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Saint-Venant’s Principle

R. A. TourPIN

Abstract

The principle of the elastic equivalence of statically equivalent systems of load,
or SAINT-VENANT's Principle, is given a precise mathematical formulation and proof.
Counterexamples to traditional verbal statements of the principle are given, and the
results are compared with previous mathematical work on the Saint-Venant principle.

1. Introduction

SAINT-VENANT’s principle, or the “principle of elastic equivalence of stati-
cally equivalent systems of load”, is described by Love [2, §89] as follows:

““According to this principle, the strains that are produced in a body by
the application, to a small part of its surface, of a system of forces statically
equivalent to zero force and zero couple, are of negligible magnitude at distances
which are large compared with the linear dimensions of the part.”

LovVE goes on to state in this same section:

“In the problem in hand [bending of a
bar by terminal couples], we infer that, when
the length of the bar is large compared with
any diameter of its cross section, the state
of stress and strain set up in its interior by
the terminal couple is practically independent
of the distribution of the tractions, of which
the couple is the resultant, in all portions of
the bar except comparatively small portions
near its ends.”

Becanse the mathematical theory of elasticity under consideration is linear,
what is claimed is that any system of forces applied to one end only of a long
bar, which has zero resultant force and zero resultant couple, gives rise to a
strain field which is “‘practically”’ zero everywhere in the bar except at points
within a few diameters of the loaded end. The following example indicates that
this conjecture may be false. Consider a long bar with a cross section as de-
picted in Fig. 1. Let the loaded end be subject to tractions equipollent to a
couple M on the upper circular lobe of the cross section and a couple —M on the
lower so that all the conditions of LoVE’s statement are met. Consider a point
P which is any finite number of diameters d;, away from the loaded end and
lying in the thin member joining the two lobes of a cross section. It seems
intuitively reasonable that the strain at such a point P will be large for arbi-
trarily small values of M and for sufficiently small values of the thickness d,,.
It would appear from this example that the rate of decay of the strain depends
strongly, not on any single linear dimension of the cross section, but rather
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on its shape. Moreover, if one compares the strain at a point like P’ deeply
embedded in the interior of the lobe of the cross section in Fig. 1 with the strain
at a point in the thin center section at the same distance from the loaded end,
it is reasonable to expect that, for this type of loading, the strain at P’ will
be much smaller than the strain at P. It seems reasonable to require that any
quantitative treatment of SAINT-VENANT’s principle embrace these qualitative,
intuitive observations.

SAINT-VENANT introduced the principle of the elastic equivalence of stati-
cally equivalent systems of loads only for the special case of perfect cylinders.
The broader statement of the principle given by LovE for bodies of arbitrary
shape cannot possibly be true, and SAINT-VENANT, himself, {1, p. 67] alluded
to the following caution. Suppose, as in Fig. 2, tractions of arbitrarily small
magnitude, but not zero, are applied to one end of a long rectangular region
in plane elasticity theory. Let there
be a slit in the rectangular region at
an arbitrarily large but finite distance
s from the loaded end. Then the
] strain at points P near enough to
" the tip of the slit are arbitrarily
4 large. One learns from this example

'/ not to expect an unqualified point-
Fig. 2 wise estimate for the strains at points
near a jagged part of the boundary.
Finally, to set the stage properly for the treatment of SAINT-VENANT'S
principle given here, we repeat an objection raised by von Misgs [I] to the
traditional statement of the principle given by LoVE; wviz, since the mathe-
matical theory under consideration is linear, the strain at any point in any
body, under any system of loading, if different from zero by any amount, how-
ever small, will be arbitrarily large for the same point in the same body under
a suitable system of proportional loads. In other words, in the linear theory,
a correct formulation of the principle must express in some sense the rzelative
smallness of the strains at different points or entail in some other way a measure
of the magnitude of the applied loads.

With these preparations and ideas in mind, we announce our main result:

Let a cylinder of arbitrary length and cross section be loaded on one end only
with an arbitrary system of self-equilibrated forces. Then the stored elastic energy
U(s) in the cylinder beyond a distance s from the loaded end bears a ratio to the
total stored energy U(0) which always satisfies the inequality

g((é; < g (5Dl () (1.1)

where
(i) the characteristic decay length s, (l) is given by
n*
0=V eum
(i) p*=u3ltt,, where py is the maximum elastic modulus, and u,, is the
minimum elastic modulus.




(ii) o ¢s the mass density.

(iv) wo(}) s the smallest characteristic frequency of free vibration of a section
of the cylinder of length 1.

The parameter />0 is at one’s disposal to choose in a manner which will
provide a small value for s,(f).

Once the energy has been estimated by (1.1), we apply the following auxiliary
result to obtain a pointwise estimate of the strain at interior points of the
cylinder:

Let a solid sphere be deformed in any manner whatsoever, and let U, be the
elastic energy of deformation. Then the strain at the center of the sphere always
satisfies an inequality of the form

|e|2§K—UI/—°, (1.2)

where V is the volume of the sphere and K is a material constant.

It is clear how the estimates (1.1) and (1.2) together provide a pointwise
a priori estimate of the strain at all interior points of the cylinder beyond a
distance />0 from the loaded end of the cylinder. The smaller is the volume
of the largest sphere lying within the cylinder and having a given point P of
the cylinder for its center, the poorer is the estimate (1.2). This reflects the
qualitative limitation of what can be expected from a general a priori estimate
of the strain at a point, noted earlier.

The remainder of this paper is devoted to a proof of (1.1) and (1.2), a dis-
cussion of a generalization of (1.1) to non-cylindrical bodies, and a comparison
of these results with previous work on SAINT-VENANT’S principle.

2. Notation and Definitions
We use Cartesian tensor notation and the summation convention for repeated
indices. Coordinates of points @ are denoted by x;. Let u;(x) denote the com-
ponents of the displacement vector field. Then the components of the strain
tensor are given by

€= F Uy j+u; ) =us ;) (211)
where a comma denotes partial differentiation;
ou;
Ui ;= ax:_ . (2.2)

The rotation tensor is defined by

;=g (8 ;—%; ;) =% ;- (23)
Round and square brackets around indices are used to denote the symmetric
and antisymmetric parts of a tensor as in (2.1} and (2.3).
The strain energy density for a given material is a positive definite quadratic
form
W=1§¢ijn1€;; e (2.4)
in the strain components. We consider only homogeneous materials, for which
the elasticity tensor c;;;, is constant independent of ®. The components satisfy
the symmetry relations
Ciini=Ciint=Cijir="Cr1ij- (2.5)
7‘



The norm of a vector or tensor is defined as follows:
|#|= Vo, u,, lelEl/e,-,»e,-}- (2.6)

Since the elasticity tensor is positive definite, there exist maximum and mini-
mum elastic moduli, 4y, and g,,, such that

Ul €12=Cijrr €55 i pul €] (2.7)

where the equality signs hold for suitable values of the strain.
The components of the stress tensor £ are defined by

Lii=Cijn1 €pi=tj;- (2.8)

The fraction or stress vector t, which acts at a point on a surface in the
body with unit normal n, is given by

(n)tiztif 71/]-, ni ni=1 . (29)

Let p denote the constant mass per unit volume of the material. Then the
equations of motion are
QU;=1y ;= Cijp1 Wn1s (2.10)

where 4i,=0%u,/0t* is the acceleration. We omit any consideration of body
forces. The equilibrium equations are

Lij, == Cijht We,1;=0. (2.11)

The traction boundary-value problem of elastostatics consists in finding a
solution #;(x) of the equilibrium equations (2.11) for which the tractions (,;
have prescribed values on the surface of the body. SAINT-VENANT’S principle
concerns properties of certain solutions of this traction boundary-value problem
of linear elastostatics.

3. Proof of the Energy Estimate for Cylinders

Consider a cylinder (Fig. 3) with an arbitrary regular cross section deformed
by an arbitrary system of self-equilibrated forces applied to one end of the
cylinder. Let C,denote theintersection
with the body of a plane perpendicular
to the axis of the cylinder and distance
s from the loaded end. Let B, denote
the part of the cylinder beyond dis-
tance s from the loaded end.

We assume that the displacements
1, (@) satisfy the equilibrium equations

Fig. 3 t.;y-,]-=0=0i7'kluk,zf, xcB (31)

at every point of the cylinder B, and that the tractions (,¢; vanish at every
point of the surface 8B of the cylinder except on the end C:

mfi=t;; =0, ®cdB—C,. (3.2)



It follows from the equilibrium equations (3.1) and the symmetry of the
stress tensor that
f(n)t,bdﬂ:(), fx[,(”)t”dazo, (33)
9B, OB,

for every value of s. These properties of a solution express the simple fact that
the resultant force and resultant moment on every part B, of the cylinder must
vanish in equilibrium. But the tractions (,%;, according to our hypothesis (3.2),
vanish at every point of the boundary of B, except at points in the cross sec-
tion C,. Therefore, it follows from (3.3) that

Cf(,,)tid(l:O, Cfx[@(”)t]] da———O, (3.4)

for every value of s. These conditions for s=0 require that the data correspond
to a system of self-equilibrated forces on C, else no solution can possibly exist.
More generally, however, we see that the tractions on every cross section C
are a self-equilibrating system.

Next we observe that the elastic energy of deformation stored in the part
B, of the cylinder is also expressible as a surface integral over the cross section C;:

U(s) = %chijkleiiekldvZ%Bftijui,jdv
:%Bf[(t»‘j“i),j— t;; ju;]dv

— 1
=4[t ;u;n;da,
2B,

U(s) Z%Cf(n)ti u;da. (3.5)

We shall later need the fact that U(s) is non-negative and is a non-increasing
function of s. These properties follow from the positive-definiteness of the
energy density.

Next we observe that, because of the properties (3.4) of the tractions on C,,
the actual displacements #;(®) of points of C,; which appear in the integrand of
(3.5) may be replaced by modified displacements #,; given by

w;=u;+a;+b;; %, (3.6)
where the a; and b,;=—;, are arbitrary constants. Thus,
U(S) =%cf(,,)tt'ﬁ, da. (37)

This step in the argument is crucial. The displacement field #; differs from
by a rigid motion, and the equivalence of (3.5) and (3.7) follows essentially from
the general proposition that any system of self-equilibrated forces does no work
in a rigid motion of the points of action.

Next we apply the Schwarz and arithmetic-geometric mean inequality (cf.
Appendix A) to assert that

U(s)g%{oéf|(,,)t|2da—|—(1/oc)cf|17|2da} (3.8)

for arbitrary positive values of the parameter «.



But,

I(ﬂ)tl _tw 7 k”kgltlzi (3.9)
and, as shown* in Appendix B,
[tPsp*cijus€s)eri=2u%W (3.10)
where,
=il fom - (3.11)

The maximum and minimum elastic moduli g, and y, were defined in (2.7).
It follows from (3.8), (3.9), and (3.10) that

Uis) < {2a,u*dea+ 1/ fﬁ%a} (3.12)

Now integrate the inequality (3.12) between the limits s and s-+/ where
I>0 is some positive distance to the right of s. This yields the inequality

10(s, )= 1{20c,u*dev+ (1/a) fmdv} (3.13)
where
s+l
0 )=21 f U(s') ds’ (3.14)

is the mean value of U(s) in the segment of the cylinder between s and s +/,
and C,, denotes the part of the cylinder lying between the cross sections C
and C,,.

It is shown in Appendix D that one can always choose the constants «; and
b;; in the definition of , in such a way that

ft—t,dv=0, fﬁ{ixildv_—"o. (3.15)
Cc,l c:,l

It follows from RAYLEIGH's principle (c¢f. the discussion of Rayleigh’s principle
in Appendix C) that, for this choice of the constants @; and b,;,

- w|2 - e
! f|u] dvs — fW(e) dv. (3.16)

Cl,l Cs,l
But W()=W/{e) since %, and ; differ by a rigid motion. It follows then from
{3.13) and (3.16) that

1
Q(s,l)gj[a,u*-{— Tl ] dev (3.17)
But one easily verifies that
2 de'u=—1f[U(s) — Us+)]=—-220 (3.18)

Ca,i

Thus, {3.17) implies the differential inequality
s(,a) 220 £ o =0, (3:19)

* Note added in proof: Professor J. L. ERICKSEN has supplied me a simpler proof
of the sharper estimate |#|2 <2, W.



where

1 1
sl = 3w + | (3.20)

The characteristic decay length s, (I, ) has a minimum with respect to the para-
meter «>0 when a=1//u*p wj(}). This minimum value is given by

s () = |/W (3.21)

Choosing « in this way and integrating the differential inequality (3.19) between
limits s; and s,=s,, we get
Q(52,8) — ,—tsa—suliseld 22
06D = ' 6-22)
Now, as noted earlier, U(s) is a non-increasing function of s. Therefore,
since Q(s,!) is the mean value of U(s) in the interval [s, s ], one has

Us+)=Q(s, )< U(s), (3-23)
and (3.22) implies that
U((jz(jl-) D) < p—la—siliseth (3.24)

If one now sets s;=0 and s,=s-—/ in (3.24), one obtains the energy esti-
mate (1.1), which was to be proved.

4. Proof of the Strain Inequality

Here we shall prove the inequality (1.2) only for isotropic elastic materials.

A similar result holds for anisotropic media, but the calculations are more com-
plicated. The following proof of (1.2} begins with the expression

RS 3

Seul0) =gk [Gugmy—eury dv (1)

B

given by Diaz & PAvNE [3] for the strain components at the center of an
isotropic spherical ball B of radius R in terms of a certain weighted average
of the strains and displacements throughout the ball. If we square this expres-
sion for ¢;,(0) and sum over all values of 4 and % and use Schwarz’s inequality,
we get

R1e 14
E‘S—Ie(o)lzé’(g-;)‘{flsu(ixk)_eikﬁlgdv' (4.2)
B

where V=4nR33 is the volume of the ball. Next we use the inequality (A.6)
to reduce the right member of (4.2) to the form

le(O)2 < TGL;’F”%“ +a) | x* +H{1+ 1) e2 ﬁ]dv. (4.3)
B
But

| 2p|? < [ w2, (4.4)
and, by Rayleigh’s principle,

2 2
é[u dvg———ega(R) édev (4.5)



provided
Bfu,- dv=0, fo (i Uy d0=0 (4.6)

where 24(R) is the smallest characteristic frequency of free vibration of a sphere
of radius R. The side conditions (4.6) may be assumed without loss in generality
because the right-hand member of (4.1) is invariant under addition of a rigid
motion to #;. We also have

lefr= W (4.7)
It follows from (4.3), (4.4), (4.5), and (4.7) that
ial O S 2 [ (14 1) 4250 +a) —ghmr| o dev (48)

The parameter «>0 may be chosen arbitrarily. By choosing for « the value
for which the coefficient of the mean value of the energy density in (4.8) is a

minimum, one obtains
[Wdv

25 Lo
| O = (1 T TmmE )B V(B) 4.9)

which establishes the inequality (1.2) and a specific admissible value for the
constant.

5. Remarks on the Energy Estimate for Non-Cylindrical Bodies

A review of the essential steps and ideas of the proof of the energy estimate
(1.2) for cylindrical bodies reveals that a similar result can be obtained for certain
bodies of more general shape. We
shall not derive such estimates here
in detail but only remark on how
one might proceed.

Consider a body of the general
shape depicted in Fig. 4. Let the
tractions on the surface of the body
vanish everywhere except on the part
of the surface contained within a
sphere of radius s,. Let C, denote
the intersection of a concentric sphere
of radius s with the body, and let
C,, ;denote the part of the body lying

Fig. 4 between the concentric spheres of

radius s and s-+I. In general, the

intersection C, will consist of several disconnected two-dimensional regions
on the sphere of radius s. The tractions on each connected part of the inter-
section C, may or may not always be self-equilibrated. For example, in Fig. 4,
C,, consists of two disconnected regions, and it is clear that, for some ways of
loading the surface inside the sphere of radius sy, the tractions on each piece
of C, will not be separately self-equilibrated. On the other hand, the inter-
section C,, is also not a connected region on the sphere of radius s,, but in this




case, the tractions on each piece of C, are separately self-equilibrated. For
cylindrical bodies we made a fixed choice of the parameter / independent of
the value of s. This restriction is not essential to the method, and it is permis-
sible to let the value of [ depend on s. When the tractions on each connected
part of the intersection C, are not separately self-equilibrated (the tractions on
the whole of every intersection C; are always self-equilibrated), it is necessary
to choose I(s) large enough so that the region C;, is connected. This will
insure that the lowest characteristic frequency wy(C;, ;) of C; ; is greater than
zero, and it will then be possible to estimate the integral of #? over C , in terms
of the strain energy in C, ;. On the other hand, if the tractions on each connected
piece of C, are separately self-equilibrated, any value of /(s)>0 is admissible.
One may jump over cavities in the body using these same ideas. For certain
kinds of non-cylindrical bodies, then, it should be fairly clear how one can
proceed to obtain an inequality of the form

J das’
- [ 1
So

Results of this kind will be given in greater detail in future papers. Also,
it appears that the present method allows an easy and efficient formulation
of a Saint-Venant principle as it applies to the theory of elastic plates and shells.

It appears also that other special assumptions such as the homogeneity of
the material, which we have made here in the interest of simplicity, are not
essential to the method.

Finally, it will undoubtedly be obvious to the mathematically inclined that
the “decay theorem’ proved here for the elasticity equations has its counter-
part for every even-order system of differential equations derived from a positive
definite energy integral.

U(s+1(9)

<
Ulsg =P

6. Remarks on Previous Results

As all who have attempted to comprehend the traditional verbal statements
of SAINT-VENANT’s principle and to transform them into a precise mathematical
statement would surely agree, it has been the lack of such a definite formulation
of the principle rather than its “proof” that has been responsible for its elusive
character and the long history of the problem. It is, of course, my opinion that
the energy estimate (1.1), or its counterpart for more general bodies, and auxiliary
strain estimates like (1.2) represent a true mathematical transcription of the
verbal Saint-Venant principle of elasticity theory. These inequalities are precise
statements about properties held in common by every solution of the boundary-
value problem for a given body loaded in every possible way on a given portion
of its boundary. The results are independent of the construction or even the
existence of a single solution.

FiLoN [4] (c/. also LovE [2, § 266]) constructed, in essence, a large but not
exhaustive class of solutions for circular cylinders. Simply by examination of
solutions in this class he perceived a rapid decay in the strain induced in a
circular rod by self-equilibrated forces applied to one end, but no common feature
of all the solutions like (1.1) can be easily deduced from his analysis. The remarks
of LovE [op. cit] do not constitute a proof of the “exponential decay” of the



energy even for this restricted class of loadings of circular cylinders. Moreover,
this attack on the problem seems not to be consistent with the spirit of the
principle and the way it is used. After all, if one can construct, or is willing
to construct solutions, there is no need for the principle. What the principle
calls for is an estimate or bound for the strain which can be obtained without
having to construct explicit solutions. The present method seems to fulfill these
requirements. Methods exist [5] for estimating the characteristic frequencies
which occur in the construction of the energy inequality given here, or these
frequencies might even be obtained experimentally.

Two other classes of general theorems have been proved in connection with
the Saint-Venant principle and put forward as having some bearing on the
original question posed by SAINT-VENANT’s remarks. The first of these are due
to BoussINEsQ [6], vON MISES [7], and STERNBERG [8]. These theorems concern
a representation of the strain at an interior point of a given elastic body which
is caused by a sequence of loads on a sequence of regions of its boundary. The
second class of theorems is due to ZANABONI [9] and concerns estimates for the
total energy of a sequence of bodies under the action of a fixed system of loads
on a given common portion of their boundaries. While the theorems of Bous-
SINESQ, VON MISES, STERNBERG, and ZANABONI have independent interest, I
have been unable to perceive an easy relationship between these theorems and
the Saint-Venant principle. It seems to me that the latter calls for a consider-
ation of a fixed body, a given region of its boundary, and all possible ways of
loading that given part of its boundary. These qualities of the Saint-Venant
problem and the failure of the Boussinesq, von Mises, and Sternberg theorems
to share them were stated by TRUESDELL [13]. TRUESDELL’s interesting con-
jecture concerning an appropriate definition of the torsional rigidity consistent
with the Saint-Venant principle has not been touched upon here.

It should not be inferred from the above and the remarks of voN MISES in
[7] that BoussINEsQ’s throughts on the Saint-Venant principle were restricted
to the idea which has been given its most precise and general statement by
STERNBERG. In § 70 of his memoir [6], BOUSSINESQ conjectured an exponential
rate of decay of the stress in a rod loaded on one end only. He perceived the
possible truth of such a result from his own explicit solution for the displace-
ments in an elastic half-space subjected to a doubly periodic system of tractions.

During the last two summers I have had the benefit and pleasure of discus-
sions of the results of STERNBERG and ZANABONI with Professor A. ROBINSON.
RoBINsON has claimed a proof of the following theorem: In a sufficiently long
cylinder loaded on one end only, the strain at every interior point which lies a
distance greater than & from the boundary and greater than a sufficiently large
distance s(6, &) from the loaded end will be smaller than any preassigned value &.
A proof of this result will be published soon.

Finally, a result of Dou’s [10] should be mentioned. Dou has shown that
for an isotropic cylinder of square cross section, the total energy U(0) satisfies
an inequality of the form

U (o) g%fu(,,)tp 1|V t|?] da, (6.1)
Ce



where p is the shear modulus, and K is a constant independent of the length
of the cylinder. Results like (6.1) can be used in conjunction with the energy
estimate (1.1) and strain inequalities like (1.2) to obtain an estimate for the
strain at interior points in terms of the applied loads and the surface gradient

l;' @yt of the applied loads.
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7. Appendix

A. The Schwarz and Geometric-Arithmetic Mean Inequality

Let u;(x) and w,(x) be any two vector fields in a region R of Euclidean
space. Then Schwarz’s inequality is the assertion that

fu;w,dv< V[ urdvfwidy. (A1)
I3 R R
From the geometric-arithmetic mean inequality, we have
Vab<-2tl (A.2)
for all positive numbers @ and b. More generally,
< _%a+bla
Vab< 222202 (A.3)

for all positive numbers a, 4, and 5. Combining (A.1) and (A.3), one has
Ju;w,dv<}{a f utdv+(1a) [ w2dv} (A.4)
R R R

for all a>0 and vector fields #; and w,.
It follows also from (A.3) that
2|a| |b] £ aa? +b¥a (A.5)
for all «>0. Hence,
(@a+b)2=a%+b%+2ab=<a®-+b*+2|al |d]
= (1-Foya? 4 (14 1/a) 2.

This last inequality holds also when a and & are pairs of vectors or pairs of tensors.

(A.6)

B. A Bound for the Stress in Terms of the Energy Density

The stress #;; is a linear function ¢,;;;¢,; of the strain t,;, and the elastic
constants c,;,; may be viewed as a positive definite, symmetric linear trans-
formation in the six-dimensional linear vector space of all symmetric second
order tensors f,;=f;;. Viewed in this manner, we can assert that the linear
transformation defined by c¢,;,; has six orthogonal proper vectors and the cor-
responding six eigenvalues. In other words, there exist six symmetric tensors

e;; and real numbers g such that
@« o

Ci;’klglzl=,:‘ Cij» g.‘,'gi,-=5ap. «f=1,2,...,6. (B.1)



Let u,, and u,, denote the minimum and maximum of the numbers u. It is

then a familiar proposition in the theory of quadratic forms that
| €12=Cijpr € r=2W <puy | ] (B.2)

for arbitrary tensors e;;.

Next we observe that
|[t[2=e-c?-e (B.3)

where €2 is a short notation for the square of the linear transformation defined
by ¢;;5;- The eigenvalues of ¢? are the squares of the eigenvalues of ¢. Hence,

[t]2=pds o2 <2 (uhifpn) W, (B.4)

where we have used the first inequality of (B.2).

C. Rayleigh’s Principle
According to Rayleigh’s principle (cf., e.g., GoULD [11]), the stationary values
of the ratio
JW(u)dv

pw?= (C.1)

L
z flul*dv
B

are the characteristic frequencies of free vibration of an elastic body B. The
smallest characteristic frequency (eigenvalue) is given by the minimum of
Rayleigh’s quotient over the set of all continuously differentiable vector fields
u;(®) =E0, e B, B a regular region. The next largest eigenvalue is given by
the minimum of Rayleigh’s quotient over the set of vector fields «;(®) which
are normal to the set of eigenfunctions belonging to the smallest eigenvalue;
normal in the sense that

Ju;v,dv=0, a=1,2,...,N, (C.2)
B o

where there are N linearly independent eigenfunctions v;, « =1, 2, ..., N, for
which Rayleigh’s quotient is a minimum. *

But the minimum value of Rayleigh’s quotient in elasticity theory is zero
so that the smallest eigenvalue is zero. The set of vector fields belonging to this
eigenvalue comprises the rigid motions. There are six linearly independent rigid
motions corresponding to the six degrees of freedom of a rigid body. A vector
field #, is normal to every rigid motion if and only if

Bfui dv=0, fo“ ujdv=0. (C.3)

Let C denote the class of all continuously differentiable vector fields in B which
satisfy the side conditions (C.3). Then, according to Rayleigh’s principle, the
lowest characteristic frequency of free vibration (excluding the degenerate case
of no motion at all} is given by
SWiu)dv
ow(B)=min £ (C.4)

ucC 3 Jlulzdv
B



But this means that, for every vector field in B satisfying the side conditions
(C.3), one has the inequality,

_f[u!2< s [W (C5)

D. A Lemma Concerning the Side Conditions
Required in the course of the proof of the energy estimate is the following
proposition. If
#;=a;+b,; x;+u,, (D.1)

where a; and b;=—b;; are constants, and #,(x) is an arbitrary vector field
in a region R of Euclidean space, then it is always possible to choose the con-

stants a; and b;; in such a way that
[#;dv=0,  [xy#mydv=0. (D.2)
R R

This proposition may be proved as follows.

First of all, let the origin of the coordinate system be chosen as coincident
with the center of mass of the region R. This incurs no loss in generality since
it entails only a transformation of the constants @; and b,;. One then has

B R
where U,= [u,dv. Thus, the first condition (D.2) is met if one chooses
1
a;,=— Tffuidv. (D.4)
The second condition (D.2) reads as follows:

The first term in this expression vanishes because of our choice of origin, and
the condition can be placed in the form

Ek [ibi]kz_fo[i uj] dv, (D6)
where
EkiEka x,— dv (D.7)

is Euler’s tensor (cf. [12, §168]) for the region R. If we set b,=e¢;;; b;, and
V,i=[e;;; %; w,dv, where e,;, is the alternating tensor, we find that (D 6) is
equlvalent to the equation
Ifk bk == I/; (D.S)
where
IikEEll 67k—E7k (D.9)

is the tensor of inertia for the region R. It is proved in works on kinematics
that the tensor of inertia, I,,, for every region R is positive definite. There-
fore, in particular, I;, is non-singular so that the equation (D.8) always has
a solution for arbitrary V.
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