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Abstract

Low-rank matrix recovery (LRMR) model, aiming at decomposing a matrix into a

low-rank matrix and a sparse one, has shown the potential to address the problem of

saliency detection, where the decomposed low-rank matrix naturally corresponds to the

background, and the sparse one captures salient objects. This is under the assumption

that the background is consistent and objects are obviously distinctive. Unfortunately, in

real images, the background may be cluttered and may have low contrast with objects.

Thus directly applying the LRMR model to the saliency detection has limited robustness.

This paper proposes a novel approach that exploits bottom-up segmentation as a guidance

cue of the matrix recovery. This method is fully unsupervised, yet obtains higher perfor-

mance than the supervised LRMR model. A new challenging dataset PASCAL-1500 is

also introduced to validate the saliency detection performance. Extensive evaluations on

the widely used MSRA-1000 dataset and also on the new PASCAL-1500 dataset demon-

strate that the proposed saliency model outperforms the state-of-the-art models.

1 Introduction

Visual saliency characterizes what captures the perceptual attention of human. Saliency

detection has recently become an active research topic. This mainly lies in its promising

applications, e.g., image classification [17, 30], object recognition [28, 29], object segmen-

tation [16, 23], object detection [2], picture collage [13, 35], image summarization [14, 32],

etc. Existing saliency models can be broadly classified into two categories: biological mod-

els and computational ones.

The biological model is pioneered by Koch and Ullman [22] who derived visual saliency

from a set of topographical maps of elementary features like orientation of edges, color and

luminance. The biological model is usually implemented using the center-surround scheme

with different formulations on a set of features [12, 20, 34]. As the objective of biological

models is to find some points that mostly catch human attention, the resulting saliency maps

c© 2013. The copyright of this document resides with its authors.

It may be distributed unchanged freely in print or electronic forms.



2 ZOU, KPALMA, LIU, RONSIN : SEGMENTATION DRIVEN LOW-RANK MATRIX RECOVERY FOR SALIENCY

are typically sparse and blurry, and limit their applications mainly for prediction of eye

fixations.

Instead, the computational models, inspired by the biological models, aim at discovering

objects standing out from surrounding regions. A number of computational models measure

the saliency based on global, local and regional contrasts with different forms [1, 8, 14, 21],

and a variety of theories and methods, including information theory [6, 37], graph the-

ory [4, 18], machine learning [26], statistical model [27], frequency domain analysis [15, 19],

have been exploited to build saliency models. These models may work well for objects

within consistent scenes, thus, most of them are validated on relatively simple dataset like

MSRA-1000 [1]. However, they still lack robustness to detect objects in complex images

with cluttered background and/or low contrast between objects and background. Recently, a

new trend is to formulate the problem of saliency detection with low-rank matrix recovery

(LRMR) model, in which an image is decomposed into a low-rank matrix which corresponds

to the background, and a sparse one which links to salient objects. In [36], sparse coding

is used as an intermediate representation of image features and then fits to LRMR model to

recover salient objects. As pointed out in [31], the sparse coding can not guarantee that, in

the entire image representation, the sparse codes of salient objects are sparse and those of the

background are of low-rank. Therefore, Shen et Wu [31] proposed to modulate the image

features with learnt transform matrix and high-level priors to meet the low-rank and sparse

properties. This sounds reasonable and remarkable experiment results have been demon-

strated. Unfortunately, training is required and the learnt transform matrix is somewhat

biased toward the training dataset, therefore it suffers from limited adaptability.

Based on the aforementioned issues, this study aims at an unsupervised LRMR model for

saliency detection. The key idea is to derive a bottom-up prior to constrain image features so

that they can fit well to the LRMR model. For this purpose, we propose a novel generic prior

named as segmentation prior which is created from bottom-up segmentation. The segmenta-

tion prior softly separates objects from background so that the objects are highlighted and the

background is highly redundant in the feature domain. Traditionally, the saliency is used as

a guidance cue for the application of object segmentation, however, the proposed approach

proceeds in the opposite direction that investigates benefits of bottom-up segmentation for

saliency detection.

For evaluation, a new dataset PASCAL-1500, created from PASCAL VOC 2012 segmen-

tation challenge [10], is also introduced to validate saliency detection performance. Most

previous saliency models are evaluated on relatively simple dataset, such as the widely used

MSRA-1000 [1], in which most images contain only a single object, typically located in the

center of the image, and the appearance contrast between object and background is generally

obvious. In contrast, the PASCAL-1500 dataset is much more challenging: images contain

multiple objects appearing at a variety of locations and scales, and background regions are

much more cluttered. Extensive evaluation has been carried out on both MSRA-1000 dataset

and PASCAL-1500 dataset. Experiments show that the proposed unsupervised LRMR model

outperforms the state-of-the-art models, even the supervised one [31] which is also based on

the LRMR model.

2 Overview

Figure 1 presents the framework of the proposed segmentation driven low-rank matrix reco-

very model. An input image is firstly segmented into three-level segmentations: fine-grained
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Figure 1: Framework of the proposed saliency model. Input image is firstly segmented into

three levels. Feature descriptors are accumulated within superpixels of fine-grained (FG)

segmentation. Segmentation priors are derived from the medium-grained (MG) segmenta-

tion and coarse-grained (CG) segmentation, respectively. The final saliency map is obtained

by smoothing the raw saliency map generated by LRMR model with the MG segmentation

prior.

(FG), medium-grained (MG) and coarse-grained (CG). The FG segmentation significantly

over-segments the image into a number of superpixels (to avoid confusion, the segments of

FG segmentation are called "superpixels" rather than "regions" used in MG and CG segmen-

tations). The MG segmentation also over-segments the image but generates regions as few as

possible. The CG segmentation aims at maximally separating objects from the background,

thus the image may be over-segmented or under-segmented. Based on these three-level seg-

mentations, image features are extracted from the superpixels, and segmentation priors are

derived from the MG and CG segmentations. Then, the low-rank matrix recovery (LRMR)

model is applied to generate the raw saliency map. Finally, the raw saliency map is smoothed

by using the MG segmentation prior to generate an optimal saliency map.

3 Low-rank matrix recovery model

Given an input image I, let P = {p1, p2, · · · , pN} be a set of N superpixels created by FG seg-

mentation, and an ∈R
d×1 be the feature vector of the superpixel pn, where d is the dimension

of feature descriptor. The image I is represented by a feature matrix A = [a1,a2, · · · ,aN ] ∈
R

d×N .

In real images, the background pixels generally show similar appearance, and have strong

correlations in the feature space. This suggests that the feature matrix A might have low-rank

property, and it can be decomposed into two parts, a low-rank matrix U = [u1,u2, · · · ,uN ] ∈
R

d×N , and a sparse one E = [e1,e2, · · · ,eN ] ∈ R
d×N

A = U+E (1)

Applying this model to saliency detection, the background is naturally represented by the

low-rank matrix U, and the objects might be captured by the sparse matrix E .

To recover the matrix U and E, the problem can be formulated with the Lagrangian
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representation

min rank(U)+λ‖E‖0

s.t. A = U+E
(2)

where λ is a coefficient to balance U and E, and ‖ · ‖0 indicates l0-norm. Unfortunately,

this is a NP-hard problem as the matrix rank and l0-norm are not convex. Recent theoretic

analysis in [7] shows that, under rather weak assumptions, the low-rank matrix U and the

sparse matrix E can be exactly recovered by

min ‖U‖∗+λ‖E‖1

s.t. A = U+E
(3)

where ‖ · ‖∗ is the nuclear norm of matrix U (the sum of singular values of U), and ‖ · ‖1

indicates l1-norm. The regularization of l1-norm ensures to produce a sparse matrix E. The

optimal matrices U and E can be obtained by alternatively minimizing (3) over one while

keeping the other one fixed.

With the optimal sparse matrix E, the saliency value of superpixel pn is given by the l1
energy of the vector en

sn =
d

∑
i=1

|en(i)| (4)

The saliency value sn represents the probability of superpixel pn belonging to an object, i.e.,

a larger value indicates a higher probability, and vice versa. The saliency map of image

I is then generated by assigning the saliency value of each superpixel to all pixels in the

superpixel.

4 LRMR with segmentation prior

Directly fitting the LRMR model to the problem of saliency detection is under the assump-

tion that background is homogeneous and has high contrast with objects. In reality, however,

many backgrounds are cluttered and objects may be similar to part of the background re-

gions. This results in false positive detection results. To improve the robustness of saliency

detection, a feasible method is to adopt high-level priors to modulate input features [24, 31],

so that the feature matrix has a lower rank. The underlying idea of the modulation is to give

small weights to feature vectors of those superpixels which are more likely to be background

and large weights to those corresponding to objects.

Many priors have been proposed for saliency detection, such as center prior, color prior

and learnt transform prior [31]. The main drawback of these priors is the lack of adaptability,

since they are either obtained by empirical statistics or trained from the annotated images.

For example, center prior assumes that objects always appear in the center of image, and

color prior believes that the objects are in warm colors. Obviously, these assumptions are

not always valid in practice. In addition, the learnt transform prior tends to fail when the test

image has a high difference with the training images.

Here we introduce a bottom-up segmentation driven prior, named as segmentation prior.

Firstly, let us take a look at the images and their CG segmentations in Figure 2. Salient ob-

jects locate at diversity of positions: center, bottom, left, right and corner. Both background

and objects are typically segmented into several regions, thus, the bottom-up segmentation
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Figure 2: Examples of segmentation prior. First row: input images; second row: bottom-up

segmentation results; last row: segmentation prior where white indicates a higher weight and

black represent a lower weight.

can not be expected to totally separate objects from background. However, the segmented

regions of background have very high probability of connecting with the border of the im-

age, while very few object regions link to it. Even if an object is truncated on the border,

like the bike and the child of the two right-most images, border regions of object are small

compared to the whole object in the image. In contrast, the border regions of the back-

ground are usually large, as background appears more uniform, like sky, road, tree, wall,

etc. This observation implies that objects can be roughly separated from the background by

the bottom-up segmentation. Therefore, we propose the segmentation prior according to the

connectivity between each region and image border. Let rm be a segmented region of image

I, the segmentation prior of region rm is defined as

hm = exp(−
‖rm ∩C‖

σψm

) (5)

where ‖ · ‖ denotes the length of intersection, C is the border of image I, ψm is the outer

perimeter of region rm, and σ is a balance parameter which is set to 0.3 in our experiments.

Clearly, if a region touches the image border, its prior value is in the range of (0,1), otherwise

it is equal to 1. In other words, the segmentation prior gives a small weight to the region

touching the image border. By using (5), segmentation priors of all regions can be computed,

and form the prior of the input image.

In Figure 2, one might observe that, on one hand, there are still some regions of the

background without connection with the image border, on the other hand, some regions of

objects are inevitably merged with the background. Indeed, such a strategy can not perfectly

separate the objects from the background. However, the segmentation prior derived from CG

segmentation can serve as a guidance cue for LRMR model to address the task of saliency

detection.

Suppose an input image I is segmented into N superpixels by FG segmentation, and

represented by a feature matrix A = [a1,a2, · · · ,aN ]. Let Hc = [hc
1,h

c
2, · · · ,h

c
N ] denote a set

of CG segmentation prior values of the superpixels. In order to recover salient objects well

with the LRMR model, the feature matrix A is firstly modulated by the CG segmentation

prior Hc

B = [hc
1a1,h

c
2a2, · · · ,h

c
NaN ]. (6)
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Then, the modulated feature matrix B is used as the input of the standard LRMR model

min ‖U‖∗+λ‖E‖1

s.t. B = U+E
(7)

As the segmentation prior assigns small weights to most of background feature vectors

in B, the l1 energies of the corresponding vectors in the recovered matrix E are inclined to

be small. Therefore, objects are highlighted more effectively in the matrix E.

5 Post-smoothing

Raw saliency map generated by the LRMR model might still contain some noises: some

large saliency values in background area or small values in objects. There are mainly two rea-

sons for this phenomenon: on one hand, some superpixels of background might be strongly

similar to those of objects in the feature domain; on the other hand, the LRMR model de-

composes the feature matrix without considering spatial constraint. To remove the noises,

the raw saliency map is smoothed at two scales: FG and MG levels.

Let S= {s1,s2, · · · ,sN} denote the saliency values of all superpixels P= {p1, p2, · · · , pN}
in the image. At the FG level, the saliency of each superpixel pn is penalized by its adjacent

superpixels

s′n = sn +α ∑
j∈N

s j · exp(−‖an −a j‖
2
2) (8)

where N is a set of adjacent neighbours of superpixel pn, ‖ · ‖2 denotes l2-norm, and α is

the weight to balance the impact of neighbours on the current superpixel, which is set to

0.5 in our experiments. Obviously, neighbours with appearance more similar to the cur-

rent superpixel are considered to give more contributions to compute the saliency, and vice

versa. Therefore, the FG level smoothing ensures the saliency coherent with its neighbours

belonging to the same category (object or background).

The FG level smoothing might be still far from labelling saliency at object level. We also

perform a MG level processing on the FG smoothed saliency map S′. To do this, segmenta-

tion prior of the MG segmentation is also computed.

Let S′ = {s′1,s
′
2, · · · ,s

′
K}, Hm = {hm

1 ,h
m
2 , · · · ,h

m
K} and R = {r1,r2, · · · ,rL} denote the FG

smoothed saliency map, MG segmentation prior and MG segmentation of the input image

respectively, where K is the number of pixels, L is the number of regions. The saliency value

of region rl is computed by

sl =
1

Tl
∑
k∈rl

s′′k (9)

where Tl is the number of pixels in the region rl , s′′k is the weighted saliency value of pixel k

s′′k = hm
k s′k. (10)

Therefore, the final saliency map of image is obtained by distributing saliency values of all

regions into corresponding pixels. Notice that, the parameters of MG segmentation are set to

ensure an image is over-segmented as few regions as possible. Thus, this process generates

more smooth saliency map than assigning saliency values based on superpixels; in addition,

object contours are also preserved well.



ZOU, KPALMA, LIU, RONSIN : SEGMENTATION DRIVEN LOW-RANK MATRIX RECOVERY FOR

6 Experiments

The proposed saliency model is evaluated on two datasets: MSRA-1000 [1] and PASCAL-

1500. The MSRA-1000 is one of the most commonly used datasets for evaluation of saliency

detection. It contains 1000 natural images with pixel-wise manually labelled ground-truth.

This is a relatively simple dataset, as most images are with high appearance contrast between

object and background which is typically consistent; in addition, most images only contain

a single object in the center.

In order to objectively validate the saliency detection, we introduce a more challenging

dataset, PASCAL-15001. This dataset contains 1500 real-world images from PASCAL VOC

2012 segmentation challenging [10]. Since not all images of PASCAL VOC are suitable for

the evaluation of saliency detection, only images intuitively deemed to have some salient

objects are selected. In the PASCAL-1500, many images have highly cluttered background;

about 40% images contain multiple objects (on average 3 objects); objects appear at a variety

of locations and scales. To create binary ground truths for evaluating saliency detection per-

formance, pixel-wise annotated segmentation ground truths in PASCAL VOC are modified

by labelling object pixels as "1" and other pixels as "0".

In the rest of subsections, we give the relevant implementation details and performance

evaluation metrics, and then we discuss the results obtained on both datasets.

6.1 Implementations

For image description, we use (i) RGB color components along with the saturation and hue

components, (ii) 36 Gabor filters [11] with 12 orientations and 3 scales, (iii) 12 steerable

pyramid filters [33] with 4 orientations and 3 scales. These three types of features are accu-

mulated within the superpixel and stacked together to form a 53-dimensional feature vector

to represent the superpixel. This image description is exactly the same as that used in the

training based low-rank matrix recovery (TLR) model [31]. However, the TLR model is

supervised, which needs to learn a transformation matrix T integrating to the LRMR model.

In contrast, our method is fully unsupervised.

MG and CG segmentations are generated by hierarchical segmentation of gPb [3] (glob-

alized probability of boundary). The output of gPb is a valued ultrametric contour map

(UCM). The MG and CG segmentations are created by thresholding the UCM, which is

normalized from 0 to 1, at 0.125 and 0.25 respectively. The gPb generally preserves global

contours of objects, and it fits well to the MG and CG segmentations. However, it can not

apply to the FG segmentation very well, as it tends to group uniform areas into a large region.

This makes feature descriptors extracted from superpixels of background to be insufficiently

redundant, and thus they lack low-rank property which is essential for LRMR model. There-

fore, segment size controllable Mean-shift [9] is used to obtain FG segmentation, where the

minimum segment area is set to 200 pixels.

The low-rank matrix recovery model is solved by the augmented Lagrange multiplier

method proposed in [25]. The balance parameter λ of the model is set to 0.05.

1http://wzou.perso.insa-rennes.fr
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Figure 3: ROC curves and AUC scores with different components on MSRA-1000 (left)

and PASCAL-1500 (right) datasets. T is the learnt transformation prior proposed in TLR

model [31]. Performance of the TLR model is also presented.

6.2 Evaluation Metrics

To objectively evaluate the performance of saliency detection, we adopt the widely used

metrics: receiver operator characteristic (ROC) curve to measure the similarity between the

saliency map and the ground-truth, and the area under the curve (AUC) for quantitative com-

parison between different models. To obtain the ROC curve, saliency maps are normalized

from 0 to 255 and thresholded using integer values within [0, 255]. Then for each thresh-

olding, the true positive rate and the false positive rate over all test images are computed.

Finally, The ROC curve is generated by plotting the true positive rate values on the y-axis

against false positive rate values on the x-axis.

6.3 Baselines

As baselines, we use eight recently proposed saliency models, of which most obtained state-

of-the-art performance on several datasets. The baselines include training based low-rank

matrix recovery (TLR) model [31], region contrast based model (RC) [8], kernel density es-

timation based (KDE) model [27], context and shape prior based (CBS) model [21], context-

aware (CA) model [14], frequency-tuned (FT) model [1], graph based (GB) model [18] and

spectral residual (SR) model [19]. For evaluation of other recent models, one can refer to the

benchmarking report [5].

6.4 Results and discussion

Firstly, we validate the contributions of the CG segmentation prior and post-smoothing mod-

ule of our model. Figure 3 summarizes the evaluation. For comparison, the performance of

TLR model [31], which is the most relative to our model, is also presented in Figure 3. In

the TLR model, transformation prior learnt from MSRA-B dataset containing 5000 anno-

tated images, semantic prior (face detection), color prior and center prior are integrated to

LRMR model for saliency detection. In contrast, our model only uses bottom-up segmenta-

tion priors, without using any supervisory information.

As shown in Figure 3, if raw feature extracted from image is directly used as the input of

LRMR model, the saliency detection performance is low. With the CG segmentation prior,
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Figure 4: ROC curves and AUC scores of different models on MSRA-1000 (left) and

PASCAL-1500 (right) datasets. The models are ranked by AUC scores in the legend.

the AUC scores increase significantly: from 86.1% to 96.2% on MSRA-1000, and from

74.0% to 88.0% on PASCAL-1500. By integrating the post-smoothing component, the AUC

score on MSRA-1000 increases with only 0.8%; however, on PASCAL-1500, it increases

with 3.1%. This is mainly because the LRMR model with the CG segmentation prior has

obtained pretty good results on the relatively simple MSRA-1000, and there is no more room

for improvement. In contrast, PASCAL-1500 is much more challenging, and more increase

is obtained from a relatively low AUC score.

To see if the learnt transformation prior T of TLR model [31] can help to improve our

system performance or not, we also incorporate it to our model. As shown in Figure 3,

the transformation prior does not give any improvement on both datasets. In addition, inte-

grating the transformation prior (without the CG segmentation prior and post-smoothing) to

LRMR model, on the PASCAL-1500, even decreases the performance compared to only us-

ing raw feature for matrix recovery. This suggests that the transformation prior is somewhat

biased toward images similar to those in the training dataset, and lacks the adaptability to

the PASCAL-1500. Figure 3 also reveals that, on the MSRA-1000, the bottom-up segmenta-

tion prior is superior to the leant transformation prior (96.2% versus 90.4% in terms of AUC

score).

In Figure 4, the proposed segmentation driven low-rank matrix recovery (SLR) model

is compared with the eight baselines. The ROC curves and AUC scores of these baselines

are computed using authors’ publicly available codes or their results. Clearly, the proposed

model outperforms other models on both datasets, with 1.1% and 3.7% improvement in

terms of AUC score on MSRA-1000 and PASCAL-1500 respectively, compared to the best

one among these baselines.

Figure 5 shows some examples of saliency maps generated using the top 5 models with

the best performance in the baselines and the proposed SLR model. At least two observations

can be derived from these examples. On one hand, all models obtain pretty good results when

the input image is with high contrast between object and background, like the image in the

first column. On the other hand, the proposed model is able to detect objects with occlusion

and cluttered scene, while the baselines suffer from limited robustness. For example, in the

last three columns, the person, horse and the boats are within cluttered backgrounds, and

the car is significantly occluded by the tree trunk. The baselines either fail or only partly

highlight these objects; however, our model shows its ability to discover them.
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Figure 5: Examples of saliency maps generated using the top 5 models with the best perfor-

mance in the baselines and the proposed SLR model.

7 Conclusion

This paper has presented a novel saliency detection model by leveraging low-rank matrix

recovery (LRMR) and bottom-up segmentations. In order to fit the LRMR model to visual

saliency detection well, a generic segmentation prior is proposed to guide the matrix re-

covery, so that image background is represented by a low-rank matrix and salient objects are

recovered by a sparse matrix. A new challenging dataset PASCAL-1500 has been introduced

for the evaluation of saliency detection. Experiments, on the widely used MSRA-1000 and

the newly introduced PASCAL-1500, show that the proposed saliency model outperforms

the state-of-the-art models.
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