a change of frame, i.e.

N@®*=NEF"), Sp=S(F)), (6.13)
or, by (6.12), (6.8), and (6.5),
RO)N(H)R(0)™'=RN(RF;R(0)""), R(0)Sp(HR(0)"'=S(RF/R(0)™"). (6.14)
Since (6.14) holds under every change of frame, it follows from (6.14), (5.8), and
(5.9) that the functionals 9t and € must obey the relations
N(RF,R(0O)")=ROYRFHRO)"', S(RF,R0)"')=R(0)S(F)R©0)™ " (6.15)

for each * function R whose values are orthogonal tensors and for every history Fi.

Identities of the form (6.15) occur frequently in continuum physics, and solu-
tions are now well known. If we let J* be the function on [0, 00) defined by

J()=F{(s)" F{(5)-1, (6.16)
then it follows from (6.15) * ¥ that there exist two functionals .# and % such that
REF)=H(), SF)=2", (6.17)

and, moreover, .# and & are isotropic functionals in the sense that for each
constant orthogonal tensor Q, the relations,

A QI Q™ H=04J)Q7, L(QIQH=07(U)Q7', (6.18)

hold as identities in J*. Equation (6.17) permits us to write the following reduced
forms of (5.8) and (5.9):

N@®O=#4"), (6.19)
Sp()=£". 6.20)

We call J* the relative strain history up to time t. By (5.6) and (6.16),
J'(0)=0, (6.21)

where 0 is the zero tensor. The condition (5.7) that the motion be isochoric can
be written

det(J'(s)+1)=1, se[0, 0). (6.22)

# More precisely, (6.15) holds for every history F{ in the domain 2 of % and & and every
orthogonal-tensor-valued function R on [0,00) such that RF} is in 2. In CoLEMAN & NoLL’s
theory of fading memory [1960, 1] [1961, 2], which we employ in Sections 9—12, if Ff is in 2
and if R(s) is orthogonal for each s, then for R Ff to be in 2 it suffices that R be measurable.

** See NoLL [1958, 11; heemployed the right Cauchy-Green tensor, Ct=F!" F} instead of J*;
the notation we use here is closer to that of CoLeMAN & NoLL [1961, 2].



It is easy to show that the equations (6.19) and (6.20), with .# and & obeying
(6.18), supply not only a necessary, but also a sufficient condition for our theory
to be compatible with the principle of material frame-indifference.

Although the relative strain history J* determines N (¢) completely, in studies
of birefringence it is only the deviator of N(¢) that is important. Hence, instead
of (6.19), we often employ the equation

Np(®=AH (Y. (6.23)
The constitutive functional A" is determined by .# through the equation
N (I)=MT)-31tr 4. 6.24)
Clearly,
tr N/ (TN=tr L (J)=0, (6.25)
and, for each orthogonal tensor Q,
N QI Q™ H=04 )0 (6.26)
for all J*.

It follows from (5.3) and (5.5) that, in a body which has not experienced any
change in configuration other than a rigid rotation, Fi(s) is, for each s, orthogonal,
and hence Fi(s)" Fi(s)=1, or, by (6.16), J*=0%, where 0' is the constant function
on [0, o) whose value is the zero tensor:

0'(s)=0, se[0, ). 6.27)
Furthermore, a familiar argument* tells us that (6.18) and (6.25) imply that
H(OHY=2@0"=0, (6.28)

or, by (6.19), (6.20), (6.24), and (5.10),
J=0' = N@)=n°1, S(i)=—pl, (6.29)

where n° is a material constant defined by the relation
M(0)=n1, (6.30)

and the number p is indeterminante in the sense that it is not determined by the
local motion alone. Thus, in a simple fluid which has experienced only rigid rota-
tions, the velocity of light is the same for all directions and the stress reduces to a
hydrostatic pressure.

7. Shearing Flows

The constitutive equations (6.23) and (6.20) can often be simplified if something
is known in advance about the motion the fluid is undergoing. In this section we
describe the reduced forms taken by 4" and & in a broad class of motions called
“shearing flows™ or ““generalized viscometric flows”. The results given here are
direct consequences of material symmetry and frame-indifference and thus do not
require assumptions of linearity or smoothness for the constitutive functionals.

# See NoLL [1958, 1] and CoLEMAN & NoLL [1961, 1] p. 681.



We shall take up the “principle of fading memory” and its consequences in
Sections 9 through 12.

A shearing flow is one for which there exists, at each material point P and time ¢,
an orthonormal basis, h,, h,, h; (independent of s), such that the components of
J*(s) with respect to this basis have the form

{(—5) L(t—5) O
[h;-T(s)h]=| (t—s) O O (7.1)
0 0 0

for all s=0. The basis h; is called the canonical basis at P at time t, while the
number {(¢—s) is called the amount of relative shear at P at time t—s (relative
to the configuration at time 7). Motions of this type were studied by COLEMAN &
NoLL* and TRUESDELL & NoLL**, and known arguments * ** here yield the fol-
lowing theorem, which rests heavily upon the identities (6.18), (6.26): In a shearing
Sflow of an incompressible simple fluid, the components, relative to h;, of N(t) and
S(¥) obey the relations
N(®)=yx(),

Ny (=N, (=2 ("),

N, 2(0)— N33 (=23 (), (1.2)
Ni;()=N,;(1)=0,
S12(O=ys(),
S11() =82, ()=w§" (),
(1.3)

S22(0)—853()=2P(H,
S13()=8,3()=0,

where (' is the history of the amount of relative shear:
E()=L(t—s), se[0,00).

The functionals y;, w§", »{®) (I= N, S) are independent of the directions h, and obey
the identities

y1(=0)=—w:(),

(==, I=N,S, i=1,2. 74
It follows from (6.28) that
¥ (0N =2V (0N =2(ON=0, I=N,s, (7.5)

where 01 is the constant function on [0, o) with value 0.

The proper vectors of N, equal the proper vectors k; of N, i.e. the principal
axes of refraction, while the proper vectors of S, are the same as the proper
* [1961, 1].
## 11965, 1] § 106.
# % # See in particular [1961, 1] § 5.



vectors s; of S and are called principal axes of stress. It follows from (7.2) and
(7.3) that one vector of the set (k,, k,, k3), say ks, and one vector of the set
(s;, 55, 53), say s5, lie along the direction k4, and hence ky, k,, 5,, and s, all lie
in the plane which contains k, and h,. Out of equilibrium, i.e. when {* does not
equal 0f, the relations (7.2)—(7.4) give no reason to suppose that k;=s;, for
i=1,2.

Let us index the proper vectors of N so that k;=h;, as above, and so that

. T
the counterclockwise angle y from k, to k, satisfies the relation 0= 1< ¥ Then

an elementary calculation, starting with (7.2), shows that yx is determined by the
relation
N, 1™ N 22

cot2y=—%

W s (7.6)

and the birefringence for light traveling in the direction k; is given by

Y| =n;—hn,= il/(Nll —N22)2+4N122=(N11 _N22)0052x+2N12 Sin2x . (7.7)

The last expression in (7.7) determines the sign of 4. In view of (7.2) we have

(1) syt
2 =M, 7.8
= D) (7-8)
and
A=+ PO +4yy (O =P () cos 2y +2 yx(")sin 2y . (7.9)

It follows from (7.4), (7.8), and (7.9) that 4 and x—% are odd functions of {; i.e.

the transformation {*— —{' induces the transformations A4(f)— —A4(r) and

4 7 7
o) oo

We see no reason to believe that the ratio #$()/yx((") equals the ratio
w§P (0)/ys(¢") for each history {* of an arbitrary incompressible fluid. Thus we
repeat, with different wording and emphasis, an assertion made above: In spite
of occasional claims to the contrary, there does not appear to be a general sym-
metry argument indicating that the principal axes of stress s,, s, are parallel to the
principal axes of refraction k,, k, in all shearing flows of all incompressible
fluids.

A viscometric flow*
the simple form

* isa shearing flow for which the function { in (7.1) has

{(t—s)=—xs, se[0, o), (7.10)

*# Throughout this essay, when we say that an angle in the (k;, k,)-plane is measured *“counter-
clockwise”, or “clockwise”, it is to be understood that the plane is viewed from the side toward
which &; points.

#% The definition of a “viscometric flow> employed here is that of CoLEMAN [1962, 1].
TRUESDELL & NoOLL [1965, 1] call such motions “steady viscometric flows”. COLEMAN, MARKO-
vitZ, & NoLL [1966, 1] give an elementary exposition of the theory of these flows and discuss
modern experiments in viscometry. See also [1959, 2 & 3].



with x a number called the rate of shear. Let us define six functions, of the rate of
shearing, Ty, 0§, o’ and 15, 0§, 6§?, by the relations

@)=y (=xs), oPW=w{(-xs), I=N,S, i=12. (1.11)
s=0

s=0

By y,(— 1cs) and 2{9(— rcs) is meant the values of the functionals y; and »{" at
=0 s=0

the functzon ¢* defined by {*(s)= —«s. The functions 7; and ¢?, mapping the real
numbers into the real numbers, are material functions, determmed by the fluid
under consideration. ¥ 1t is clear from (7.8) and (7.9) that in a viscometric flow

-1 O'z(vl)('c)
2t5(x)’°

x=x(x)=% cot (7.12)

and

A=A4K)=+)/ oD (k) +415 (1) =0 (k) cos 2 +2tx(k)sin2y.  (7.13)

As in the case of general shearing flows, there is no argument of symmetry implying
coincidence of s; and k;, for i=1 and 2, in viscometric flows of arbitrary in-
compressible fluids.

The relations (7.4) and (7.5) yield **
1(—K)= -7, of’(—x)=0{(x), (7.14)
1(0)=07(0)=0, (7.15)
for I=N, S and i=1, 2. The remark made after (7.9) here implies that 4 and

x —% are odd functions of «.

8. Couette Flow

As we have already mentioned, of the various shearing flows that can be
obtained in the laboratory, Couette flow is the one most widely used for studying
streaming birefringence. This shearing flow is particularly suited for determination
of the material functionals ¥, and 2§ in (7.2).

a) General Theory
In a Couette flow the velocity field has the contravariant components,

F=0, 6=v(r,f), z=0, (8.1)

* Cautionary note: The function o§ defined by (7.11) does not equal the function o, in-
troduced by CoLEmMAN & NoLL [1959, 2 & 3] and subsequently employed in many papers, e.g.
[1961, 1] [1962, 1] [1964, 2 & 5] [1965, 1] [1966, 1]. The present zg, as?, and o§® are related as
follows to the viscometric functions z, ¢y, and o, discussed in the cited references

g®)=1(0), P E=0,(0—0,(), 6P K)=0,(K).

Our choice of notation is based on the observation that differences of the type I;; —I,, (I=N, S)
occur more frequently in the present subject than do the differences I;; — I,
*# Cf. CoLeman & NoLL [1959, 2].



relative to a cylindrical coordinate system r, 6, z, and the fluid is contained be-
tween two coaxial cylinders, located at r=R, and r=R,, which rotate about their
common axis (r=0) with angular velocities 2, (t) and Q,(¢).

It is easy to show that any motion obeying (8.1) is a shearing flow with
t—s
(—s)=r| ;;rv(r,r)d'c=ct(s), 0<s<o0. (8.2)
t

Moreover, in such a flow, for each material point P and time ¢,
h1=e,, h2=e9, h3=ez, (8.3)

where e,, ¢,, e, is the orthonormal basis of unit vectors pointing along the co-
ordinate directions r, 8, z, at the point occupied by P at time ¢. Thus, (7.2) and
(7.3) here assert that the physical components of N(¢) and S(¢) in the coordinate
system r, 8, z (i.e. the components of N(¢) and S(¢) with respect to e,, ey, €,)

obey the relations
y INGEPN(G)

Nrr(t)_NOG(t)=w§V1)(Ct) ’

Nyo(®)—N,, (=P (), 8.4)
er(t)= Noz(t) =0 N
S,o()=ys({),
S, () =Spe() =2 (L),
8.5)

See(t)—5S..()=2§((),
Srz(t)=SOz(t)=0 .

It follows from (8.5) that, in a Couette flow of an incompressible fluid, the
equation of motion (5.1) reduces to the scalar functional-differential equation

P, = [ ys(@] 8.6)

with {* given by (8.2). One may presume that the equation (8.6), appropriate
initial data, and the adherence conditions

VR, =2,(), Vv(R,;,D=0Q,(0), (8.7)

uniquely determine the angular velocity v as a function of r and ¢, but a general
theory to this effect, valid for non-linear functionals ¥4 and non-steady motions,
is lacking.

If the relative gap (R, —R,)/R, is small, and if Q, (z), Q,(¢), Q,(t), and Q,(¢)

0

are small for all ¢, one expects that v should be such that the rate of shear, r—a—:—,
is independent of r and given to a high degree of accuracy by the first term on the
right in the formula

(8.8)

r—a—v(r, )=

Ry (2,()—2,() R,—R,
- 1342 +0( 2 )’

R;—R, R,



which yields

s

' R, ¢ (RZ_RI)
SH=—— | Q(v)dt1+0 |———], 8.9
U= | 2@ dr+0 (T 89)

with
Q=92_Ql. (8.10)

Thus, when the term O((R,— R,)/R,) in (8.8) can be neglected, i.e. in the ““small
gap approximation”, the history {* is independent of r at each time ¢, and so also
are all the terms in (8.4) and (8.5) as well as the principal axes of refraction k; and
the principal axes of stress s;.

Optical measurements on Couette flow are usually performed with a plane
polariscope mounted with its axis parallel to the axis of the bounding cylinders.
Thus the light travels perpendicular to the planes z=const.; these planes contain
the circular streamlines, two of the axes of stress (s;, §,), and two of the axes of
refraction (k,, k,). The observed isoclinic lines are the locus of points at which
k, or k, is parallel to a polarizing axis of the analyzer. When (8.8) holds, k, and
k, are independent of r, and as one sees in Figure 8.1, each isocline is a straight
radial line. Indeed, in this case, at each instant ¢ the isoclines form a cross (called
the “cross of isocline’) whose two branches obey equations of the form

b=—x(t), O=7-1(, O=m—x0),

0= 1), 0sx()<Z,
with 6 measured counterclockwise from the direction of the polarizing axis of the
polarizer. y is called the extinction angle and equals the clockwise angle from the
axis of the polarizer to that arm of the cross which is nearest to it. In view of
Figure 8.1, however, y equals also the counterclockwise angle from e, to k, and,
by (8.3), x here has the same meaning as in the previous section. Thus, the equa-

(8.11)

<
2
k=,
[ =4
<
°
.
é Isocline
Isocline
Axis lof Polarizer
N z
‘” e
\\3‘1 i/ Sy
a k]
4
b &
Isocline

Fig. 8.1. Geometry of the cross of isocline



tions (7.6) and (7.8) here yield

N, +(2) — Noo () =1 ot (@)
2N,4(1) 2 2y ()

If the polariscope is employed to measure the relative retardation of polarized
light passing through the fluid in the z-direction, then, by (7.7), the birefringence
obtained obeys the formula

x(t)=—%— cot™?! (8.12)

A=n1—n2=(N,.,.—N30)0082x+2N,0Sin2x (8.13)

and, according to (7.9),

AW =2V’ (() +4yn () =V cos 2y +2yy(()sin2y.  (8.14)

In practice the Couette apparatus must be of finite length, and the flow (8.1)
cannot be maintained near the ends. Thus there are difficulties in determining
the length / to be used in (2.4), but as experimenters have found ways of over-
coming analogous problems in viscometry,* these difficulties do not appear
insuperable.
Since
2N,p=4sin2y, N,,—Npg=2N,4coty, 8.15)

it is evident from (8.12) and (8.14) that when the dimensions of the apparatus and
the speeds of rotation of the bounding cylinders are such that the approximation
shown in (8.8) is valid, measurement of both the extinction angle y(¢) and the
birefringence ¥ ¥ A(¢) for a history Q° of Q, i.e.

Q(s)=Q(t-s), se[0, ), (8.16)
permits calculation of yy({*) and 2y ({*) from the relations

yn({)=14(1)sin2x(?)

w\P()=A(t)cos2x(2); (8.17)

{* is here given by (8.9). Thus, one can, in principle, determine the functionals
yy and »{) experimentally.

b) Oscillatory Couette Flow
If v in (8.1) is such that there exists a number >0 for which

T

v(r,t+7)=v(, 1), v (r,t+ 2)=—v(r, 1, (8.18)

for all r in [R,, R,] and all ¢> — o0, and if 7 is the smallest positive number for
which this is the case, then we say that the Couette flow oscillates symmetrically
with period <.

# See, for example, the survey [1966, 1].
*# Of course, intensity measurements and eq. (2.7) yield only | 4].



It is clear from (8.2) that (8.18) yields
Ct=ct+t’ Ct+t/2= _Ct, (8.19)

and, in view of (8.4), (8.5), and (7.4), we have

NrO(t+t)=Nr0(t)s NrO(t+1'./2)= - ro(t)s

N, (t+7/2)—Noo(t+1/2)=N, () — Noo(?) , (8.20)

NOO(‘+1"/2)_sz(t+‘c/2)=N00(t)—sz(t)’
and similar relations for the components of S.* As a consequence of (8.19) and
the remark made after (7.9), we have

KE+TD=7-—1(®),  AC+T/D=—40),
1(t+1)=x(), A@+7)=A4().

Thus, in a Couette flow which oscillates symmetrically with period 7, the bire-
fringence 4 and the extinction angle y are periodic functions of time with period 7;
furthermore, in Figure 8.1, an isocline which lies on the line a at time ¢ will be on
the line b at time £+ 7/2.

(8.21)

¢) Steady Couette Flow
If (8.1) takes the form

F=0, O0=v(r), =0 (8:22)
with v independent of ¢ for all #, then the motion is called a steady Couette flow.

Of course, in such a flow, 2,, 2,, and hence Q=Q, — Q,, must be held constant
for all £ It follows from (8.22) that (8.2) reduces to

{'(s)=—xs, s€[0,00), (8.23)
where
Kk=k(r)=r d‘;(r’) : (8.24)

Since equation (8.23) is the same as equation (7.10), each steady Couette flow is a
viscometric flow with a rate of shear x that is a function of r alone. It follows
from (8.8) that

_ Ry Rz—R1)
= R_R. 9+0( =) (8.25)

Thus, in the “small gap approximation”, x is independent of r.
The equations (8.4) and (8.5) here become

N,o=1x(x),
Nn—Noo=‘7§v1)(K) s
Noo—sz=0'1(v2)(7€) »
N, =Ny.=0,
" ¥ Cf. CoLemAN & NoL [1961, 1] pp. 698, 699.

(8.26)



Sre=7s(K),
Sn—soe=°'.(91)('c) >
SOO_Szz=a.(S'2)(K) >

Sr9=S.=0,

with all terms independent of ¢. The equations (8.12) and (8.14) take the forms
shown in (7.12) and (7.13), while (8.17) reduces to

Ty (K)=14(x)sin 2y (x),
o\ (k)= A4(x) cos 2y (k) .

827*

(8.28)

Hence, if one measures both 4 and y as functions of x, one can calculate the
functions 7y and ¢%’. We have no reason to expect o§’ to be proportional
to g{. ¥ *

It follows from the last sentence of Section 7 that

A(—9==4(0), 2(~19=5—1(0). (8.29)

Thus, the transformation x — — k changes the sign of the birefringence and results
in a change in the position of an isoclinic line from « to b in Figure 8.1. Of course,
when y (k) =7/4 (i.e. if a{"’ (k)] 15 () =0), * * ¥ the cross of isocline remains invariant
under such reversal of the sign of «.

9. Fading Memory
a) Smoothness of Constitutive Functionals

For a broad class of materials, including those which are sometimes called
“viscoelastic”’, recent deformations have a greater effect on the present values of
N and § than earlier deformations of comparable magnitude. Such materials are
said to have “fading memory”, and the concept can be rendered precise in the
following way.****

A continuous, positive, monotone decreasing function 4 on [0, c©) is here
called an influence function of order r=0 if s"**h(s) is monotone decreasing for
large s and

lims"** h(s)=0. 9.1

5§00
For examples, (s+1) ™! is an influence function of order r if 0<r+4</, and e~ *#*,
with #>0, is an influence function of all orders >0. For a given influence func-
tion A, the set of all measurable symmetric-tensor-valued functions J, on [0, <),
*# The equations (8.27) were derived, at thislevel of generality, by CoLEMAN & NoLL [1959, 2].

*# gl can be measured directly with apparatus of the type described by PADDEN & DE WrTT

[1954, 1].

¥ # % »(x) does equal 7/4 in the “limit of slow flow” mentioned in Section 3.
#### We here follow the theory of CoLEMAN & NotLL [1960, 1] [1961, 2] [1962, 2], parts of
which are generalized in the recent studies of CoLEMAN & MIZzEL [1966, 2] [1968, 1]. The closest

presentation to the present is that of COLEMAN & MARKOVITZ [1964, 2]. Of course, in these earlier
treatments attention is confined to mechanical, rather than optical effects.



for which the quantity,
Ll L3
||J||h"é‘[ _[tr(J(s)z)h(s)zds] , 9.2)
0

is finite, form a Banach space $ with norm | - |},. Indeed, with the inner product,

A= [, () T2(9) h(s)" ds, 9.3)
$ is a Hilbert space. For each J in §, the number ||J|,, called the A-norm of J, is
defined in such a way that it places greater emphasis on the values of J(s) at
small s than on the values at large s. Two functions J; and J, in  are considered
the same if ||J, —J,|,=0; i.e. if J;(s)=J,(s) for almost all s.

Let A be the set of all functions J in § such that 1+ J(s) is positive definite
for almost all s. The physically meaningful part of the domain of the functionals
A" and & is the set D of functions J* in A obeying (6.22). One may, however,
extend 4" and & from D to A by putting

FN=5(G), IS=N4,%, 9.4
where G, defined by

G(s)=[det(J(s)+1)] *[J(s)+1]-1, ©9.5)

is in D, whenever J is in ¥&. We now assume that there is an influence function of
order r>2, which renders A" and & not only continuous on D but also smooth
in the sense that the extensions of 4" and & to U are twice Fréchet-differentiable
at the “‘rest history” (6.27). This assumption may be called the “principle of
fading memory”.

Principle of Fading Memory: For each fluid there exists an influence function of
order greater than 2 such that if §, 2, and D are constructed as shown above,
then A" and & are well defined continuous functions mapping D into the set €,
of symmetric tensors with zero trace. Furthermore, there exist continuous linear
functions 6 4", § &, mapping A into ¥,, and continuous, symmetric, bilinear
functions 6’4" and 6% &, mapping A x A into ¥y, such that the extensions (9.4)
of & and A obey the relation

FN=3F5D)+16*FJ, D+o(lJlR), F=H,9, 9.6)

for each J in A. Here, as usual, o(||J||7) stands for an unspecified function of J
obeying
2
tim 2UD o ©.7)
1ia—o  1lx
The continuous linear functional 6.# and the continuous symmetric bilinear
functionals §%.# are called the first and second Fréchet derivatives of S at the
point 0 in A. The equation (9.6) determines 5. and §2.# for functions J in 2A.
However, 2 contains as a subset the cone € of functions J in $ with J (s) positive-
semidefinite for almost all s, and since € is an additive cone spanning §, 6.# has a
unique continuous linear extension to $, and 42.# has a unique continuous,
symmetric, bilinear extension to § x §. As every continuous linear functional on a



Hilbert space may be written as an inner product, the extension of .# to $ has
an integral representation of the form

5J(J)=j'l',(s){J(s)}h(s)st, SI=N,&,
0]
I=N when =4, I=S when =9,

9.8
here I;(s){-}, is, for each s, a linear transformation of the space € of symmetric
tensors into the space €, and

JIT ()1 h(s)* ds

0

is finite. Furthermore, it follows from (6.18), (6.26), (9.6), and (9.7) that for each J
in § and each constant orthogonal tensor Q,

3£(QIQ~H=Qss(HQ7",

25(QIQ1, 010 )=08 5, NQY, s=k,5, OO
and it is a consequence of the first of these identities that (9.8) reduces to
SID)=I'1+ g my(s)J(s)ds, ©.10)

I=N when =4, I=S when S=9;

where m;, is a material function determined by .#, and I, chosen to make tr £ (J)=0,
has the form *

I’=—=}tr}om,(s)l(s)ds, I=N,S. (9.11)
0

Because the term % 62(J, J) in (9.6) is O(|J|7), (6.20), (6.23), and (9.10) yield
the following approximation formulae:

Np()=N'1+ °j° my(8) ') ds+O0(T2),

° 9.12)
Sp(H)=S"1+ g ms(s) I (s)ds+O0(|I']3).

The equation (9.12), was derived by CoLEMAN & NoLL [1961, 2]; they called the
constitutive equation obtained by striking out the term O(||J*|?), the “equation
of finite linear viscoelasticity (for an incompressible fluid)”, and they discussed
the sense in which such approximation formulae should be independent of the
choice of strain measure. In this connection we remark that (9.12) remains valid
if J*(s) is replaced throughout by

J* (=) +1) "' -1 9.13)

or any other measure of strain which is related to J*(s) by a smoothly invertible
transformation and has the property that J** reduces to 0t for a medium which
has never been distorted.

¥ The presence of 7’ in (9.10) is a result of the normalizations (5.10) and (6.24). For J&3,
I'is o(7ih.



If one is interested in approximations that include all terms O(]|J*||7), then, of
course, in place of (9.12) one should use the following consequences of (9.6),
(9.10), (6.20), and (6.23):

Np(=N'1+ TmN(S)J'(S)dH%éz-/V(J', J)+o(IFl5)
0

. (9.14)
Sp(t)=S"1+ [ mg(s)J'(s) ds+38°L (T, I) + o (| T']12).
0

The constitutive equation which results from neglect of the term o(|J*||?) in
(9.14), has been called the “equation of second-order viscoelasticity (for an
incompressible fluid)”.* If it be assumed that 62.#(J, J) (F =", &) is a sum of
iterated integrals, then it can be shown that (9.9), implies that 62.# has the form

36°5(J,D)=I"1+ f f [ar(s1,52) T (s) I () (9.15)

+bi(s1, 52) I (s))trJ (s2)]dsyds,, I=H,,

where a; and b; (=N, S) are material functions determined by .#; a; is symme-
tric in the sense that a;(s,, 5,)=a;(s,, s;); the number I’ is chosen to make
tr £(J, J)=0.

b) The Relaxation Theorem

In the next two sections we shall discuss the way the relations (9.12) and (9.14)
can be used to obtain the “equation of infinitesimal viscoelasticity” and the
“equations of materials of differential type” as asymptotic forms of the con-
stitutive equations (6.20) and (6.23). Before turning to the theory of motions of
small amplitude and retarded motions, we should, however, like to state a con-
sequence of the principle of fading memory whose demonstration requires not the
differentiability of 4" and & but only the much weaker assumption that these
functionals are continuous at the point J=0% in D.

Given any history J in D and a positive number §, one may define a function

JU! as follows:
0, se[0, 8)
1y — ,9),
7706 {J(s—ii), s[5, 00); (©-16)

JU) is called the statical extension of J by the amount 8.** If J is the relative
strain history up to some time, say z, then J' is the relative strain history up to
time £+ 0, assuming that no further deformation (i.e. at most rigid rotations)
occurred between ¢ and 1+6. Now, it is not hard to show that if 4 in (9.2) is an
influence function of order 0 (or greater), then for each J in D, J™® is also in D
for all 6 >0, and, furthermore, * ¥ *

lim | J®Y)},=0. 9.17)
d—>
* 11961, 2].
# ¥ CoLemaN & NoLL [1962, 2] p. 539.
### CoLEMAN & NoLL [1962, 2], WANG [1964, 6], COLEMAN [1964, 1]. Weaker conditions on A
sufficing for (9.17) are given by CoLEMAN & MizkEL [1966, 2].



The equation (9.17) is sometimes called the *“relaxation theorem”. As 4" and &
are assumed continuous at the zero function 07, (9.17) implies that

lims (=00, sF=4,9, (9.18)
3=+ o0
or, by (6.28),
lim A (J¥N = lim # (¥ =0. 9.19)
d—c0 [ 2ad-3]

Thus, for a fluid with fading memory, N, and S, at a point which has been left
undistorted for a long time are approximately 0, i.e. are approximately the same
as N and S, at a point which has never been distorted.

10. On Infinitesimal Deformations

In this and subsequent sections we shall examine certain situations in which
the h-norm, ||J*|,, is small, so that the error terms o([|J]| f) in (9.14), or the terms
O(||J*1?) in (9.12), can be neglected.

a) Relaxation Functions

Intuition suggests that ||J*||, should be small if all the “strains” experienced
by the material have been “infinitesimal”. To make precise the meaning of
“infinitesimal strains™, let us pick a fixed reference configuration £ and put

def

H(t)=F(v)-1,
gd_—e;f sup [tr (H (1)H (‘L')T)P s

—o0<t<t

(10.1)

where F(7) is the deformation gradient at time 7 computed relative to #. We say
that the strain relative to R has been infinitesimal up to time t if

e<l. (10.2)

The displacement gradient tensor H introduced in (10.1); has the property that
its symmetric part E is the familiar infinitesimal strain tensor (relative to %):

H+HT
5

E= (10.3)

It is not difficult to show that, for each s,
J'(s)=2E(t—5)—2E()+0(s). (10.4)
Furthermore, by (9.2) and (10.1),
1,=0C().- (10.5)

Thus, it is indeed true that if ¢ is small, i.e. if the strains have been infinitesimal
relative to some reference configuration %, then ||J¢(|, is small. Of course ¢ is not
small in viscometric flows. (In fact, for such motions, by (7.10), e= oo, for each #.)
But, in oscillatory motions of small amplitude there do exist references % which



render ¢ small; ¢ is small also in relaxation tests for which the initial deformation,
E°, is small. [See (10.8) below.]

Now, it follows from (10.4) and (10.5) that, for small ¢, the equations (9.12)
reduce to *

Np(H)=2Gy(0)E(t)+2 j ”(s) E(t—s)ds+0(),

(10.6)
Sp(H)=2Gz(0)E(1)+2 j S(S) E(t—s)ds+0(%),

where Gy and G are scalar valued functions related as follows to the functions
my and mg in (9.10)—(9.12):

G,(5)= — }Om,(a)da, d?i’s(s)=m,(s), I=N,S. (10.7)

The absence from (10.6) of the terms N’1 and S’'1 is due to the fact that in an
isochoric motion, to within an error O(e?), tr E=0, and hence the linear terms
shown in (10.7) already give tr S,=tr N, =0 to within an error O(¢?).

The terms exhibited explicitly in (10.6), are O(g) and have precisely the forms
found in Boltzmann’s classical theory of linear viscoelasticity, specialized, of
course, to incompressible fluids. The corresponding terms in (10.6); give an
analogous linear theory of induced birefringence. We call the theory which results
from ignoring the terms O(e?) in (10.6),4, the linear theory of infinitesimal
viscoelasticity for incompressible fluids. Rheologists call the material function Gg
the shear relaxation modulus or the stress relaxation function for shear; we may
call Gy the optical relaxation function for shear.

For a “relaxation test”, i.e. an experiment in which E has the special time-

dependence
. for t<0,
E(H= {E for 120, (10.8)

the equations (10.6) yield, for >0,

Np()=2Gy(H)E°+0(Y),

Sp()=2G4(H) E°+0(c%). (10.9)

Thus we see why G, and Gy are called “relaxation functions”: in the linear
theory of infinitesimal viscoelasticity, if one knows Gy, (or Gg) one knows, without
much calculation, how N, (or §p), gradually “relaxes to zero” after a sudden
increment in strain.

b) Creep Functions

If one assumes that, under neglect of the terms O (e?), (10.6), can be inverted,
then the inverse has the following form, well known in Boltzmann’s theory of

* Cf. [1961, 2], [1962, 2], [1964, 2], [1964, 4].



viscoelasticity and sometimes called ‘“ Volterra’s relation”:

2E()=5(0)Sp(O)+ | d{js(s) Sp(t—s)ds. (10.10)
/]
The material function J, called the creep compliance function for shear, obeys the
equation,

st(s)JE(t—s)ds=t, te[0, ), (10.11)
V]

which, among other things, implies
Je(5)Gs(s)L1, €[00, 0). (10.12)

If either Gy or Jg is known, the other can be calculated from (10.11).

Employing (10.10) to eliminate E(-) from (10.6);, we find that, when terms
0(&?) can be neglected,

dl dG
No()=Gu©1s©So()+ | [0 TEL+ 22D 4, 0)
s (10.13)
f dGN(t) dJEt(ls ) dr ] Sy (t—s)ds.
Hence, if we put
6260150+ [ LD 15—y ds, (10.14)
then, in the linear theory of infinitesimal viscoelasticity, we have
Np()= JN(O)SD(t)+j dj"(s) Sp(t—s)ds. (10.15)

We call Jy the optical creep function for shear. Through integration by parts, one
may show that equivalent to (10.14) is the formula

Iy($)=Gy ()£ (0)+ jGN(s —7) -‘ﬂd‘fgl dr. (10.16)

For a creep test, i.e. an experiment in which S,(¢) is controlled in such a
way that

. for t<0,
Sp(H)= {so for 120, (10.17)

the equations (10.10) and (10.15) yield, for >0,
2E(®)=Ig(©)Sp, Np()=Ily(Sp. (10.18)

Thus, when the approximations made in the linear theory of viscoelasticity are
valid, in a creep test on a fluid the deviators of the stress and refraction tensors
are proportional, but the proportionality depends on time; i.e. even under neglect
of all terms O(g?), our theory shows optical creep.



¢) Harmonic Strains and Loads

In the linear theory of infinitesimal viscoelasticity, the mechanical and optical
response of an incompressible fluid is completely determined by the functions
Gg and G, which may be measured in a relaxation test, or by the functions Jg
and Jy, which have simple interpretations in creep tests. More common tests for
fluids are, however, those involving harmonic strains, and therefore we consider
now motions for which the infinitesimal strain tensor E is a sinusoidal function
of time with circular frequency @ and phase é,

E()=E’sin(wt+6g), te(—o0,0); (10.19)

here E° is a constant symmetric tensor with tr E°=0. For the special function
(10.19), the equations (10.6) yield *

Np(®)=2[Gy(w)sin(wt+5z)+Gy(w)cos(wt+5)] E°+0(e?),
Sy (1) =2[Gs(w)sin(wt+65) +Gy (w) cos(wt+z)] E>+0(&?).

For each =0, the real numbers Gg(w) and G§'(w), called, respectively, the shear
storage modulus and the shear loss modulus, are defined by

(10.20)

G’s(w)d;fa) {Gs(s)sinwsds,
0

o (10.21)

Gy ()= [ Gs(s)coswsds.
[1]

We call Gy(w) and Gy(w), respectively, the in-phase and out-of-phase strain-optical
coefficients; these numbers are given by

G}v(w)d;fco {Gy(s)sinwsds,
0

o (10.22)
Gy(w)=o [ Gy(s)coswsds.
0

It is clear that, under appropriate assumptions of regularity, the Fourier transforms
shown in (10.21) and (10.22) can be inverted; hence G; (I=N, S) can be deter-
mined if either G; or G} is known. Thus, measurement of the response to a
sinusoidal input (10.19) supplies a convenient way of obtaining the relaxation
functions Gy and Gg. Equations equivalent to (10.20) are

Np(t)=Npsin(wt+dy)+0(e?),

Sp(®)=Sksin(wt+85)+0(?), (10.23)
where
N;=2E° VGJIV((D)Z +G},\;(CD)2 ,
Gii (@) (10.24)

tan(by—0p)=———
( N E) G I,V (CD) ’
# The primes in egs. (10.20)— (10.22) do not signify derivatives; unfortunately, the notation,

G, G’, and G”, for relaxation moduli, storage moduli, and loss moduli, has become standard;
¢f. LEADERMAN [1957, 1].



and
S3=2E°)/Gy(w)’ + G5 ()’,
G5 (w) (10.25)
Gs(w)
A direct relation between S,(f) and N,(¢) can be obtained by substituting

(10.23) into (10.15); we find that if one defines an in-phase stress-optical coefficient
Ju by

tan(6g—05)=

(@) =0 [ ly(s)sinosds, (10.26)
0
and an out-of-phase stress-optical coefficient 1§ by

.I,’J(a))défw 0IOJ,,,(s)cos wsds, (10.27)
then, to within an error O(¢?), °
Np()=[ly(w)sin(wt+85)+ 5 (w)cos(wt+65)]Sp, (10.28)
or, equivalently,
Np=S3V/ Iy (@)’ +1y(@)?,
IN(w) (10.29)
@)
If we let 9y(w), 95(w), and #y(w) be the complex numbers defined by
% (0)=Gj(w)+iG{(w), I=N,S, i*=-1,

tan(éN—55)=

Fv(@)=ly(@)+ily(w), (10.30)
then ,
In@)=g Eﬁ; : (10.31)

In (10.23) and (10.29) we see that, when terms O (&?) are neglected, the principal
axes of stress and refraction coincide at each time in harmonic straining of the
type (10.19); however, the principal stresses and principal strains have generally
different phase angles.

We do not wish to give here an extensive résumé of linear hereditary theories.
The student of such theories will recognize that we have introduced only a few
(Gs, Jg, Gs, Gy) of a long list of the mechanical-response functions to be found
in the standard treatises on linear viscoelasticity. The important point is that
the mechanical properties of an incompressible fluid are completely characterized
in the linear theory of infinitesimal deformations if any one of the functions
Gy, Jg, G§, Gg is known, and, in our present non-linear theory, each of these
functions suffices to determine the Fréchet derivative § & in (9.6). [See the
relations (9.10) and (10.7).] Similarly, the optical properties corresponding to a
history with small & are known whenever any one of the functions Gy, Gy, Gy
is known, and each of these functions suffices to determine 64" in (9.6). Further-
more, Gy, Gy, and Gy can be calculated if one knows one function from each
of the sets {Jy, Jy, I}, {Gs, J&, G5, Gy}



d) Harmonic Couette Flow

As an example of a motion in the family (10.19) of harmonic motions, we
consider a circumferential flow between rotating coaxial cylinders and employ a
cylindrical coordinate system set up so that the line r=0 gives the common axis
of the bounding cylinders. Letting r, 8, z be the coordinates at time ¢ of the
material point which is located at R, @, Z in a fixed reference configuration #, we
suppose that the motion has the form

r=R, 0=0+B(@ )=0+a(r)sin(wt+dg), z=2Z. (10.32)
This is clearly a Couette flow for which v in (8.1) is the function
v(r, ) =wa(r)cos(wt+dg). (10.33)

At each instant ¢ the deformation gradient F relative to the fixed configuration 2
has the form

FO=P(r,t)[1+M(r, 1)], (10.34)

where M?>=0, and P is the orthogonal tensor mapping the orthonormal basis
er, €9, €z along the coordinate directions in the reference configuration into the
orthonormal basis e,, ey, e, along the coordinate directions at the place occupied
at time #; the components of P and M relative to the basis ey, eq, e,, have the
matrices

[cosfp —sinf 0
[P]=|sinp cosp O],
| 0 0 1
| 0 00 (10.35)
_|,98
[M]— rw 00].
| 0 00

It follows that &, defined in (10.1), is here given by

—w<z<t ar

g= sup [4[1—cosﬁ(r,r)]+2raﬁg—’r”)sinﬁ(r,t)+r[M]z]. (10.36)

Hence, ¢ is small if both « and du/dr are small at all times. Assuming such is the
case, we calculate the infinitesimal strain tensor E of (10.3), and we find that

E(f)=E°’sin(wt+85)+0(?) (10.37)

where E° has components
o do
2En0=r o (10.38)

E:r=E30=E:z=E:z=E:0=Oa

with respect to the basis e,, ey, e,. Thus, when terms O(e2) can be neglected, the
motion (10.32) is indeed of the type (10.19). It follows from this, (10.23), and (10.24)



that the components of N obey the equations
N,o(t)=N7sin(wt+38y)+0(e?),
N, (1) —Nyy()=0("), (10.39)
Nyo() =N, (H=0(?),

where
Nop=r 32 G + GR(a) (1040
dy=0g+tan” '(Gy(®)/Gy(w)). (10.41)
Under the “small gap approximation” [see (8.8)—(8.10)], the number
o 1 da
re=7o r ar

is a constant independent of r; furthermore, if the inner bounding cylinder
(r=R,) is kept at rest while the outer cylinder (r=R,) is constrained to undergo,
for all ¢, a sinusoidal oscillation of the form

O(R;, 0,1)=0 +Asin(wt+9g), (10.42)
then (10.32) holds with
o _ R4 R,—R, )
= R,—R, +0( R, . (10.43)

It follows from (10.39) and equation (8.12), that, in the linear theory of visco-
elasticity (i.e. when the terms O(e?) in (10.39) are ignored), the extinction angle y
is nf4. In addition, (8.13), (10.39), and (10.40) yield the following expression for the
birefringence for light traveling in the z-direction:

A=A°sin(wt+8y)+0(?); (10.44)
Oy is given by (10.41), and
A°=4E% )/ Gy (w0)* +Gj (w)*. (10.45)

Thus, as E;g and Jg are determined, in principle, by the motion of the bounding
cylinders, measurement (for small E5,) of the amplitude 4° and the phase angle
Sy of the birefringence A yields the sum Gj(w)®’+Gy(w)® and the ratio
Gy (0)/Gy(w) and hence permits a calculation of in-phase and out-of-phase
strain-optical coefficients Gy (w) and Gy (w). If such measurements are made over
a wide range of values of w, it should be possible to calculate, by Fourier-transform

methods, Gy(s) over a comparable range of values of s 1.

Under the approximations of “small gap’’ and small &, the torque M per unit height which
must be applied to bounding cylinders to maintain their relative motion (10.39) is given by *

M(t)=M°sin(wt+3s), (10.46)

where

M°=47R, R, E5, )/ Gi(w)* +G¥ (w)*, (10.47)

# For a thorough analysis, within the framework of the linear viscoelasticity, see MARKO-
vitz [1952, 1].



and Jg is as in (10.25),. Hence, as every rheologlst knows, measurement of amplitude M° and
phase Jg of the torque M permits a calculation of G s(w) and G’ (). Once these storage and loss
moduli are known one can calculate the in-phase and out- of-phase stress-optical coefficients
Jy(w) and Jy (w)from the strain-optical coefficients Gy (w) and Gy (w) as shown in (10.30) and
(10.31). Knowledge of Gg(w), G5’ (), Iy (w), and )y’ () over a wide range of values of w should
permit calculation of the creep functions J; and J, by Fourier methods.

11. On Slow Flows
a) Asymptotic Forms of the Constitutive Equations

For {|J*||, to be small, i.e. for the relations (9.12) and (9.14) to be useful, it is
not necessary that there exist an # which renders ¢ in (10.1) small. In fact, it
follows from (9.2) and our assumptions about 4 that for ||J*|, to be small it is
sufficient that the deformation relative to the present configuration be small in
the recent past. Such is the case in motions which are “slow”.

If J is a function on [0, c0) and « a number in (0, 1), then the function J®,
defined by

JOOZT(s), se[0, o), (11.1)

is called the retardation of J by the factor o.® 1f, after a suitable alteration of J on
a set of measure zero, the limits

) I -1 k k)

J=11_1:%J(s), J hm (J(s) Z ¥l ), (11.2)
exist for /=0, 1, ..., n, then one says that J has n generalized derivatives at s=0.,
The existence of ordinary derivatives implies the existence of the corresponding
generalized derivatives, and

0) o 1
=10, 1=276)
S

(11.3)

s=0

Let an influence function % be given, let the Hilbert space H and its subsets 2
and D be constructed as in Section 9, and for each integer » let D, be the set of
functions J in ® which have n generalized derivatives at s=0. If the influence
function 4 is of order greater than n, then the n’th-order Taylor transformation

II,, defined by
n l (l)

m,J(s)= 2 7, (11.4)
maps D, into U, and, by a theorem of CoLEMAN & NoLL,** for each J in D,.
hng 7@ —11,J9),=0 (11.5)
If J is a relative strain history, as in (6.16), then J(0)=0, and the tensor

def n ®
Ap=(-1"T, n=1,2,.. (11.6)

# See COLEMAN & NoLL [1960, 1].
#%* 11960, 11, Thm. 1, pp. 359— 361.



is called the n'™ Rivlin-Ericksen tensor. By (11.1), the Rivlin-Ericksen tensors 4
corresponding to the retarded history J are related to those corresponding to J
through the formula

AP =a"d,. (11.7)

We here assume that A, exists, for =0, 1, 2; that is, we consider only histories J
for which there are symmetric tensors A;, and A,, such that (possibly after
alteration of J on a set of measure zero)

) (1)
limJ(s)=0=J, lim2 ~ =

s 5 s
° o, ° @ (11.8)
hn;? [J(S)+SA(1)] =A(2)= J-

It is known that * 4.,,=2D, where D, the symmetric part of the velocity gradient
tensor, is called the rate of deformation tensor and is familiar in the theory of
Newtonian fluids.* * The tensor A,y supplies a “frame-indifferent” measure of
the acceleration gradient.*** As in our original statement of the principle of
fading memory in Section 9, we assume here that the influence function is of
order greater than 2. It then follows from (11.5) and (11.8), that

17ly=0(). (11.9)

In other words, not only does a slow flow give rise to a small A-norm, but, if one
retards any history that is continuous at s=0, one will find that the A-norm goes
to zero at least as fast as the retardation factor a.

From (9.12), (11.8), and (11.5) with n=1, one may easily derive the following
equations which give, to within an error o(«), explicit expressions for the deviators
of the refraction tensor and the stress tensor corresponding to the retardationJ®
of a relative strain history J:

N =y A +o@),

S5 =ns AF) +0(®); (11.10)
1y and 55 are material constants given by
ny=—[smy(s)ds, I=N,S. (11.11)
0

Furthermore, by putting n=2 in (11.5) and employing (9.14), one can calculate
N and S to within an error of only o(x2); we find ****

NP =00 1+ny AD+ By AT +yn AR +o (),
S5 =0 1+n5 AR + bs AL+ AP +0(?).

# [1955, 1], [1958, 1].
## See Section 3.
¥ % # Under the change of frame characterized by Q, 4, — 04,07
## % * The results (11.10), and (11.12), were obtained by CoLEMAN & NoLL [1960, 1], § 7. They
pointed out that (11.10), justifies the intuitive notion that in slow flows the behavior of a general,
non-linear, viscoelastic fluid should be locally approximated by that of a Newtonian fluid.
CoLEMAN & MARrkovITZ [1964, 2] made the observation that yg and B, in (11.12),, are related
to myg and ag as shown in (11.13) and (11.14).

(11.12)



The material constants y, and yg are given by
vi=%[s*my(s)ds, I=N,S. (11.13)
0

The constants fy and B are determined by the quadratic functionals é, 4" and
82, and, when these functionals have an integral form, it follows from (9.15)
that

o 00

ﬁ1= J. jslsZaI(sl, sZ)dsl dsZ, I=N, S. (11.14)
00

The numbers (¥ and {{# are normalizers chosen so that tr N&®=tr $©=0. (No
such normalizers are needed in (11.10), because the condition that the flow be
isochoric is equivalent to the condition that tr 4(,,=0.) Employing the fact that
in an isochoric motion tr 4.,,=tr A{,, one may easily show that

3(P=—(B+y)trAZ = — (B, +y)trdl}, I=N,S. (11.15)

Motivated by the results given in equations (11.10) and (11.12), we employ the
following terminology. An incompressible fluid obeying the constitutive equations

ND=2'”ND9 SD=2nSD (11-16)
is called a first-order fluid. An incompressible fluid for which

ND=CN1+'7NA(1)+BNA(21)+)’NA(2) )
SD=CS1+ﬂsA(1)+ﬁsA(21)+7sA(z), (11.17)
{r=—3(B;+y)trd,y, I=N,S

is called a second-order fluid.

It is clear that the classical theory of streaming birefringence, which we out-
lined in Section 3, is just the theory of first-order fluids. The equations (11.10)
tell us that, within the present general framework, the classical theory is indeed
valid “in the limit of slow flow” to within an error o(«). The sentence containing
the relation (3.4) may here be rendered precise as follows:

Nge%sg’)w(aﬁ). (11.18)
M

Thus, the deviators of the stress and refraction tensors, being both proportional to
the rate of deformation tensor, are proportional to each other in very slow motions.
Unfortunately, this proportionality, although it is often employed to calculate
stresses from measurement of birefringence in viscoelastic flows, is valid only in
the ““Newtonian limit” shown in (11.16) and does not hold with precision even
for second-order fluids. On looking at (11.12) we see that 8% and N are not
proportional when terms O(a?) are taken into account.

The relation of the results of this section to those of the previous two sections
may be explained as follows. For a general incompressible simple fluid with
fading memory, the terms exhibited in equations (9.12) and (9.14) give good



approximations for Np, and S, whenever the norm |J*||, is small. If the norm is
small because the motion has small amplitude (regardless of its speed), i.e. because
there exists a fixed reference configuration # which renders small ¢ in (10.1), then
(9.12) reduces to (10.6), which shows that a theory analogous to Boltzmann’s
theory of linear viscoelasticity holds here to within an error O(e2). If, on the
other hand, the norm ||J*||, is small because the motion is slow, i.e. because the
history can be regarded as retardation with small o, then (9.12) reduces to (11.10),
and (9.14) reduces to (11.12), which shows that while the classical theory (11.16)
gives Np and S, to within an error o(«), the theory of second-order fluids gives
Np and S;, to within an error o(a?). Of particular importance are the equations
(11.11) and (11.13) which can be used to relate the material constants n, and y,
of the slow-flow approximations to the material functions G; of the Boltzmann-
type approximations. We shall discuss the equations (11.11) and (11.13) in Part c
of this section, but first we should like to suggest a direct experimental method
of determining #ny and yy.

b) Measurement of ny and yy in Steady Couette Flow

In a viscometric flow, the components of tensors 4,y and 4 ,, relative to a
canonical basis h; are

010 1 00
[hi'A(l)hj]=K 1 0 0 ) [hi'A(z)hj]=2K2 0 0 0 s (11.19)
0 00 0 00

with « the rate of shear defined in (7.10). On putting (11.19) into (11.17), we find
that, for a second-order fluid in a viscometric flow, the components of N relative
to h; obey the relations

Nia=nyk,

N11_N22=27NK2, (11.20)
sz—N33=ﬁNk‘2,

and, of course, similar relations ¥ hold for the components of §. Clearly, each
retardation of a viscometric flow is, in turn, a viscometric flow with a rate of shear
that is proportional to the retardation factor «; i.e. small x corresponds to small a.
It therefore follows from (11.12) and (11.20) that, for a general simple fluid with
fading memory,

o Ta(K)
nn—igr;-——,c ,
(1)
yy = lim TN () (11.21)
2,50 K
(2)

_ oy’ ()
T

where ), oi’, and o$¥’ are the material functions defined through the equa-

tions (7.2) and (7.11). In Section 8 we discussed steady Couette flow and related
* Cf. CoLeMAN & NoLL [1961, 1], p. 713; Markovitz & COLEMAN [1964, 3], p. 78.



the measurable birefringence 4 and extinction angle y to the functions zy and
oy - In view of the equations (8.28) [see also (7.12) and (7.13)], the relations (11.21)
imply that in the limit of low rates of shearing

A=2nyx+o0(k), (11.22)
cot2x=-2’1ix+o(x). (11.23)
N

Hence, if one measures 4 and y in steady Couette flow of a simple fluid with
fading memory, one should find that plots of 4 versus x and cot 2 y versus i should,
in the limit as x goes to zero, yield straight lines with slopes 2%y and yy/ny,
respectively. Employing the Maclaurin expansion of the function cot™!, one may
derive from (11.23) the simpler relation

lim N (11.24)

We shall not review here the various methods which have been proposed for
determining 7, fs, and ys. *

¢) The Relation of Gy to yy and ny

It follows from the definition of m;, that the function with values 12,(s)A(s) 2
must belong to ), i.e. that

def

Ar=41m h™ 2= [my(s)” h(s)"ds
0
must be finite. Since 4 is, by assumption, an influence function of order greater

than 2, there exist numbers ¢>0, B>0, and M =0 such that

h(s)<Bs~(*3+9
for all s> M, and thus

0< [my(s)’s’***ds<4;B* <o,
{

for all { > M. But, by (10.7) and the inequality of Schwarz, we have

=) 2 o0 -3
GO =|[mi(s)ds| < [(sCF22)2 ds [(sC+292)2 my(s)* ds
{ 14 14
— 1 T 2 5+2¢
—(4+28)C4+28;jm1(s) s°T2ds,
and hence

A B?
(d42e)0*¥2e”

# Methods for Bs and yg are suggested in [1961, 1], [1964, 2], and [1964, 3]; for a survey see
[1964, 5).

GI(C)Z <



for all { > M. This shows that, in the limit of large s,

G;(s)=0 (—2—15), I=N,S. (11.25)
s
In particular,
lim s*G,(s)=0, (11.26)

Rind: o)

and if, in (11.11) and (11.13), we replace m;(s) by dG,(s)/ds, we obtain, after
integration by parts, ¥

fnN= f Gy(s)ds, 11.27)
= :stN(s)ds, (11.28)
fNs= :I: Gs(s)ds, (11.29)
Ys=— sts(S)dS- (11.30)

Employing the functions G; and G;’, defined in (10.21) and (10.22), one can write
(11.27)—(11.30) in the forms:

ny=lim SN (@) (11.31)
o0 (0]
pn= —lim 2@ (11.32)
-0
fs=lim Gs@) (11.33)
w0 (]
ys= —lim G—Sof‘;i (11.34)
-0

We call attention to the known equation (11.34), ¥ * which relates yg to the shear
storage modulus, and to the new equations (11.31) and (11.32), which relate 7,
and yy to, respectively, the out-of-phase and the in-phase strain-optical coefficients.
The equation (11.31), like equation (11.33), is not at all surprising. But the equa-
tion (11.32), like its mechanical analogue (11.34), appears to be a special con-
sequence of the notion of “fluidity” employed in the theory of simple fluids, and
an experimental verification of it would be desirable; this is particularly so when
one considers that, albeit experimenters have found it difficult to test (11.34), ¥ **

#* The equations (11.27) and (11.28) are new. Although relations equivalent to (11.29) occur
frequently in rheology, the equation (11.30) is not very old, having been derived first by CoLE-
MAN & MARKoOVITZ [1964, 2], eq. (2.23b); [1964, 5], eq. (6.11Db).

*# CoLEMAN & MARKOVITZ [1964, 2}, eq. (2.34); [1964, 51, eq. (6.22).

## ¥ In conversations with Messrs. L. J. Zaras and H. MArRkoviTZ we have been advised that
the difficulty lies in the uncertainties involved in the usual methods of measuring differences in
normal stresses.



seemingly feasible tests of (11.32) are readily designed; one such test is outlined
below.

To test (11.32), one would construct apparatus capable of imposing on the
fluid harmonic Couette flows of the type discussed in Part d of Section 10. One
would operate the apparatus in such a way that the flow (10.32) is achieved with ¢
[see (10.36)] small enough that the terms O(g*) can be neglected in (10.37) and
(10.39). That is, one would see to it that, for each value of w employed, the number
A in (10.42) is sufficiently small that measurement of the birefringence 4 yields a
sinusoidal result of the type (10.44) with the amplitude A4° proportional to 4 and
the phase difference dy—dg independent of A. From the observed dependence
of §y— g and 4° on w, for small w, one would calculate the functions Gy and Gy,
via the equations (10.41) and (10.45), and extrapolate the quantities Gy(w)/w?,
Gy (w)/w to w=0 to obtain *

I Elm Gy (w)w, yi= —lim Gl (w)/o?. (11.35)
00 w—0
After having obtained 7}, and 7}, one would place the fluid in a conventional
streaming birefringence apparatus which maintains a steady Couette flow and
permits measurements of y as a function of x. By extrapolating the observed
values of .
—2209

K

to zero, one would obtain the ratio yy/ny, as shown in (11.24); if (11.31) and
(11.32) hold, this value of yy/ny, obtained from measurements of x(x) in steady
Couette flow, should equal the value of y}/5Y, obtained, via (11.35), from measure-
ments of 4 in harmonic Couette flow.

Of course, if one measures also the birefringence 4 as a function of x in steady
Couette flow, then one can obtain both ny and yy, via (11.22) and (11.24), and
then check to see if both yf=yy and nL=ny.

12. On Non-Steady Shearing Flows in the Second-Order
Theory of Viscoelasticity
The theory which results from neglect of the terms o(|J*||Z) in (9.14) may be
called the theory of second-order viscoelasticity. If one inserts (7.1) into (9.14), one
finds that, for a simple fluid with fading memory in a general shearing flow with
canonical basis h;, the non-zero componentsof N and § relative to h; must obey
the relations

Nia()= }° m(s) 0 (s)ds+o(IL12),
Nyt ()= Ny ()= :fmm U2 ds+o(IL12), (12.1)

N, 2 ()= N33 =4y (", O +o(IT1D),

* The superscript T means that the numbers 7§ and y§ defined in (11.35) are “tentative
values” of 77y and yy to be checked against independent measurements of the ratio yy/zy.



S1a()= fms(s)c'(s)ds+o(nc'uz>,

su(r)—s“(t)=fms(s)c(s)zds+o(uc‘nf), (122)
S22()—S53(D= 45, 1)+ o(IL2).
Here
ncn”“‘;¢'(s)2h(s)2ds, (12.3)

and ¢; is, for I=N, S, a real-valued bilinear functional which, when (9.15) holds,
has the form

a (¢, )= 6‘ (_!.al(sl’ s (51 (s2)dsy ds,. (12.4)

In view of (10.7), it follows from (12.1), &, and (12.2), & , that the functionals
y; and »{V in (7.2) and (7.3) obey the relations,

I(s)

yi(()= I (s)ds+o(ILIR),

iy Gz © (12.5)

Q)= [ U@ s o1}, I=N,S.

We find it remarkable that (for 7=N, §) the scalar function G;, which occurs
already in the linear theory of viscoelasticity, determines not only y,({*), but also
2§V ({"), to within an error o(||{*[|?).

Relations equivalent to (12.2) were first derived by COLEMAN & NoLL [1961, 3]
under assumptions about the motion only slightly less general than the present.
They observed, as we have, that to within the approximations behind the theory
of second-order viscoelasticity, knowledge of one scalar material function,
mg=dGg/ds, suffices for the calculation of both the shear stress S,,(¢) and the
normal stress difference S;;(¢)—S,,(¢). They suggested that an experimenter
could test this consequence of (12.2), 4, by studying the harmonic Couette flow
(10.32). To do so one would first measure the torque M required to maintain the
flow, working, of course, in a range in which M obeys (10.46) and (10.47); thus
one would obtain Gs(w) and G§'(w). It follows from (12.2) that, to within an
error o(||{*||?), the difference in the normal thrusts on the inner and outer bounding
cylinders of a Couette apparatus obeys the formula *

© _ 2
.1 (Ro) =5, (R) =R B TS g aso ([R 2] ). a2

# [1961, 3] eq. (25). It is assumed here that one bounding cylinder rotates and the other is at

R,
rest; otherwise the contribution, — [ p rv(r)? dr, of the centrifugal force to S,,.(R)—S,,(R,)

. R,—R,]? R
lsnoto([ R ] .




with (* as in (8.9). In a Couette flow of the type (10.32), the function {* is given
(exactly) by

{'(s)=2E%[sin(wt—ws+dg) —sin(wt+55)], se[0, x0), (12.7)
with ES, =14 rd a(r)/dr, as in (10.38). Hence
{'(s)* =4E% [3[1 —cos(2¥) cos(2ws) —sin (2y) sin (2ws)]

(12.8)
—2sin*y cos(ws) +2 siny cosy sin(ws) + sin’ ¥], xﬁdefwt+6E

Placing (12.8) in (12.6), we find, after several integrations and rearrangements of
terms, that, to within an error o(]|{*||?),

Srr(RZ)_Srr(Rl)

_2E02M [[2G4(w)—Gj(2w)] cos Qe +265) (12.9)

+[G5 2w)—2G§ (w)]sinQw t+265) —2Gs(w) |+ 0 ([Rllsz ]z) ,
1

a relation which should be experimentally verifiable. Since (12.7) and (12.3) imply
that ||{*|l, is O(|E7l), the relation (12.9) holds to within an error o(] E5|?).
CoLEMAN & DiLL will discuss relations of the type (12.6) and (12.9) at greater
length in a future article. Our interest here is in the possibility of verifying (12.5)
for the new case I=N.

By (7.8) and (12.5) with I=JN, in an arbitrary shearing flow of a simple fluid
with fading memory

T dGy(s) ..
JEge sy ds

2[4
with y€[0, n/2) the counterclockwise angle from &, to k,. In view of (12.10), (12.5),
and (7.9), we have, for the birefringence 4=n, —n,, the relation

74 GN(S)

cot2y=-2 +o(Il'ln), (12.10)

{'(s)ds

4=2[—C= ) ds+o(ILR)- (12.11)
It is interesting that the error term here is o(||{*||?), rather than just o(]|Z||,).
Using (12.11), one may conclude, for example, that the expressions derived in
Part d of Section 10 for the birefringence in harmonic Couette flow remain valid
when terms O(| EZ,|?) are taken into account; i.e.

A=A4°sin(wt+58y)+o(|E%) (12.12)

with dy and A4° given again by (10.41) and (10.45). It is clear from (12.10), however,
that the conclusion that y equals 7/4 is valid only to within an error o(1); the first
departure of y from n/4 is O (|| {*||,) or, in harmonic Couette flow, O(| ES,|). *

* A result of this type was found already in equation (11.23) which tells us that in slow
viscometric flows the departure of y from /4 is linear in .



Substitution of (12.7) and (12.8) into (12.10) yields the following expression
for the extinction angle y in a harmonic Couette flow (10.32), under neglect of
terms o(E7,):

cot 2 1, [2Gy(w)—Gy(Rw)] cosQut+285)+
X=7 Lo D .
2 Gy (w)sin(wt+6g)+
+[G} 2w)—2Gy ()] sin(@i+265)—2G (@) 21
+ G} (w)cos(wt+dg) )

If Gy and Gy are obtained first from measurements of A, as discussed after equa-
tion (10.45), then the equation (12.13) should be experimentally verifiable.
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