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1 Introduction

This chapter proposes an overview of some aspects of SeftReliability (SR) engineering.
Most systems are now driven by software. So that, it is wedlbgnized that assessing reliabil-
ity of software applications is a major issue in reliabikggineering, particularly in terms of
cost. But predicting software reliability is not easy. Ragyh the major difficulty is that we are
concerned primarily with design faults which is a very diffet situation from that tackled by
the conventional hardware theory.fault (or bug ) refers to the manifestation in the code of a
mistake made by the programmer or designer with respecetsghcification of the software.
Activation of a fault by an input value leads to an incorreatput. Detection of such an event
corresponds to an occurrence of a softwiaikire. Input values may be considered as arriving
to the software randomly. So although software failure maybt generated stochastically, it
may be detected in such a manner. Therefore, this justifeesgh of stochastic models of the
underlying random process that governs the software &sluiWe briefly recall in Section 2,
basic concepts of stochastic modeling for reliability. Taygproaches are used in SR modeling.

The prevalentis the so-callétack-boxone, in which only the interactions of the software with
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the environment are considered. Following [1] and [2], we usSection 3 theself-exciting
point processeas basic tool to model the failure process. That enables arview of most
of published SR models. A second approach, calleavthige-boxone, incorporates in models,
information on the structure of the software. This is préseéim Section 4. Section 5 proposes
basic techniques for calibrating black-box models. The $astion tries to give an account
for the current practices in SR modeling and to point out schalenging issues for future
research.

Note that this chapter does not aspire to cover the whole iR engineering. In partic-
ular, we do not discuss: fault prevention, fault removalltfeolerance which are three methods
to achieve reliable software. We focus here on methods &cést failure times. For a more
complete view, we refer to [3], the handbooks [4] and [5]. eeédwused the two recent books [2]
and [6] to prepare this chapter. We also recommend to reahtiré paper [7], that describes, in
particular, the available software reliability toolkitsith additional relevant reference [8]). Fi-
nally, the bibliography of the chapter gives a good accoonjdurnals which propose research

and tutorial papers on SR.
2 Basic concepts of stochastic modeling

Reliability of a software is defined in [9] as a measure of the continuolisedg of the correct

service by the software under a specified environment. Sragmeasure of the time to failure.

2.1 Metrics with regard to the first failure

Metrics of the first time to failure of a system are standaod¥{10], [11] and are now recalled.

The first failure time is a random variable (f¥)with distribution function

Ft)=P{T <1}, teR



If F' has a probability density function (pdf)then we define theazard rateof the rvT by

r(t) = %, t>0.

with R(t) = 1 — F(t) = P{T" > t}. We will also use the terrfailure rate. FunctionR(¢) is

called thesurvivor functiorof the rvT'. Hazard rate function is interpreted to be

r(t)dt =~ P{t<T <t+dt|T >t}

~ [P{afailure occurs ifjt,t + dt] given that no failure occurred up to time}

Thus, the phenomenon of reliability growth (“wear-out”) ynae represented by an decreasing
(increasing) hazard rate.
When F' is continuous, hazard rate function characterizes thegtibty distribution of T’

through theexponentiation formula

R(t) = exp (_ /0 tr(s)ds) |

Finally, the mean time to failure, denoted ByI'TF, is the expectatio’|T"] of the waiting
time of the first failure. Note thak'[T] is alsof0+°° R(s)ds.
A basic model for the nonnegativefvis the Weibull distribution with parametekss > 0:

F(t) = A8t exp (—MP) 1) yoo(t)  R(t) = exp (=A%), r(t) = ABtP7",

1 [t
MTTF = 75 / u? exp(—u)du.
0

Note that the hazard rate is increasingfor» 1, decreasing fof < 1, constant fol3 = 1. For

B = 1 we obtain the exponential model with parameter

2.2 Stochastic process of times of failure

The failure process can be thought of apant procesqpp), i.e. a sequence of r(g;);>o

whereT; is theith failure time of the software (witli, = 0). An equivalent point of view is to
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define the sequence of &%; = T; — T; , for « > 1. X, isth inter-failure time We define the
counting proces# (-) associated with a pp by
N(t) =) 1pg(T:) (N(0)=0).
i>0
N(t) is the number of observed failures up to timeA pp will refer to any of(7;), (X;) or

N(-). Standard metrics associated with a counting process &fe [1

— the mean value functiodZ (t) = E[N(t)]

. . dM
— therate of occurrence of failureat timet: ROCOF () = W(t)'

In such a context, we define the (conditional)ability functionat timet > 0 by
Rt(s) = P{N(t+ 8) - N(t) =0 | N(t)aTla Tt 7TN(t)}7 § 2 0.

This is a measure of the continuous delivery of correct serduring the mission interval
Jt,t + s]. Attimet = T;, this function is nothing else but the conditional survifanction
of rv X;11 = T;y1 — T; givenTy, ..., T;. This will be denoted byR;(s). We also define the

(conditional) mean time to failure at timeMTTF(t), by
+oo
MTTEF(t) :/ Ry(s)ds.
0

The mean time to failure @t= T7; will also denoted by TTF; and isE[ X, | T, ... , Ti].
During the operational life of a software, repairs are eatrout when it fails to perform
correctly. In such a case, time to repair, time to reboot yiséesn and others factors affect the
dependability of a product. Thus, we may define the softwaadability as a measure of the
delivery correct service with respect to the alternatiomexct and incorrect service. Availability

is highly dependent on the maintenance policies of the swéiw We do not go into further
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details on dependability in operational phase. Indeed,ogad here on the reliability attribute
of the software as most of the literature on software rdiigbnodeling does. We refer to [4,

Chap 2] for an account for dependability during the operatiphase.
3 Black-box software reliability models

In this section, onlydynamic modelsvill be discussed. That is, we are only concerned with
models which consider failure process as a stochastic gsot® other words, time is an essen-
tial component of the description of the models. On the dilaed static modelsire essentially
capture-recapture models. For a good account for statiefapde refer to [12, Chap 5], [6].
A recent evaluation of capture-recapture models in so#vesngineering context is [13]. Our
overview of dynamic models closely follows [1, Chap 2], [14£], [15]. We assume throughout
this section that any corrective action is instantaneodsaich detected fault is removed.

A basic way to represent time evolution in confidence in avgfe is as follows. At instant
0, the first failure occurs at timg according a rvX; = T, with hazard rate;;. Given time
Ty = t;, we observe a second failure at timeat rater,. Functionr, is the hazard rate of the
inter-failure rv X, = T, — T givenT; = t;. Choice ofr, is based on the fact that one fault
was detected at timg. At time ¢y, a third failure occurs at; with failure rater;. Function
r3 IS the hazard rate of the 3 = T3 — T, givenT; = t{, T, = t, and is selected according
to the “past” of the failure process at timg two observed failures at times and¢,. And
so on. It is expected that, due to a fault removal activityfience in the software’s ability
to deliver a proper service will be improved during its lIjete. Therefore, a basic model in

SR has to capture a phenomenomeadiability growth. Reliability growth will basically follow



from a sequence of inequalities of the following form
rip1(t — t) <mi(t;)  ont > ¢, (1)

and/or from selection of decreasing hazard rate$. We illustrate this “modeling process” on
the celebrated Jelinski-Moranda model (JM) [16]. We assameéori that software includes
only a finite numbetV of faults. The first hazard rate is(t ; ¢, N) = ¢N where¢ is some
nonnegative parameter. From tifie = ¢,, a second failure occurs with the constant failure
ratery(t; ¢, N) = ¢(N —1), ... In a more formal setting, the two parametarsind¢ will be
encompassed in what we calbackground historyF,, which is any background information
that we may have about the software. Then “the failure rat¢fi® software is represented by

the function

+oo
Ve >0, ro(t; Fo) =Y ri(t—Tix; Fo)llm ,mi(t) (2)
i=1

which is called theoncatenated failure rate function [2]. An appealing graphical display of

a path of this stochastic function is in Figure 1 for (JM). V@ cewrite (2) as

rC(t; Qs?N)
Ngr——y
S
| ¢
0 Z‘f] ‘tz 23 -t t

Figure 1. Concatenated failure rate function for (JM)

At Fo,N(t),Ty,... , Tnw) = (N — N(t)) 3

FunctionA(-) will be called thestochastic intensitpf the pp N(-). We see that stochastic

intensity for (JM) is proportional to the residual numbebafjs at any timeand each detection
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of failure results in a failure rate whose value decreasasmuntp. This suggests that no new
fault is inserted during a corrective action and any bug rdoutes in the same manner to the
“failure rate” of the software.

To go further, we replace our intuitive presentation in ak&stic modeling framework.
Justification for what follows is that almost all publisheafte/are reliability models can be
interpreted in the foregoing framework. Specifically, talbows a complete overview of the
stochastic properties of the panoply of available modetbauit referring to their original pre-

sentations.
3.1 Self-Exciting Point Processes

A slightly more formal presentation of the previous constien of the point procesd’;) would

be: we have to specify all the conditional distributions

L(X; | Fo,Tin,.. . Th), i>1.

The sequence of conditionitfg, { Fy, 71}, { Fo, 11, T2}, - . . should be thought of as the natural
or internal history on the pp attimésTI;, T, ... respectively. So that, function is the hazard

rate of the conditional distributiod(X; | Fo,Ti—1,... ,11), thatis, when it has a pdf

) : t
ri(t; Fo,Tic1,...,Th) = fxilFo i 1, (1) ' @

N RX,L'|.7:0,T:,'—1a--- T (t)

This leads to the following expression of the stochastiensity

= IfxiFot 1y m(t —Tic1)
)‘(t 3 -7:07 N(t)aTlv s 7TN(t)) = z 1[T1'—17Ti[(t)' (5)

i=1 RXi|-7'—O:T:,'71,...,T1 (t - Ti_l)

If we turn back to the (JM) model, we hayg = {¢, N} and

fX,-\fo,n,l,...,Tl(t) = ¢(N - (l - 1)) eXp (—¢(N - (Z - 1)) t) 1[0,+oo[(t)-



Continuing in this way, this should lead to the martingalprapch for analyzing pp, that es-
sentially adheres to the concepts of compensator and stiich@tensity with respect to the
internal history of the counting process. In particulag, lésft continuous version of the stochas-
tic intensity defined in (5) may be thought of as the usual istalle intensity of a pp in the
martingale point of view (see e.g. [17, Th11l] and refererthesein). van Pul gives in [18] a
good account for what can be done using the so-calje@dmic approaclof pp. We do not go
into further details here. We prefer embrace the enginggraint of view developed in [15].
Itis clear from (5) that the stochastic intensity is excitgdhe history of the pp itself. Such
stochastic processes are usually calleskH-exciting point proces&SEPP). What follows is

from [1], [2], [15].

1. H, = {N(t),T1,... ,Tn} will denote the internal history a¥ (-) up to timet.

2. N(-) is said to be conditionally orderly if for any, C H,, we have

P{N(t+dt) — N(t) > 2 | Fo,Qi} = P{N(t+dt) — N(t) = 1 | Fo, Q. }O(d).

whereO(dt) is some real-valued function such thiait ;. ., O(dt) = 0.

With @, = 0 and Formula (6), we ge&@{N(t + dt) — N(t) > 2 | Fo} = o(dt) whereo(dt)

is some real-valued function such thaty,_,, o(dt)/dt = 0. This is the usual orderliness or
regular property of a pp [11]. Conditional orderliness idbtinterpreted as saying that given
Q. and F,, asdt decreases to zero, the probability of at least two failueEsiging in a time
interval of lengthdt tends to zero at a rate higher than the probability that &kant failure in

the same interval does.

Definition 3.1 A pp N(-) is called a self-exciting point process if



1. N(-) is conditionally orderly;
2. there exists a nonnegative functidf ; 7o, H;) such that
P{N(t+dt) — N(t)=1| Fo,Hs} = At ; Fo,Hs)dt + o(dt) (6)
and E[A(t ; Fo,Hy)] < +oo foranyt > 0
3.P{N(0)=0|Fo} =1
Function) is called the stochastic intensity of the SEPP.

We must think\(t ; F,, H,) of as a function ofFy, t andN(t), T4, ... ,Tn(). Degree to which

A(t) depends oriH; is formalized in the notion alemory A SEPP is of memoryn, if

— form = 0: A\(-) depends ofi{; only through/V(¢) the number of observed failures at time
— form = 1: A\(-) depends of#, only throughN () andTyy;

— form > 2: () depends or; only throughN (t), Ty, - - - Tn(t)—m+1,

— form = —oo: A(+) is independent of the histof; of the pp. We also say that stochastic

intensity has no memory.

When stochastic intensity depends only on a backgroundrkigi,, then we get ®oubly
Stochastic Poisson Proced3SPP). Thus, the class of SEPP also encompasses the fadmily o
Poisson Processes. If intensity is a non-random congtane have the Homogeneous Pois-
son Process (HPP). A SEPP with no memory and a determinigéinsity function\(-), is a
NonHomogeneous Poisson Proc@481PP). In particular, if we turn back to the concatenated
failure rate function (see (2)), then selecting a NHPP modeksponds to selecting some con-
tinuous deterministic function as.. We see that, givel; = t¢;, the hazard rate ok, , is
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riv1(+) = re(- + t;) = A(- + t;). We retrieve a well-known fact for a NHPP: the (conditional)
hazard rate betweeith and: + 1th failure times and the intensity functiox(-) only differ
through the initial time of observation of the two functiond/e list properties of SEPP [15]
which are of some value for analyzing the main charactesgsti models. We will omit to write

the dependence if.

Counting statistics for SEPP

The probability distribution of &V (¢) is strongly related to the conditional expectation
Mt N(t) = E[At; Hy) | N(©)].

This function is called theount-conditional intensityFor a SEPP)(- ; N(t)) satisfies

(s N(B) = lim AN (EFd) = V(O = 1] V()
’ dt—0 dt

o P{N(@+d) — N > 1] N@1))

= a0 dt :

Then we can obtain the following explicit representationf§ N (t) = n} withn > 1

"o n tiyr
P{N(t)=n} = H Alti; i —1)exp ( — Z/ Au; z)du) dty...dt, (7)
0<ty < <tn<t 3y = Yt

W|th to == O andtn+1 =1.

ROCOF(¢), defined as the derivate o1 (¢), is then
ROCOF(t) = E [X(t : N(t))] = B\t Hy).

We see that notion dROCOF(t) and stochastic intensity coincide only if intensity is aetet

ministic function of time, i.e. the pp is a NHPP.
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Likelihood function for a SEPP

Assume that we observe a fixed numbef failures. Then the likelihood function is
fT1,...,'I;'(t17"' 7tz) = A(tl, O)HA(tk, k_l’tl,... 7tk—1)
k=2

t i tg
exp(—/ )\(3, O)ds—Z/ /\(S, k—l,tl,... ,tk_l)d8)8)
0

k=2 Y tk-1
If we observe the failure process up to timé¢he joint distribution ofV (¢), Ty, ... , Ty is

givenin [15, Th6.2.2].

Reliability and MTTF functions

t+s
Ry(s) = exp (—/ A(w; N(t),Ty,. .. 7TN(t))dU>
t

In particular at instart’;, we obtain

exp(—fos)\(u; 0)du ) ifi=20
Ri(s = Tits ) e
exp (— o AT, ,T,-)du) if 4 > 1.
The following characterization @memory SEPP is intuitively clear from the definition of

the stochastic intensity of a SEPP.

Theorem 3.2 N(+) is a SEPP witld-memory is equivalent t&¥/(-) is a Markov process.

This result explains why a very large part of SR models maydselbped in a Markov frame-
work (see e.g. [12], [3, Chap 10]). In particular, all NHPPdats are of Markov-type. In
fact, it can be shown [15] that a SEPP withmemory corresponds to a proc€$s) which is a
m-order Markov chain, thati§(T; 4 | T5,... ,T1) = L(Ti51 | T3y - - - Timmy1) fOr i > m.

A last relevant result is concerned witkmemory SEPP.
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Theorem 3.3 A 1-memory SEPP with a stochastic intensity satisfying
At N(t), Tne) = FIN(8),t — Tiy)

for some real-valued functiof, is characterized by a sequence of independent interr&ailu

durations(X;). In this case, density probability function &t is

e = £i= 15 aexp (= [ sli= 15 wu). ©)

Such a SEPP was called a generalized renewal process ind@&libg’; is the sum of indepen-
dent but not identically distributed rv. Moreover, it is asual renewal process when function
f does not depend oN (t).

To close this presentation of self-exciting processes, ovetput that we only use a “con-
structive” point of view. Our purpose, here, is not to distlse existence of point processes
with a fixed concatenated failure rate function or stoclkastensity. However, we emphasize
that orderliness condition and existence of the limit ini(6Definition 3.1 are enough to spec-
ify the pp (see e.g. [20]). Itis also shown in [14, Th4.1] thatder conditional orderliness
condition, concatenated failure rate function well-dediaeSEPP with respect to operational
Definition 3.1. Moreover, an easily checked criterion fondiional orderliness is given [14,
Th4.2]. In particular, if hazard rates in (4) are locally bded then conditional orderliness

holds.
3.2 Classification of SR models

We obtain from the concept of memory for a SEPP, a classifinati the existing models. It is
appealing to define a model with a high memory. But, as ushalpay-off is the complexity in

the statistical inference and the amount of data to be dellec
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3.2.1 0-memory SEPP

A first type of0-memory SEPP is whek(t ; Hy, Fo) = f(N(t),Fo). We get major common

properties of this first class of models from Subsection 3.1.
— N(-) is a Markov process (a pure birth Markov process).

— (X;) are independent (givefi;). From (9), rv.XX; has an exponential distribution with pa-
rameterf(i — 1,F,). This easily gives a likelihood function given inter-faudurations

(X3).

-T; = 22:1 X} is an Hypoexponential distributed rv as the sum ofdependent and expo-

nentially distributed rvs [21].

— Ri(s) = exp (—f(N(t), Fo)s). The reliability function only depends on the current numbe

of failuresN(t). We haveMTTF(t) = 1/f(N(t), Fo).

Example 3.1 (JM) Jelinski-Moranda model has been introduced in Section & fMibdel has
to be considered as a benchmark model, since all authogilegia new model emphasize that
their model includes JM as particular case. The stochadgasity is given in (3) (see Figure 1
for a path). Besides properties common to the class of SERBidared in this paragraph,
we had the following additional assumptions: the softwadudes a finiteV of bugs in the
program and no new fault is inserted during debugging. We atsted that each fault has
the same contribution to the un-reliability of the softwarEhese assumptions are generally
considered as questionable. We derive from (7) that thelalision of rv N (¢) is Binomial with

parametersV andl — exp(—¢t). The main reliability metrics are:

ROCOF(t) = Npexp(—¢t), MTTF,; = N—;wﬁ Ri(s)=exp(— (N —i¢)s). (10)
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We also mention the Geometric model of Moranda [22] wherestbehastic intensity is
Mt ; He, N ) = AcV® where) > 0 ande €]0, 1].

A second class of-memory SEPP is when the stochastic intensity is actuallyre-f
tion of timet, N(t) (andF,). In fact we only have in this category of models, SEPP with

A(t ;5 Hey Fo) = (N — N(t))p(t) for some deterministic functiop(-) of time ¢. Note that

o(t) = ¢ gives (IM).
— N(-) is a Markov process.

— Letus denotqot ¢(s)ds by ®(t). We deduce from (7) tha¥ (¢) is a Binomial distributed rv
with parametersy andp(t) = 1 — exp(—®(¢)). This leads to the term Binomial-type model

in [23]. It follows that E[N ()] = Np(t) andROCOF(t) = N(t) exp(—®(¢)).
— Ri(s) = exp (— (N = N(1))(®(s +1) — @(1))).

— We get the likelihood function given failure timés;) from (8)

N!
(N —9)!

le,...,Ti(tl, e ’ti) =

exp (= (N —1)®(t;)) H p(t;) exp (= 0(1;))

— The pdf of IvT} is fr,(t:) = i (¥) exp(—®(t;))e(t:)[exp (—@(t;)) — 1]~

Littlewood’s model in [24] is an instance of a Binomial modeth ¢(t) = «/(8 + t) and
o, 3> 0.

3.2.2 NHPP model:\(t ; H., Fo) = f(t; Fo) and is deterministic

A large part of models is of NHPP-type. We refer to [25] and@6ap 5] for a complete list of
such models. The very appealing properties of the countinggss explains the widely use of

this family of pp in SR modeling.
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— N(-) is a Markov process.

— We deduce from Definition 3.1 that for atyyN (¢) is a Poisson distributed rv with parameter
At) = fot f(s; Fo)ds. Infact, N(-) has independent (but nonstationary) increments, that is,

N(t1),N(t2) — N(t1),...,N(ti—1) — N(t;) are independent rvs for arfyy, . .. ,t;).

— The mean value functial (¢) is A(t). ThenROCOF(t) = f(t; Fo). Such a model is called
a finite NHPP model ifV/ (+00) < +o0 and an infinite one whef/(+o00) = +o0. Indeed,

if M(+00) < +oo then we only consider a finite number of failure times withiability 1.
— Ry(s) = exp (= (A(t+5) — A(1))).

— Likelihood function given failure timefl;) is from (8)
Fruom(t, . ) = exp (—A(t:) [ £t Fo). (11)
k=1
Example 3.2 (GO) This model is characterized by the following mean value fiamcand in-
tensity function: A(t) = M (1 —exp(—¢t)) andA(t ; ¢, M) = Meexp(—¢t) fort > 0.
Parameterg and M are the failure rate per fault and the finite expected (ihinamber of
faults contained in the software. We see that, at any tinke intensity function is propor-

tional to the expected remaining number of fawts; ¢, M) = ¢(M — A(t)). Thus, (GO) is

essentially a NHPP-version of (JM).

Example 3.3 (MO) For the Musa-Okumoto model [3], mean value function andhsitg func-
tion areA(t) = In (A0t + 1)/0 and(t ; 6, ) = A/ (A6t + 1) respectively) is the initial value
of the intensity function and is called the failure intensity decay parameter. It is gas#len

that (¢ ; 6,\) = Xexp(—6A(t)). Thus, intensity function exponentially decreases with th
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expected number of failures and shows that (MO) may be utatetsas a NHPP version of

Moranda’s Geometric model.

As quoted in [26], using a NHPP model may appear inapprapt@idescribe reliability
growth of a software. Indeed, this is debugging which moslifiee reliability. Thus, the true
intensity function changes probably in a discontinuousmeaduring corrective actions. How-
ever, Miller showed in [27] that a binomial-type model of Sabtion 3.2.1 may be transformed
in a NHPP variant assuming that the initial number of faudta iPoisson distributed rv with
expectationNV. For instance, (JM) is transformed into (GO). Moreover, I&tilshowed that
binomial-type model and its NHPP variant are indistingaldle from a single realization of the
failure process. But, these two models differ as prediatimael because estimates of parame-

ters are different.

3.2.3 1-memory SEPP withA(t ; H, Fo) = f(N(t),t — Ty, Fo)

N(-) is not Markovian. But the inter-failure duratioX’;) are independent rvs giveln, (see

Theorem 3.3) and the pdf of t¢; is given in (9).

Example 3.4 (LV) Stochastic intensity of the Littlewood-Verrall model [28]

a

P(N(E) + 1)+t =T

A5 Heya,9(r) = (12)

for some nonnegative functiaf(-). We briefly recall the Bayesian rationale underlying the def
inition of this model. Uncertainty about the debugging @emn is represented by a sequence
of stochastically decreasing failure ratés),>, that is

Aj<aqAjq, ie (VEeR:P{A; <t} >P{A;_ < t}). (13)
Thus, using stochastic order allows a decay of reliabilityol takes place when fault are
inserted. Prior distribution of ry; is Gamma with parametesset(i). It can be shown that
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Figure 2: A path of the stochastic intensity for (LV)

inequality (13) holds wher)(-) is a monotonic increasing function of GivenA; = A;, rv
X; has an exponential distribution with parameXgr Unconditional distribution of nX; is a

Pareto distribution with pdf

N . O
f(ml ) a,zﬁ(z)) - (331‘ + Qb(i))o"H.

Thus, the “true” hazard rate of; is r;(¢t ; «,9(i)) = «/(t + ¥(7)). In[29], parameters
andy are estimated using Bayesian method. The correspondinglnsochlled a Hierarchical

Bayesian model in [2] and is alsalanemory SEPP. Ify(-) is linear ini, we have

Pi+1) \° B(i+1)
R,-(t):(m) , MTTF; = ———=.

We also mention the Schick-Wolverton’s model [30] whewe ; H;,®,N) = ¢(N —

N(t))(t — Tnw)) andg > 0, N are the same parameters as for (JM).

3.2.4 m > 2-memory

Instances of such models are rare. ko= 2, we have the time-series models in [31], [32].
Form > 2, we have the adaptative concatenated failure rate modal [88] and the Weibull

models of Pham [34]. We refer to original contributions fetails.
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4 White-box modeling

Most work on software reliability assessment adopts thekstaox view of the system, in which
only the interactions with the environment are considefidte white-box(or structural) point
of view is an alternative approach in which the structurehef system is explicitly taken into
account. This is advocated for instance in [35], [36]. Speally, the structure-based approach
allows analyzing the sensitivity of the reliability of thgstem with respect to the reliability of
its components. Up to recently, only a few papers proposedtsire-based software reliability
models. A representative sample was (in discrete time) [33], [38] and (in continuous time)
[39],[36], [19],[40]. An up-to-date review on the architate-based approach is given in [41].
We will present the main features of the basic Littlewood@d®l which are common to most
previous cited works. The discrete time counterpart is @g&sunodel.

In a first step, Littlewood defines an execution model of tHensoe. The basic entity is the
standard software engineering concepnaoiduleas for instance in [35]. The software structure
Is then represented by tlall graph of the setM of the modules. These modules interact by
execution control transfer and, at each instant, conteslih one and only one of the modules
which is called the active one. From such a view of the systeehuild up a continuous time
stochastic procegsY;):>o Which indicates the active module at each timeX;);>, is assumed
to be a homogeneous Markov process on the\get

In a second step, Littlewood describes the failure proseassociated with execution ac-
tions. Failure may happen during a control transfer betviewermodules or during an execution
period of any module. During a sojourn of the execution pssda the modulé, failures are
part of Poisson process having parameteMWhen control is transferred from module M

to modulej € M, a failure may happen with probabilifyz, 7). Given a sequence of executed
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modules, the failure processes associated with each statedependent. Also, the interface
failure events are independent on each other and on thedgihwcesses occurring when a
module is active.

The architecture of the software is combined with the failobehavior of the modules and
that of interfaces into a single model which can then be amaly This method is referred
as the “composite-method” according to the classificatfoarkov models in the white-box
approach proposed in [41]. Basically, we are still intezdsh the counting proces$(-).

Another interesting point process is obtained by assunmatthe probability of a secondary
failure during a control transfer i8. Thus, assuming that(s,j) = 0 for all ¢,57 € M in
the previous context, we get a Poisson process whose pamamsetodulated by the Markov
procesg X;):>o. This is also called a Markov Modulated Poisson Process (MMR is well-
known (e.g. [17]) that the stochastic intensity of a MMPPhwiéspect to the historyt; vV Fo,
whereF, = 0(X,,s > 0), isAx,. Thus,N(-) is an instance of a DSPP.

Asymptotic analysis and transient assessment of disioibaff rv N (¢) may be carried out
in observing that the bivariate process;, N (t)):>o is a jump Markov process with state space
M x N. Computation of all standard reliability metrics may befpened as in [42],[43]. We
refer to these papers for details and for calibration of tloelets.

It can be argued that models of Littlewood-type are inappab@ to capture a reliability
growth of the software. In fact, Laprie et al. [19] has depeld a method to incorporate such
a phenomenon which can be used, for instance, in the Litdekganodel to take into account
reliability growth of modules in the assessment of the dVeetiability (see [43]).

In the original papers about Littlewood’s model for modwsaftware, it is claimed that if
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failure parameters decreaseitthenN(-) is asymptotically a HPP with parameter

A= w0 D QG )uli, 5) + A,

ieEmM JEM

where( is the irreducible generator of the Markov procéss),-, and its stationary dis-
tribution. = (7) is to be interpreted as the proportion of time the softwargsed in module
(over a long time period). We just discuss the case of a MMIBRvErgence té of the failure
parameters; (i € M) may be achieved in multiplying each of them by a positivdata and
in considering that decreases t0. So that, the new stochastic intensity of the MMPPAg, .
As ¢ tends to0, it is easily seen from a MMPP with a modulating two-statesida process
(X¢)e>o that, for the first failure tim@’, probabilityP{T" > ¢} converges td. Therefore, we
can not obtain an exponential approximation to the distiaowof rv 7" ase tends td). Thus, we
can not expect to derive a Poisson approximation to theiloliston of N(-). In fact, the right
statement is: if failure parameters are much smaller tharswitching rates between modules,
N(-) is approximately a HPP with parameter For a MMPP, a proof is given in [44] using
martingale theory. Moreover, the rate of convergence ial tedriation of finite dimensional-
distributions of N (-) to those of the HPP is shown to besinThis last fact is important because
user has no information on the quality of the Poissonian@ppration given in [36]. However,
there is no rule to decide a priori if the approximation isimystic or pessimistic (see [43]).
A similar approach to [44] is used in [45] to derive Poissopragimation and rate of conver-
gence for more general pp than MMPP, including the complétkelvood’s counting process
[46], the counting model of [43]. Such asymptotic resuligeg “hierarchical-method” [41] for
reliability prediction: we solve the architectural modabesuperimpose the failure behavior of

the modules and that of the interfaces on to the solutionddipt reliability.
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5 Calibration of model

Suppose that we have selected one of the black-box modekxtib8 3. We obtain reliability
metrics which depend on the unknown parameters of the modalis, we hate to estimate
these metrics from the failure data. We briefly review stadaaethods to get point-estimates
in Subsections 5.1, 5.2.

One major goal of the SR modeling is to predict the future @a@timetrics from the gath-
ered failure data. It is clear from Section 3 that a centrabfgm in SR is to select a model
because the huge number of available models. Criteria tpacerSR models are listed in [3].
The authors propose quality of assumptions, applicabsityplicity and predictive validity.
To assess the predictive validity of models, we need methdush are not only based on a
goodness-of-fit approach. Various techniques may be usetbtuprequential likelihood, etc.
We do not discuss this issue here. A good account for predicéilidation methods are givenin
[47], [48], [4, Chap 4], [3], [11] where comparisons betweeodels are also carried out. Note
also that predictive quality of a SR model may be drastidafiygroved using preprocessing of
data. In particular, statistical tests have been desigmedyture trend in data. Thus, reliability
trend analysis allows using SR models which are adaptediadbilgy growth, stable reliability
and reliability decrease respectively. We refer to [49],Ghap 10] and references therein for

details. Parameters will be denotedbit can be multivariate).
5.1 Frequentist procedures

Parametef is considered as taking an unknown but fixed value. Two bastbads to estimate
the value ofd are: method of maximum likelihood (ML), the least squareshod. That is,

we have to optimize with respect #oan objective function which depends érand collected

21



failure data to get point-estimate Another standard procedurieferval estimationgives an
interval of values as estimate &f We only present point-estimation by method of maximum
likelihood on (JM) and NHPP models. Others models may beyaedlin a similar way. ML
estimations possess several appealing properties that thalprocedure widely used. Two of
these properties are the consistency and the asymptotitatity to getconfidence intervdbr

the point-estimate. Another one is that the ML estimatef(8j (for one-to-one functiorf) is
simplyf(@) whered is the ML estimate of. We refer to [3, Ch 12] for a complete view of the

frequentist inference procedures in SR modeling context.

Example 5.1 (JM) Parameters ar¢ and N. Assume that failure data are given by observed
valuesz = (zi,...,z;) of rv's Xy,... , X;. If (¢, N) are the true values of parameters, then

the likelihood to observe is defined as

L(¢,N; z) = fx,,.. xi(z; ¢, N) (14)

where fx, . x,(- ; ¢,N) is the pdf of the joint distribution ofXy,... ,X;. The estimate

(qAS, N) of (¢, N) will be the value of ¢, N') which maximizes the likelihood to observe data

fxi x (2 é, JV) = max, v L(¢, N ; z). Maximizing the likelihood function is equivalent
to maximizing the log-likelihood functiotn L(¢, N ; z). From the independence of r{(<;)

and (14), we obtain that

InL(¢,N; z) = lnﬁqS(N —(k—=1))exp (= ¢(N — (k—1))z4).

Estimateg$, V) are solution of% In L(¢, N ; ) = 55 In L(¢, N ; ) = 0:

i

¢ =

7 1 7
S > SNTRTPD DY T Rl (R s
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The second equation may be solved by numerical techniqukthan the solution is put into
the first equation to ge}. These estimates are plugged into formulae (10) to get Mimases

of reliability metrics.

Example 5.2 (NHPP models)Assume that failure data ate= (¢4, ... ,t;) the observed fail-
ure times. The likelihood function is given by (11). Thus; (MO) model, ML estimates of

parameterg,, 5; (whereg, = 1/60, 8, = \d) are solution of [3]

. i 1 < 1 it

In(14 Bit;)) B = 1+ Bty (14 Bits)In(1 + Bity)

Assume now that failure data are the cumulative numbersifrés n,, ... ,n; at some
instantsd,, ... ,d;. The likelihood function is from the independence and Rwis#istribution

of the increments of the counting proce$s:)

Lo 1) = T[ Lol Aol P () = Aolde))) (do = o = ),

Ee1 (?’Lk — nk_l).

whereAy(-) is the mean value function d¥(-) given that is the true value of the parameter.

For (GO) model, parameters aié, ¢ and their ML estimates are

]\//.7 _ 1, d; eXP(—¢di)ni _ i (nk - nkfl)(dk EXP(—¢dk) —dy 1 eXP(—QSdkfl))
I —exp(—gd;) 1—exp(—gd;) = exp(—¢di—1) — exp(—gdy)
The second equation is solved by numerical techniques &wblation is incorporated into the

first equation to geﬁ. Estimation of reliability metrics are obtained as for (JM)
5.2 Bayesian procedure

An alternative to frequentist procedures is to use Bayest@tinstics. Parametéris considered
as a value of a r®. A prior distributionof © has to be selected. This distribution represents

the a priori knowledge on the parameter and is assumed todhadére(-). Now, from the
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failure dataz, we have to update our knowledge ®&nlf L(8 ; z) is the likelihood function of
the data, then Bayes theorem is used as updating formulaf guf posterior distributiorof ©

given data is

— L(0; z) me(0)
B f]@ L(0; z)me(0)do’

fol2(0)

Now, we find an estimatof § by minimizing the so-callefosterior expected losy,, l(@, 0) fol(0)do
wherel(-, -) is the loss function. With a quadratic loss funct'mﬁ,e) = (§— 6)?, it is well-

known that the minimum is obtained by the conditional exagoh

9= (O |2l = [ 0f0.(0)00.

Itis just the mean of the posterior distribution®f Note that all SR models involve two or more
parameters, so that the previous integral must be consideyenultidimensional. Therefore
computation of such integrals are by numerical technig8asxe a decade, progress has been
made on such methods: e.g. Monte Carlo Markov Chain metisedsq.g. [50]).

Note that prior distribution can also be parametric. In gahgGamma or Beta distribu-
tions are used. So that, additional parameters need to inea¢stl. This may be carried out
by using the ML method. For instance, this is the case fortfana)(-) in the (LV) model in
[28]. However, such estimates may be derived in the Baydsaamework and we obtain a hi-
erarchical Bayesian analysis of the model. Many models ofi@e3 have been analyzed from
a Bayesian point of view using MCMC methods like Gibbs sanmlior data augmentation
method (see [51] for (IM), (LV); [52] for NHPP model, [53] f8rshaped models and reference

therein).
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6 Currentissues

6.1 Black-box modeling

We list some issues which are not new but covering well-damted limitations of popular
black-box models. Most of them have been recently addreasddpractical validation is
needed. We will see that the prevalent approach is to use HePNmodeling framework.
Indeed, an easy way to incorporate in a NHPP model variowsriaaffecting the reliability of
a software, is to select a suitable parameterization ofrttensity function (or ROCOF). Any

alternative model combining most these factors will be dfiea

6.1.1 Imperfect debugging

The problem of imperfect debugging may be naturally adeegs the Bayesian framework.
Reliability growth is captured through deterministicallgnincreasing sequence of failure rates
(r:(+)) (see (1)). In Bayesian framework, parameters pf) are considered as random. So that,
we can deal with stochastically decreasing sequence ¢fyygsee (13)), which allows to take
into account the uncertainty on the effect of a correctit@mac An instance of this approach is
given by the (LV) model (see also [29], [34]).

Note that the binomial class of models can incorporate actigéecorrection of a detected
bug. Indeed, assume that each fault detected has a praypakiih be removed from the soft-
ware. The hazard rate aft@r— 1) repairsisp(N — p(: — 1)) (see [23]). But, the problem of
eventual introduction of new faults is not addressed. Kmrgsw solves the case of a single in-
sertion using a nonhomogeneous birth-death Markov modhes. flas been extended to multiple
introductions in [55]. Shanthikumar and Sumita [56] pragaba multivariate model where mul-

tiple removing and insertions of faults are allowed at eagair. This model involved complex
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computational procedures and is not considered in liteeafRecent advance in addressing the
problem of eventual insertion of new faults is concernethittite NHPP models. It consists in
generalizing the basic proportionality between the intgrignction and the expected number

of remaining faults at timé of (GO) model (see Example 3.2) in

A(t) = o(t)[n(t) — A(%)]

where¢(t) represents a time-dependent detection-rate of a faltlf;is the number of faults in
the software at time, including those already detected and removed and thoseeasduring

the debugging process({) = ¢ andn(t) = M in (GO)). Making¢(-) time-dependent allows
representing a phenomenon of learning process which iglgloslated to the changes in the
efficiency of testing. This function can monotonically iaase during testing period. Select a
nondecreasing S-shaped curvegds gives an usual S-shaped NHPP model. Further details
may be found in [6, Chap 5] and references therein.

Another basic way to consider insertion of new faults is te asmarked point process
(MPP) (e.g. [15, Chap 4]). We have the pp of failure detectiores7; < 7, < --- and
with each datd’;, we associate a matk; which represents the cumulative number of faults
removed and inserted during the debugging phase. We retiasual pp if all marks are For
such a model, we are interested in the mark-accumulatoep@fi(g) M; (My = 0). A basic
instance of MPP is the compound Poisson Process wkiéneis a HPP and//;’s are i.i.d. and
independent ofV(-). This may also be used to model clustering of failures (s&§.[5Such
MPP are not SEPP of Section 3.1 because orderliness canfditis. This framework was used
by van Pul [18] to extend models of (JM) type to incorporate plossibility of inserting new

faults during repair.
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6.1.2 Early prediction of software reliability

A major limitation of SR models of Section 3 for software emggring community is to provide
no help for managing in the earlier phase of developmentdstirtg) of a product. Indeed,
calibration of these black-box models requires a relafilage set of failure data. This is rarely
encountered in the earlier life-cycle of a software. In s@®@ese, we are now concerned with
the general topic of software quality assessment (whicludes dependability concepts) with
no failure data. Thus, we have to develop statistical moaetgiality which are not directly
related to the knowledge of a part of the failure processutth& case, model must be based on
a priori information on the product: judgment of expertsalkify of the development process,
similar existing products, software complexity, etc. Imparating subjective information leads
naturally to Bayesian statistics. We refer to [2, Chap 5¢8]discussion in this context. Since
we are mainly interested in reliability assessment, weiststurselves to more and less recent
issues relying quality control to the software reliability

A widespread idea is that complexity of a software is an imtifactor of the reliability
attributes. Much work has been devoted to quantify the sofveomplexity througkoftware
metrics(see e.g. [58]). Typically, we compute Halstead and McCadieins which are program
size and control flow measures respectively. It is worthyaierthat most software complexity
metrics are strongly related to the concept of structurefifvare code. Thus, including com-
plexity factor in SR may be thought of as a first attempt to iake account the architecture of
a software in reliability assessment. We turn back to ttgaesin Subsection 6.2. Now, how
to include complexity attributes in earlier reliabilityalgsis? Most of recent research focus on
the identification of software modules which are likely tapitone from data of various com-

plexity metrics. In fact, we are faced with a typical problefidata analysis that explains why
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literature on this subject is mainly concerned with procedwf multivariate analysis: linear
and nonlinear regression methods, classification mettedsniques of discriminant analysis.
We refer to [4, Chap 12], [59],[60] and references thereirditails.

Another empirical evidence suggests that the higher thetagrage, the higher the relia-
bility of the software would be. Thus, a model which incomies information on functional
testing as soon as it is available is of value. This issuedsested in a NHPP model proposed
in [61]. It consists in defining an appropriate parametéigzeof a finite NHPP model which
relates software reliability to the measurements that eamhivained from the code during func-
tional testing. Let: be the expected number of faults that would be detected givigite time
testing. The intensity functioi(-) is assumed to be proportional to the expected number of
remaining failuresA(t) = [a — A(¢)]¢(¢) whereg(t) is the hazard rate per-fault. Finally, the

time-dependent functiop(¢) is of the form

wherec(t) is the coverage function. That is, the ratio of the numberaieptial fault-sites
covered by time divided by the total number of potential fault-sites undemsideration during
testing. Functiore(¢) is assumed to be continuous and monotone as function of &stig.
Specific forms of functiore(-) allow retrieving some well-known finite failure models: exp
nential functionc(t) = 1 — exp(—¢t) corresponds to the (GO); Weibull coverage function
c(t) = 1 — exp (—¢t”) corresponds to the generalized (GO) model [62]; S-shapeerage
function correspond to S-shaped models [25], etc. Gokhadé gropose to use a log-logistic
function. We refer to [61] for details. Such a parameterraleads to estimate and the pa-
rameters of functiom(-). The model may be calibrated according to the different ldishe

software life-cycle. Here, in early phase of testing, anrapph is to estimate from software
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metrics (using procedures of multivariate analysis) andsuee coverage during the functional
testing using a coverage measurementtool (see e.qg. [4,LApE hus, we get early prediction
of reliability (see [63] for an alternative using informari from testing phases of similar past
projects).

6.1.3 Environmental factors

Most SR models in Section 3 ignore the factors affectingvgfe reliability. In some sense,
previously issues discussed in this section can be corsides an attempt to capture some
environmental factors. Imperfect debugging is relatetiédact that new faults may be inserted
during a repair. Complexity attributes of a software is styly correlated to its fault-proness.
Empirical investigations show that the development precessting procedure, programmer
skill, human factors, the operational profile and many ahactors affect the reliability of a
product (see e.g. [64], [4, Chap 13], [65], [66] and refeemtherein). A major issue is to
incorporate all these attributes into a single model. Atghesent time, investigation focus on
functional relationship between the hazard rate) of the software and quantitative measures
of the various factors. In this context, a well-known modethe so-called Cox proportional
hazard model (PHM) wherg(-) is assumed to be an exponential function of the environrhenta

factors:

ri(t) = r(t) exp <z": ﬁjzj(i)) (15)

wherez;(-)’s, called the explanatory variablesaovariates are the measures of the factors and
B;’s are the regression coefficients:) is a baseline hazard rate that gives the hazard rate when

all covariates are set to Therefore, given = (zy, ... , 2z, ), the reliability functionR; is

Ri(t | z) = R(t) exp (2": ﬂj%’(”) (16)
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with R(t) = exp (— fot r(s)ds). Formula (15) expresses the effect of accelerating or decel
ating the time to failure given. Note that covariates may be time-dependent, random. $n thi
last case the reliability function will be the expectatidifitonction in (16). Baseline hazard rate
may be any of the hazard rates used in Section 3. The famila@ipeters can be estimated
using ML. Note that one of the reasons for the popularity oMl that the unknowiB;’s may
be estimated by the partial likelihood approach withoutipgta parametric structure on the
baseline hazard rate. We refer to [67], [68], [11], [69] fengral discussion on Cox regression
models. Applications of PHM to software reliability modediare given in [12, Chap 7], [70],
[71] and references therein. Recently, Pham derives in gn2¢nhanced proportional hazard
(JM) model.

A general way to representinfluence of environmental faatarreliability is to assume that
stochastic intensity of the counting procégé ) is a function of somen stochastic processes

Ei(t),...,En,(t) or covariates
At He, Fo) = f(t, Ea(t), ..., En(t), Ty, ..., Tnw, N(t))

where?H; is the past up to time of the pp andF, encompasses the specification of the paths
of all covariates. Thus, functioR(t ; H;, Fo) may be thought of as the stochastic intensity
of a SEPP driven or modulated by the multivariate environialgyrocess E1(t), . .. , En(t)).
DSPP of Subsection 3.1 is a basic instance of such modelsaeddeen widely used in com-
munication engineering and in reliability. Castillo andeWiorek proposed in [73], a DSPP
with a cyclo-stationary stochastic intensity to represbateffect of the workload (measure of
system usage) on failure process. That is, intensity is ehasiic process assumed to have
periodic mean and autocorrelation function. A classic féomintensity of a DSPP ia(E;),

where(E;) is a finite Markov process. This is the MMPP discussed in 8aeti where E;)
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represented the control flow structure of the software. énsame spirit of system in a random
environmentQzekici and Sofer [65] use a pp whose stochastic intensitiis- N (t))A\(E),
whereN — N(t) is the remaining number of faults at timandE, is the operation performed by
the system at. (E;) is also assumed to be a finite Markov process. Transientsinalf/N (-)
may be carried out as in [42] from the Markov property of theabiate proceseN — N(t), E;).
We refer to [65] for details. Note that both pp are instande€SEPP with respective stochastic
intensitiesE[A(Ey) | He and(N — N(t))E[A(E:) | He] (H is the past of the counting process
up to timet). The practical purpose of such models has to be addressgearticular, further

investigations are needed to estimate parameters (sée [74]

6.1.4 conclusion

There exists other issues which are of value in SR engingeriim the black-box modeling
framework, we can think about alternative to approachesrted in Section 3. The problem of
SR growth assessing may be thought of as a problem of statiamalysis of data. Therefore,
prediction techniques developed in this area of researcheased. For instance, some authors
have considered neural networks (NN). The main interesRas8del is to be nonparametric.
Thus, we rejoin discussion on statistical issues of Sulzse6t3. NN may also be used as a
classification tool. For instance, identifying fault-peomodules may be performed with a NN
classifier. We refer to [4, Chap 17] and references thereiaficaccount of the NN approach.
Empirical comparison of the predictive performance of NNd®is and recalibrated standard
models (as defined in [75]) is given in [76]. NN is found to beoad alternative to the standard
models.

Computing dependability metrics is not an end in itself iftware engineering. A major

question is the time to release a software. In particular axe ho decide when to stop testing.
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Optimal testing time is a problem of decision making underartainty. A good account of
Bayesian decision theory for solving such a problem is inJBap 6]. In general, software
release policies are based on reliability requirement astifactors. We do not go into further
details here. We refer to [12, Chap 8] for a survey up to 19864d,[77], [78] for more recent

contributions to these topics.

6.2 White-box modeling

A challenging issue in SR modeling is to define models takimig account information about
the architecture of the software. To go further, softwaterects with hardware to make a
system. In order to derive model for a system made up of softaad hardware, the only point
of view is a white-box approach (see [49] and [79] for an actou this topic). We focus on the

software product here. Many reasons advocate for a stexi@ased approach in SR modeling:

— Advancement and widespread used of object oriented sgstlesigns. Reuse of compo-

nents.

— Softwares are developed in a heterogeneous fashion usmpganents-based software de-

velopment.

— Early prediction methods of reliability have to take inttcaunt the influence about the

structure of a software, of testing and reliability of itsxgoonents.

— Early failure data are prior to the integration phase and ttoncern testing part of the soft-

ware, not the whole product.
— Addressing problem of reliability allocation, resourdle@ation for modular software.

— Analyze sensitivity of the reliability of the software toet reliability of its components.
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As noted in Section 4, the structure-based approach hasléeety ignored. Foundations of
the Markovian models presented in Section 4 are old. Somalilons of Littlewood’s model
have been recently addressed in [43], in particular to alaaailability measures. Asymptotic
considerations in [45] show that such reliability modelderno be of Poisson-type (homoge-
neous or not depending on stationarity or not of the faillmemeters) when the product has
achieved a good level of reliability. It is important to pbout that no experience with such
kinds of models is reported in the literature. Maybe it imtetl to questionable assumptions of
modeling, as the Markov exchanges of control between msdule

An alternative way to represent the interactions betweempoments of software is to use
one of the available modeling tools which are based on stiichpetri nets, SAN network,
etc. But, if many of them offer a high flexibility in the repesgation of the behavior of the
software, computation of various metrics are very ofteriggared using automatic generation
of Markov chain. So that, these approaches are subject datitnaal limitation of Markov
modeling: failure rate of the components are not time-ddpet) the generated state-space is
intractable from the computational point of view; etc.

To overcome limitations of an analytic approach, a widesgraethod in performance anal-
ysis of system is discrete-event simulation. This pointieiwwas initiated by Lyu (see [4,
Chap 16]) for software dependability assessment. The glgarepresent the behavior of each
component as a nonhomogeneous Markov process whose dyeashution only depends on a
hazard rate function. At any timethis hazard rate function depends on the number of failures
observed from the component up to timeas well as the execution time experienced by the
component up to time Then rate-based simulation technique may be used to adofaossible

realization of such a Markovian arrivals process. The di/eeaard rate of the software is actu-
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ally a function of the number of failures observed from eagimponent up to time and of the
amount of execution time experienced by each component.e¥ige to [4, Chap 16] and [80]
for details. In some sense, the approach is to simulate theegarocess from the stochastic
intensity of the counting process of failures.

Long since, the theory of “coherent-system” allows analga system made up efcom-
ponents through the so-callestructure function If z; (¢ = 1,...,n) denotes the state of
component (z; = 1 if componenti is up and0 otherwise) then the state of the system is

obtained from computation of the structure function

| 1 ifsystemisup
O(z1,... ,20) = { 0 if system is down.

Function® describes the functional relationship between the stasysttm and the state of
its components. Many textbooks on reliability review methdor computing reliability from
complex function® assuming that state of each componentis a Bernoulli randorable (see
e.g. [17, Chap 2]). An instance of representation 2fraodule software by a structure function
taken into account control flow and data flow is discussed jnCJ2ap 7]. This “coherent-
system” approach is widely used to analyze the reliabilfitg@mmmunication networks. How-
ever, it is well-known that exact computation of relialyilis then a NP-hard problem. Thus,
only structure functions of few dozens of components canxbetyy analyzed. Large systems
have to be assessed by Monte-Carlo simulation techniqaes(g. [81], [82]). Moreover, in
case of fault-tolerant software, we are faced with a higkliable system which involves so-
phisticated simulation procedures to overcome limitatiohstandard ones. In such a context,
an alternative consists in using binary decision diagreses {4, Chap15], [83]). We point out
that structure function is mainly a functional represdaotadf the system. Thus, many issues

discussed in the context black-box modeling also have toddeegsed. For instance, how to

34



incorporate environmental factors identified in [34]?

As we can see, a great deal of research is needed to obtairealvax model which offers
the advantages motivating development of such an apprdapéning the “black-box” to get
accurate models is a hard task. Many aspects have to be seldregefinition of what is the
structure or architecture of software; what kind of dataloamexpected to future calibration of
models and so on. A first study of the potential sources of S3Ralailable during development
is given in [84]. This would help the creation of some benchotata sets which will allow
validating white-box models. What is clear is that actualgpess in white-box modeling can
only be achieved from an active interaction between thassits and software engineering

communities. All this surely explains why the prevalenti@geh in SR is the black-box’s one.
6.3 Statistical issues

A delicate issue in SR is the statistical properties of estors used to calibrate models. Main
drawbacks of ML method are well-documented in the litemtéinding ML estimators require
solving equations which may not always have a solution or ginagyan inappropriate solution.
For instance, Littlewood and Verrall give in [85], a crimifor N = oo and$ = 0 (with
finite nonzerox = N @) to be the unique solution of ML equations for (JM) model. Iiemn
of solving ML equations in SR modeling is addressed in [88F]] [88], [89]. Another well-
known drawback is that such ML estimators are usually uhstaith small data sets. This
situation is basic in SR. Moreover, note that certain motikés (JM) assume that software
contains a finite number of faults. So, using standard asytiegiroperties of ML estimators
may be questionable. Such asymptotic results are well-kriowhe case of i.i.d. sample. But
in SR, sample are not i.i.d. That explains why recent ingasibns on asymptotic normality

and consistency of ML estimators for standard SR modelsrasegwork of martingale theory
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which allows dependence in data. Note that overcoming quoedy finite (expected) num-
ber of faults needs unusual concept of asymptotic progerfiaetailed discussion is given in
[18] and references therein, in [88] for NHPP models. Suctkware important because these
asymptotic properties are the foundations of intervahestion (a standard alternative to point
estimate), of the derivation of confidence interval for paegers, of studies on asymptotic vari-
ance of estimators, etc. All these topics must be addressaetails to improve the predictive
quality of SR models.

It is clear that any model works well with failure data whichri@spond to the basic as-
sumptions of the model. But given data, a large part of madefsppropriate. A natural way
to overcome too stringent assumptions, in particular dfithistional type, is to use nonpara-
metric models. However, the parametric approach remagigyhprevalent in SR modeling.
Major attempt to gap this fill is [90], where a completely mmac ROCOF is estimated by
regression techniques (see also [91]). A recent work ofdvithod and co-authors [92] uses
nonparametric estimates for the distribution of inteftfiag times(X;). This is based on kernel
methods for pdf estimation (see [93]). Conclusion of awhsrthat results are not very im-
pressive but more investigation is needed, in particulsngugarious kernel functions. We can
think for instance to wavelets ([94]). Similar discussioay'be done in Bayesian approach of
SR modeling. Specifically, most bayesian inference for NldBSumes a parametric model for
ROCOF and proceeds with prior assumption on the unknowmpetexs. In such a context, an
instance of a nonparametric bayesian approach has redegityused in [95]. Conceptually,
nonparametric approach is promising, but is computatipmadensive in general and is not
easy to comprehend.

These developments may be viewed as preliminary works satgstical methods based
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on the so-called dynamic approach of counting processespasted for instance in the book
of Andersen et al [69] (the bibliography gives a large ac¢donresearch on this area). The
Aalen pioneer-work was on the multiplicative intensity nebd/hich, roughly speaking, writes

the stochastic intensity associated with a counting psass
A(t; Heso(Ye,s < 1)) = A(t) Y(#)

where\(-) is a nonnegative deterministic function, wherégs) is a nonnegative observable
stochastic process whose value at any timgeknown just before (Y'(-) is a predictable pro-
cess). Nonparametric estimation for such a model is discugs[69, Chap 4]. A Cox-type
model may be obtained in choosiliqt) = exp (Zj ﬁij(t)) with stochastic processes as co-
variatesZ; (see [96]). We can also consider additive intensity moddismthe multiplicative
form involves multivariate functions(-) andY () (e.g. see [97]). Conceptually, this dynamic
approach is appealing because it is well supported by a lttewretic results. It is worthy
of note that martingale theory may be of some value for amadygtatic models as capture-
recapture models (see [98], [99] for details). Thus, ajgblility of the dynamic point of view
on pp in the small data set context of software engineerioteerly a direction of further in-
vestigations (see e.g.[18] for such an account). Moredvielis shown that gain in predictive
validity is high with respect to standard approaches, thasea-oriented “transfer of technol-

ogy” must follow. That s, friendly tools for using such sstical material must be developed.

37



References

[1] Gaudoin O. Statistical tools for software reliability evaluation (french) PhD thesis,

Université Joseph Fourier - Grenoble I, 1990.

[2] Singpurwalla N.D., Wilson S.PStatistical Methods in Software Engineering: Reliability

and Risk Springer, 1999.

[3] Musa J.D., lannino A., Okumoto KSoftware Reliability: Measurement, Prediction, Ap-

plication. McGraw-Hill International Editions, Computer Sciencei8sy1987.
[4] Lyu M.R. editor. Handbook of software reliability engineerinlylcGraw-Hill, 1996.

[5] Software reliability estimation and prediction handbo@merican Institute of Aeronau-

tics and Astronautics, 1992.
[6] Pham H.Software Reliability Springer, 2000.

[7] Everett W., Keene S., Nikora A. Applying software relilitly engineering in the 1990s.

IEEE Trans. Reliabilityl998; 47:372—-378.

[8] Ramani S., Gokhale S.S., Trivedi K.S. Software religpgstimation and prediction tool.

Performance EvaluatioR000; 39:37—60.
[9] Laprie J.-C.Dependability: Basic Concepts and Terminolo§yringer, 1992.

[10] Barlow R.E., Proschan Statistical Theory of Reliability and Life Testingolt, Rinehart

and Winston, NY, 1975.

[11] Ascher H., Feingold HRepairable Systems Reliabilitolume 7 Lecture Notes in Statis-

tics. Marcel Dekker, Inc., NY, 1984.

38



[12] Xie M. Software Reliability ModelingWorld Scientific Publishing, UK, 1991.

[13] Briand L.C., EI Emam K., Freimut B.G. A comprehensivaksation of capture-recapture
models for estimating software defect contdBEE Trans. Software En@000; 26:518—

540.

[14] Chen Y., Singpurwalla N.D. Unification of software wgility models by self-exciting

point processesAdv. Appl. Probab1997; 29:337-352.

[15] Snyder D.L., Miller M.I. Random Point Processes in Time and Sp&minger, 1991.

[16] Jelinski Z., Moranda P.B. Software reliability resefarin W. Freiberger, editoBtatistical
Methods for the Evaluation Of Computer System PerformaAcademic Press, 1972;

465-484.

[17] Aven T., Jensen UStochastic models in reliability/olume 41 ofApplications of Mathe-

matics Springer, 1999.

[18] van Pul M.C. A general introduction to software religlgi CWI Quaterlyl994; 7:203—

244,

[19] Laprie J.-C., Kanoun K., Béounes C., Kaaniche M. ThATK(knowledge-action-
transformation) approach to the modeling and evaluatiorebébility and availability

growth. IEEE Trans. Software Eng.991; 17:370-382.

[20] Cox D.R., Isham VPoint ProcessesChapman & Hall, 1980.

[21] Trivedi K.S. Probability and Statistics with reliability, queueing am@mputer science

applications Prentice-Hall, Engelwood Cliffs NJ, 1982.

39



[22] Moranda P.B. Predictions of software reliability dugidebugging. IiAnnual Reliability

and Maintainability Symposiui075; 327-332.

[23] Shanthikumar J.G. Software reliability models: A mwiMicroelectronics and Rel983;

23:903-943.

[24] Littlewood B. Stochastic reliability-growth : a modr fault-removal in computer pro-

grams and hardware designEEE Trans. Rel1981; 30:313-320.

[25] Osaki S., Yamada S. Reliability growth models for haadevand software systems based
on honhomogeneous poisson processes: A sukeyoelectronics and Rell983; 23:91—

112.

[26] Littlewood B. Forecasting software reliability. In Bittanti, editor.Software Reliability
Modeling and IdentificationLecture Notes in Computer Science 341. Springer, 1988;

141-209.

[27] Miller D.R. Exponential order statistic models for @ére reliability growthlEEE Trans.

Software Engl1986; 12:12-24.

[28] Littlewood B., Verrall J.L. A bayesian reliability greth model for computer software.

Appl. Statist1973; 22:332-346.

[29] Mazzzuchi T.A., Soyer R. A bayes empirical-bayes mddekoftware reliability.|[EEE

Trans. Rel1988; 37:248—-254.

[30] Schick G.J., Wolverton R.W. Assessment of softwarglglity. In Operation Research

Physica-Verlag, 1973; 395-422.

40



[31] Singpurwalla N.D., Soyer R. Assessing (software)aaility growth using a random co-
efficient autoregressive process and its ramificatidBEE Trans. Software End.985;

11:1456-1464.

[32] Singpurwalla N.D., Soyer R. Nonhomogeneous autossjve processes for tracking
(software) reliability growth, and their bayesian anadysi. Roy. Statist. Soc. Series B

1992; 54:145-156.

[33] Al-MutairiD., Chen'., Singpurwalla, N.D. An adapteéi concatenated failure rate model

for software reliability.J. Amer. Statist. As4.998; 93:1150-1163.

[34] Pham L., Pham H. Software reliability models with tirdependent hazard function based

on bayesian approaclEEE Trans. Systems, Man and Cyber. Pag@00; 30:25-35.

[35] Cheung R.C. A user-oriented software reliability mbdEEE Trans. Software Eng980;

6:118-125.

[36] Littlewood B. Software reliability model for modularggram structurelEEE Trans. Rel.

1979; 28:241-246.

[37] Siegrist K. Reliability of systems with Markov transfef control. IEEE Trans. Software

Eng.1988; 14:1049-1053.

[38] Kaaniche M., Kanoun K. The discrete time hyperexpdiamodel for software reliabil-

ity growth evaluation. Irint. Symp. on Software Reliability ISSRE$92; 64—75.

[39] Littlewood B. A reliability model for systems with Madk structure Appl. Statist1975;

24:172-177.

41



[40] Kubat P. Assessing reliability of modular softwaf@per. Res. Letters989; 8:35-41.

[41] Goseva-Popstojanova K., Trivedi K.S. Architectureséd approach to reliability assess-

ment of software system®&erformance EvaluatioB001; 45:179-204.

[42] Ledoux J., Rubino G. Simple formulae for counting preses in reliability modelsAdv.

Appl. Probab1997; 29:1018-1038.

[43] Ledoux J. Availability modeling of modular softwaréEEE Trans. Rel1999; 48:159—

168.

[44] Kabanov Y.M, Liptser R.S., Shiryayev A.N. Weak and sggaonvergence of the distri-

butions of counting processeBheor. Prob. Appl1983; 28:303-336.

[45] Gravereaux J.B., Ledoux J. Poisson approximationdarespoint processes in reliability.

Technical report, Institut National des Sciences Appieg,'Rennes, France, 2001.

[46] Ledoux J. Littlewood reliability model for modular safare and Poisson approximation

In Mathematical Methods for Reliabilit002; 367-370.

[47] Abdel-Ghaly A.A, Chan P.Y., Littlewood B. Evaluatiof competing software reliability

predictions.|EEE Trans. Software End986; 12:950-967.

[48] Brocklehurst S., Kanoun K., Laprie J-C., Littlewood, BVietge S., Mellor P. ,et al.
Analyses of software failure data. Technical report No®l 17aboratoire d’Analyse et

d’Architecture des Systemes, Toulouse, France, May 1991.

[49] Kanoun K. Software dependability growth: charactatian, modeling, evaluation (in
french). Technical Report 89.320, LAAS, Doctor és Sciartbesis, Polytechnic National
Institute, Toulouse, 1989.

42



[50] Gilks W.R., Richardson S., Spiegelhalter D.J., editoMarkov Chain Monte Carlo in

practice Chapman & hall, 1996.

[51] Kuo L., Yang T.Y. Bayesian computation of software adiility. J. Comp. and Graphical

Stat.1995; 4:65-82.

[52] Kuo L., Yang T.Y. Bayesian computation for nonhomogaungepoisson processes in soft-

ware reliability.J. Amer. Statist. As4996; 91:763—773.

[53] Kuo L., Lee J.C., Choi K., Yang T.Y. Bayes inference festsaped software-reliability

growth modelslEEE Trans. Rel1997; 46:76—80.

[54] Kremer W. Birth-death and bug counting=EE Trans. Rel1983; 32:37-47.

[55] Gokhale S.S., Philip T., Marinos P.N. A non-homogeremarkov software reliability
model with imperfect repair. Iint. Performance and Dependability Symposiura9e6;

262-270.

[56] Shanthikumar J.G., Sumita U. A software reliability debwith multiple-error introduc-

tion and removallEEE Trans. Rel1986; 35:459-462.

[57] Sahinoglu H. Compound-poisson software reliabilitydel. IEEE Trans. Software Eng.

1992:; 18:624—-630.

[58] Fenton N.E., Pfleeger S.LSoftware metrics : a rigorous and practical approacnd

Edition) International Thomson Computer Press, 1996.

[59] Khoshgoftaar T.M., Allen E.B, Wendell D.J., Hudepol® JXlassification-tree models of

software-quality over multiple releasdEEE Trans. Rel2000; 49:4-11.

43



[60] Khoshgoftaar T.M., Allen E.B. A practical classificai-rule for software-quality models.

I[EEE Trans. Rel2000; 49:209-216.

[61] Gokhale S.S., Trivedi K.S. A time/structure basedwsafe reliability model.Ann. Soft-

ware Eng.1999; 8:85-121.

[62] Goel A.L. Software reliability models: Assumptionsnitations, and applicabiltyEEE

Trans. Software End.985; 11:1411-1423.

[63] Xie M., Hong G.Y., Wohlin C. A practical method for thetesation of software reliability

growth in the early stage of testing. IBSSRE1997; 116-123.

[64] Pasquini A., Crespo A.N., Matrella P. Sensitivity ofiability-growth models to opera-

tional profile errors vs. testing accurad¢i.EE Trans. Rel1996; 45:531-540.

[65] OzekiciS., Soyer R. Reliability of software with an opeoal profile. Technical report,

The George Washington University, Department of Managei@eience, 2000.

[66] Zhang X., Pham H. An analysis of factors affecting saftevreliability.J. of Systems and

Software2000; 50:43-56.
[67] Kalbfleisch J.D., Prentice R.LThe statistical analysis of failure time dat@/iley, 1980.
[68] Cox C.R., Oakes DAnalysis of Survival DataChapman and Hall, London, 1984.

[69] Andersen P.K., Borgan O., Gill R.D., Keiding [Statistical models on counting processes

Springer Series in Statistics. Springer, 1993.

[70] Saglietti F. Systematic software testing strateggesxplanatory variables of proportional

hazards. IBAFECOMP’911991; 163-167.

44



[71] Wright D. Incorporating explanatory variables in sedire reliability models. Ir§econd

Year Report of PDCS, Vol Esprit BRA Project 3092, May 1991.

[72] Pham H. Software reliability. In J.G. Webster, editdfiley Encyclopedia of Electrical

and Electronics Engineeringohn Wiley & Sons, 1999; 565-578.

[73] Castillo X., Siewiorek D.P. A workload dependent sddte reliability prediction model.

In 12th Int. Symp. Fault-Tolerant Computia§82; 279-286.

[74] Koch G., Spreij P. Software reliability as an applicatiof martingale & filtering theory.

I[EEE Trans. Rel1983; 32:342—-345.

[75] Brocklehurst S., Chan P.Y., Littlewood, Snell J. Réwalting software reliability models.

IEEE Trans. Software End.990; 16:458-470.

[76] Sitte R. Comparison of software-reliability-growtheglictions: Neural networks vs

parametric-recalibrationEEE Trans. Rel1999; 49:285-291.

[77] Pham H., Zhang X. A software cost model with warranty aisd costs. IEEE Trans.

Computersl999; 48:71-75.

[78] Pham H., Zhang X. Software release policies with gaireirability justifying the costs.

Ann. Software Endl999; 8:147-166.

[79] Laprie J.-C., Kanoun K. X-ware reliability and availbty modeling. IEEE Trans. Soft-

ware Eng.1992; 18:130-147.

[80] Lyu M.R., Gokhale S.S., Trivedi K.S. Reliability simatlon of component-based systems.

In ISSRE1998; 192-201.

45



[81] Ball M.O., Colbourn C., Provan J.S. Network models. hoivha C. Ball M.O., Mag-
nanti T. and Nemhauser G., editoandbook of Operations Research and Management

ScienceElsevier, 1995; 673—-762.

[82] Rubino G. Network reliability evaluation. In Bagchi End Walrand J., editorState-of-

the-art in performance modeling and simulatié@ordon and Breach Books, 1998.

[83] Editors: Limnios N., Rauzy A. Special issue on binargid®n diagrams and reliability.

European Journal of Automatiat®96; 30(8).

[84] Smidts C., Sova D. An architectural model for softwagkability quantification: sources

of data.Rel. Eng. and System Safé899; 64:279—-290.

[85] Littlewood B., Verrall J.L. Likelihood function of a deigging model for computer soft-

ware reliability.[IEEE Trans. Rel1981; 30:145-148.

[86] Huang X.Z. The limit condition of some time betweenfamé models of software reliabil-

ity. Microelectronics and Rell990; 30:481-485.

[87] Hossain S.A., Dahiya R.C. Estimating the parametera nbn-homogeneous poisson-

process model for software reliabilitfeEE Trans. Rel1993; 42:604—612.

[88] Zhao M., Xie M. On maximum likelihood estimation for arggral non-homogeneous

poisson processScand. J. Statisi.996; 23:597-607.

[89] Knafl G., Morgan J. Solving ML equations f@rparameter poisson-process models for

ungrouped software-failure datieEE Trans. Rel1996; 45:43-53.

[90] Miller D.R., Sofer A. A nonparametric software-relility growth model. IEEE Trans.

Rel.1991; 40:329-337.

46



[91] S. Brocklehurst, B. Littlewood. New ways to get acceragliability measures.|EEE

Softwarel992; 9(4):34-42.

[92] Barghout M., Littlewood B., Abdel-Ghaly A.A. A non-pametric order statistics software

reliability model.J. Testing, Verification and Rel998; 8:113-132.

[93] Silverman B.W. Density estimation for statistics and data analysShapman & Hall,

1986.

[94] Antoniadis A., Oppenheim G., editor§Vavelets and Statistics¥olume 103 ofLecture

Notes in StatisticsSpringer, August 1995.

[95] Kuo L., Ghosh S.K. Bayesian nonparametric inferenca@imhomogeneous poisson pro-

cesses. Technical Report 9718, University of Connectitotrs, 1997.

[96] Slud E.V. Some applications of counting process moudgtis partially observed covari-

ates.Telecommunication Systet897; 7:95-104.

[97] Pijnenburg M. Additive hazard models in repairableteyss reliability. Rel. Eng. and

System Safet}991; 31:369-390.

[98] Lloyd C.J, Yip P.S.F, Chan Sun K. Estimating the numbfeerors in a system using a

martingale approachEEE Trans. Rel1999; 48:369-376.

[99] Yip P.S.F, XI L., Fong D.Y.T, Hayakawa Y. Sensitivityralysis and estimating the

number-of-faults in removing debuggind=EE Trans. Rel1999; 48:300-305.

a7



