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For any class of binary functions on [n] = {1, . . . , n} a classical result by Sauer states a sufficient condition for

its VC-dimension to be at least d: its cardinality should be at least O(nd−1). A necessary condition is that its

cardinality be at least 2d (which is O(1) with respect to n). How does the size of a ‘typical’ class of VC-dimension d

compare to these two extreme thresholds ? To answer this, we consider classes generated randomly by two methods,

repeated biased coin flips on the n-dimensional hypercube or uniform sampling over the space of all possible classes

of cardinality k on [n]. As it turns out, the typical behavior of such classes is much more similar to the necessary

condition; the cardinality k need only be larger than a threshold of 2d for its VC-dimension to be at least d with high

probability. If its expected size is greater than a threshold of O(log n) (which is still significantly smaller than the

sufficient size of O(nd−1)) then it shatters every set of size d with high probability. The behavior in the neighborhood

of these thresholds is described by the asymptotic probability distribution of the VC-dimension and of the largest d

such that all sets of size d are shattered.

Keywords: Random binary functions, Vapnik-Chervonenkis dimension, Poisson approximation

1 Introduction

Let n and d be two integers such that 1 6 d 6 n and denote by [n] the set {1, . . . , n}. A class of binary

functions is a subset of {0, 1}[n]. As only binary functions are considered we refer to them simply as

functions. They will also be viewed as binary vectors: f = (f(1), . . . , f(n)). Let x = {x1, . . . , xd}
be a subset of [n] and F ⊂ {0, 1}[n] be a class of functions. For any function f ∈ F , denote by f|x its

restriction to x, i.e., f|x = (f(x1), . . . , f(xd)). The class F is said to shatter x if:

∣

∣{f|x : f ∈ F}
∣

∣ = 2d,

where | · | denotes the cardinality of a finite set. The Vapnik-Chervonenkis dimension of F , denoted as

VC(F ), is defined as the size of the largest set x shattered by F . The following Sauer-Shelah lemma

(Sauer (1972); Shelah (1972); Vapnik and Chervonenkis (1971)) is a fundamental result relating the VC-

dimension of a class of functions to its cardinality.
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Lemma 1 Let F be a class of functions on [n] with

|F | >

d−1
∑

i=0

(

n

i

)

. (1)

Then F shatters at least one set x ⊂ [n] of cardinality |x| = d.

An interesting extension (see Theorem 1 in Frankl (1983)) states that such a threshold (which holds for

any class F ) arises due to the simple fact that any ideal class F0 of this size must shatter some set of

size d. More generally, the lemma holds for classes on infinite domains X where instead of |F | one has

maxY ⊂X |F|Y | with Y running over all finite subsets such that |Y | > d. Aside of being an interesting

combinatorial result in set theory (Chapter 17 in Bollobás (1986)), Lemma 1 has been extended in various

directions notably by Frankl (1983); Haussler and Long (1995); Alon et al. (1997); Anstee et al. (2005)

and found applications in numerous fields such as combinatorial geometry (Pach and Agarwal (1995);

Matous̆ek (1998)), graph theory (Haussler and Welzl (1987); Anthony et al. (1995a)), empirical processes

(Pollard (1984)) and statistical learning theory (Haussler (1992); Vapnik (1998)).

The VC-dimension has numerous extensions, for instance, the pseudo-dimension for real-valued func-

tion classes, the scale-sensitive (or fat-shattering) dimension which characterizes the so-called Glivenko-

Cantelli classes (Alon et al. (1997)), and the testing dimension (Romanik and Smith (1994); Anthony et al.

(1995b)) of F , denoted as TD(F ), which is defined as the maximal integer d such that all sets of size d
are shattered by F . For other related dimensions see Haussler and Long (1995) and Anthony and Bartlett

(1999).

Observe that as n tends to infinity and d remains fixed, the right hand side of (1) is of order O(nd−1).
Thus O(nd−1) is a threshold point that dictates a sufficient cardinality for F to shatter at least one set

of size d. As we shall show, it is not a necessary condition since it typically takes a class only of size

O(log n) to shatter all sets of size d. In order to show this, our primary aim in this paper is to investigate

the size of sets that are shattered by a random class F of functions (a random element of the power set

P({0, 1}[n])).
We consider two natural approaches: fixing the size to be k and drawing a class F with equal proba-

bility from all classes of size k (uniform model, Definition 2), or drawing each individual function from

P({0, 1}[n]) with an equal probability p in 2n random trials (binomial model, Definition 1). We state

several results on the asymptotic behavior of the size of shattered sets with an explicit dependence on k
or p as n tends to infinity.

As a preview of our results, let us sketch the evolution of the size of sets shattered by a random class

F under the uniform model with increasing k = kn. Initially, when k is fixed, sets of size d are shattered

only if k > 2d. It turns out that at least one such set is shattered with high probability (w.h.p., i.e. tending

to 1 as n tends to infinity). As soon as kn starts to increase to infinity there are shattered sets of any size

and, moreover, any fixed set of size d (in particular the set [d]) is shattered w.h.p. If the speed at which kn

grows is sufficiently slow, kn ≪ log n, then regardless of the value of d, there exists at least one set of size

d which is not shattered (here an ≪ bn denotes lim an/bn = 0). For kn = α log n + O(1), there exists a

finite d such that all sets of size d are shattered and at least one set of size d + 1 which is not shattered.

Finally, for kn ≫ log n and any fixed d, all sets of size d are shattered. A similar behavior holds for the

binomial model, where kn is now replaced by 2npn, i.e., the expected size of the random class F .

The results are stated in details in Sections 2 – 5 where three kinds of events are studied: (i) shattering

at least one set of size d, (ii) shattering a given set x of size d, (iii) shattering all sets of size d. Clearly, the
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VC-dimension and the testing-dimension of a random class F are related to (i) and (iii) respectively. In

order to have a more complete comparison we introduce between them an intermediate dimension which

is related to (ii) and is defined as follows.

Let F be a class of functions from [n] to {0, 1}. The initial-dimension of F , denoted as ID(F ), is the

maximal integer d such that the set [d] is shattered by F .

Clearly, the three dimensions are related by

VC(F ) > ID(F ) > TD(F ). (2)

In subsequent sections we obtain the asymptotic distribution of VC(F ) and ID(F ) under the binomial and

uniform models where the (expected) number of functions in the class is fixed (Propositions 1 and 2). The

asymptotics of TD(F ) turns out to be much sharper as for kn = c log n its distribution is concentrated on

one or two values w.h.p. (Proposition 3). This has striking similarities with the well known result on the

concentration of the clique number for random graphs (see Chap. 11 of Bollobás (2001)).

In our analysis we use standard techniques from discrete probability and the theory of random graphs

(available in Janson et al. (2000)). In Ycart and Ratsaby (2007), we applied these to study the VC-

dimension of a random class of functions with a fixed number of ones, i.e. random hypergraphs.

The remainder of the paper is organized as follows: Section 2 defines the shattering events, the two

probability models and describes their interdependence. Sections 3, 4 and 5 study the asymptotics of the

VC-dimension, the initial-dimension and the testing-dimension respectively.

2 Probability models and events

We start by defining the events under study. They are associated with the shattering of sets by a random

class of functions, i.e. a random variable with values in the power set P({0, 1}[n]). For clarity, we defer

the precise definition of probability distributions for random classes of functions to Section 2.2.

2.1 Events of interest

Let n > 1, 1 6 d 6 n and x = {x1, . . . , xd} ⊆ [n]. Let η ∈ {0, 1}x denote a function from x to {0, 1}.

The events that we are interested in are the subsets of P({0, 1}n) defined as follows:

Cx,η := {F containing a function f such that f|x = η }

Sx := {F shattering x }

Ed := {F such that VC(F ) > d }

Ad := {F such that TD(F ) > d } .

The event S[d] is the set of classes that shatter [d]. It is thus equal to the event which is defined as follows:

Sd := {F such that ID(F ) > d } .

The main goal of the paper is to evaluate the probabilities of Ed, Sd, and Ad. The events Ed and Ad can

be expressed in terms of the Sx’s, for x ⊂ [n] and |x| = d. These may in turn be expressed in terms of

the Cx,η’s, for η ∈ {0, 1}x. By definition, the class F shatters x if and only if for every η ∈ {0, 1}x there
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exists a function f whose restriction to x is η. Thus Sx is the intersection of the events Cx,η , η ∈ {0, 1}x,

i.e.,

Sx =
⋂

η∈{0,1}x

Cx,η . (3)

The VC-dimension of F is at least d if and only if there exists a set x with cardinality d which is shattered

by F . Therefore Ed is the union of the events Sx over all x ⊂ [n] such that |x| = d, i.e.,

Ed =
⋃

x⊂[n],|x|=d

Sx . (4)

Finally, the testing-dimension of F is at least d if and only if all sets x of cardinality d are shattered by F .

Therefore Ad is the intersection of all the events Sx, x ⊂ [n] with |x| = d, i.e.,

Ad =
⋂

x⊂[n],|x|=d

Sx . (5)

2.2 Probability models

In this subsection we describe the underlying probability models with which a random class is generated.

In addition to mathematical definitions, we also discuss how such generation may be carried out in prac-

tice. When stating probability quantities we will either refer to the probability law of a random variable,

e.g., Pn,p, P ∗
n,k or simply write P for the underlying probability distribution of the space on which the

random variables are defined.

The two probability models by which a random class F of binary functions on [n] will be created

are denoted by ‘binomial’ and ‘uniform’. In the binomial model, a probability parameter 0 6 p 6 1 is

defined and the random class F is constructed through 2n independent coin tossings, one for each function

in {0, 1}[n], with a probability of success (i.e. selecting a function into F), equal to p.

Definition 1 (Binomial model) Let n be a positive integer. Let p be a real such that 0 6 p 6 1. We call

binomial class with parameters n and p a random class of functions containing any given function with

probability p, independently of the others. We shall denote by Fn,p a binomial class with parameters n
and p and by Pn,p its probability distribution. Thus if F is any element of P({0, 1}[n]),

P(Fn,p = F ) = Pn,p(F ) = p|F |(1 − p)2
n−|F | . (6)

An alternate way to construct a random class F is to first choose its cardinality k, 0 6 k 6 2n, and

then select a class by a uniform random drawing from the family F (k) ⊂ P({0, 1}[n]) of all subsets of

{0, 1}[n] having k elements.

Definition 2 (Uniform model) Let n be a positive integer. Let k be an integer such that 1 6 k 6 2n. We

call uniform class with parameters n and k a random class with uniform distribution over all classes of

k functions. We shall denote by F∗
n,k a uniform class with parameters n and k and by P ∗

n,k its probability

distribution. Thus if F is any element of P({0, 1}[n]),

P(F∗
n,k = F ) = P ∗

n,k(F ) =







1/
(

2n

k

)

if |F | = k

0 if |F | 6= k .
(7)
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These models are the most natural ways to define probability distributions on the set P({0, 1}[n]) of all

classes of functions on [n]. They match the two basic models of random graphs (see Chap. 1 of Janson

et al. (2000)).

The denomination ‘binomial model’ comes from the fact that the total number of functions in a binomial

class follows a binomial distribution as does the total number of edges in a binomial graph. More precisely,

if we denote by K the total number of functions in a binomial class, it is immediate from (6) that

∀k = 0, . . . , 2n, Pn,p(K = k) =

(

2n

k

)

pk(1 − p)2
n−k . (8)

The two models are obviously related. Indeed, the conditional distribution of a binomial class, conditioned

on having a cardinality k, is that of a uniform class, i.e., for any B ⊆ P({0, 1}[n]),

Pn,p(B |K = k) = P ∗
n,k(B) . (9)

Conversely, knowing the values of P ∗
n,k(B) for all k, one can compute Pn,p(B) using the formula of total

probabilities:

Pn,p(B) =

2n

∑

k=0

P ∗
n,k(B) Pn,p(K = k) . (10)

In practice, one can construct a binomial class by first selecting its cardinality K according to the binomial

distribution (8) and then choose a uniform class of this size. The expected number of functions in a

binomial class is clearly E(K) = p2n. When n is large, we expect both models to have the same behavior

provided that k ∼ p2n. This intuition is partially justified by the theoretical results presented in Section

2.1 of Bollobás (2001) or Section 1.4 of Janson et al. (2000). Some minor discrepancies between both

models will be pointed out in Sections 3 and 5.

One practical approach to construct a uniform class of cardinality k is to construct a random n × k
binary matrix with the nk entries taking values 0 or 1 independently with probability 1/2. Denoting by

Q∗
n,k the corresponding probability measure, then for any M ∈ Mn×k({0, 1}),

Q∗
n,k(M) =

1

2nk
. (11)

Clearly, the columns of a binary matrix M are vectors of length n which are binary functions on [n].
Hence the set of columns of M represents a class of binary functions. It contains k elements if and only

if all columns are distinct, or less than k elements if two columns are the same. A binary matrix whose

columns are distinct is called simple (see e.g. Anstee et al. (2005)), and we shall denote by S their set.

We claim that the conditional distribution of the set of columns of a random binary matrix, knowing that

it belongs to S, is the uniform distribution P ∗
n,k. To see this, observe that the probability for a random

binary matrix to be simple is

Q∗
n,k(S) =

2n(2n − 1) · · · (2n − k + 1)

2nk
. (12)

For any fixed class F of k binary functions there are k! corresponding simple matrices in Mn×k({0, 1}).
Therefore the conditional probability for the set of columns of a random matrix to be F is

Q∗
n,k(F |S) =

k!

2nk

2nk

2n(2n − 1) · · · (2n − k + 1)
=

1
(

2n

k

) = P ∗
n,k(F ) . (13)
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Thus the process of independently drawing random binary matrices until a simple one is obtained, yields

a uniform class of functions. In practice, if k is reasonably small compared to 2n, then the probability of

the conditioning event S is close to 1 so, typically, after one or two random matrix generations a uniform

class F of cardinality k is obtained.

In Sections 3 and 5, we use this alternate representation of P ∗
n,k in order to compute the asymptotic

probability of several types of shattering events (described in Section 2.1) as n tends to infinity, and for

values of kn such that Q∗
n,kn

(S) tends to 1. From (12), it is easy to deduce that this is true provided that

kn ≪ 2n/2.

The next auxiliary lemma is a technical result which will permit the interchange of Q∗
n,kn

and P ∗
n,kn

and hence simplify some of the analysis in subsequent sections.

Lemma 2 Assume kn ≪ 2n/2 and let B ⊂ P({0, 1}[n]). Then either P ∗
n,kn

(B) and Q∗
n,kn

(B) both

converge to the same limit or diverge.

Proof: As seen above,

P ∗
n,kn

(B) = Q∗
n,kn

(B |S) =
Q∗

n,kn
(B ∩ S)

Q∗
n,kn

(S)
.

We have

Q∗
n,kn

(B) + Q∗
n,kn

(S) − 1 6 Q∗
n,kn

(B ∩ S) 6 Q∗
n,kn

(B).

Since k ≪ 2n/2 then Q∗
n,kn

(S) tends to 1. Hence the limits of Q∗
n,kn

(B), Q∗
n,kn

(B∩S) and Q∗
n,kn

(B|S)
are the same. ✷

In the next sections we present for each of the events Ed, Sd and Ad two types of results: the first type

describes the values of the parameter (kn or pn) for which the probability of the event tends to 0 or 1
(these are presented as Lemmas, Corollaries and Remarks). The second type gives the behavior of the

probability around the critical value of the parameter where the transition occurs (these are presented as

Propositions).

3 Asymptotics for the VC-dimension

By definition of the VC-dimension, a class of fewer than 2d functions cannot shatter a set of size d. As

we show in this section, as soon as the number of functions is at least 2d then at least one set of size d is

shattered by a random class F w.h.p.

Lemma 3 For any integer d > 0 let k be an integer satisfying k > 2d. Then

lim
n→∞

P ∗
n,k(Ed) = 1.

Proof: It suffices to prove the result for k = 2d since P ∗
n,k(Ed) > P ∗

n,2d(Ed). Using Lemma 2 it suffices

to show that Q∗
n,2d(Ed) tends to 1. Denote by Md the ‘complete’ matrix with d rows and 2d columns

formed by all 2d binary vectors of length d, ranked for instance in alphabetical order. The event E∗
d

occurs if there exists an x = {x1, . . . , xd} ⊂ [n] such that the submatrix whose rows and columns are

indexed by x and [2d] respectively, is equal to Md. Let m = ⌊n/d⌋. Let

xi = {di + 1, di + 2, . . . , d(i + 1)} , 0 6 i 6 m − 1, (14)
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Consider the event defined as the set of those matrices having a submatrix whose rows are indexed by

xi and equal to Md. For i = 0, . . . ,m − 1, these m events are clearly independent and have the same

probability 2−d2d

. Hence the probability that at least one of them is fulfilled is

1 − (1 − 2−d2d

)⌊n/d⌋,

which tends to 1 as n increases. ✷

Remark 1 When kn < 2d no set of size d is shattered and hence P ∗
n,kn

(Ed) = 0. For kn > 2d,

P ∗
n,kn

(Ed) tends to 1. Hence for a uniform class, the critical value of the cardinality kn for the event Ed

is 2d.

Remark 2 For any fixed k > 0, it follows that w.h.p. a uniform class F of cardinality k has a VC-

dimension of at least ⌊log2 k⌋, where ⌊·⌋ denotes the integer part and log2(a) the logarithm in base 2.

Since any class of cardinality k cannot shatter a subset of [n] of size greater than ⌊log2 k⌋ then this is

also an upper bound on the VC-dimension of F . Hence, under the uniform model P ∗
n,k, the VC-dimension

of F converges in probability to ⌊log2 k⌋.

10 20 30 40 50 60

2

4

6

k

V
C

Fig. 1: VC-dimension of a random class of cardinality k (n → ∞)

We proceed now to obtain the asymptotic distribution of VC(F) where F is a random class under the

binomial model Pn,pn
. Since the number of functions in {0, 1}[n] increases exponentially fast with n, in

order to keep the expected cardinality of the random class a constant we choose a rate of decrease for pn

as pn = c2−n for some c > 0. From Section 2, the number K of functions in a random class Fn,p follows

the binomial law (8) with parameters 2n and pn. It therefore converges to the Poisson distribution with

parameter c, i.e.,

lim
n→∞

Pn,pn
(K = k) = e−c ck

k!
.

Conditioned on having a cardinality of K = k, by Remark 2, a random class F will have VC(F) =
⌊log2 k⌋ w.h.p. Hence the event that the VC-dimension of the binomial class Fn,pn

is at least d is asymp-
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totically distributed as ⌊log2 K⌋, where K follows the Poisson distribution with parameter c. This is stated

formally in the next result.

Proposition 1 Fix any constant c > 0 and d > 1. Assume that pn obeys limn→∞ pn2n = c. Then

lim
n→∞

Pn,pn
(Ed) =

∞
∑

k=2d

e−c ck

k!
.

Proof: From (10), we have

Pn,pn
(Ed) =

2n

∑

k=0

P ∗
n,k(Ed)

(

2n

k

)

pk
n(1 − pn)2

n−k .

Clearly, by definition of the VC-dimension, the factor P ∗
n,k(Ed) = 0 equals zero for all k < 2d. For

k > 2d, P ∗
n,k(Ed) > P ∗

n,2d(Ed) hence

P ∗
n,2d(Ed)

2n

∑

k=2d

(

2n

k

)

pk
n(1 − pn)2

n−k
6 Pn,pn

(Ed) 6

2n

∑

k=2d

(

2n

k

)

pk
n(1 − pn)2

n−k .

The result follows since P ∗
n,2d(Ed) tends to 1 (by Lemma 3) and the binomial distribution with parameters

2n and pn converges to the Poisson distribution with parameter c. ✷

While Lemma 3 established that a random class of functions of cardinality at least 2d shatters one or

more sets of size d w.h.p., one can expect at least O(n) sets of size d to be shattered. We now proceed to

show that any particular set of size d has a positive probability of being shattered.

4 Asymptotics for the initial-dimension

Consider a random class F of k binary functions on [n]. Can a fixed set of size d in [n], for instance [d],
be shattered by F? The answer is affirmative, provided k is large enough. As it turns out, the initial-

dimension of F has an asymptotic behavior which is similar to the distribution of its VC-dimension. We

start with computing the probability of the event Sx (see (3)) under the binomial model Pn,p.

Lemma 4 Let n > 1, 1 6 d 6 n and x = {x1, . . . , xd} ⊂ [n]. Then under the binomial model with

parameters n and p ∈ [0, 1] we have

Pn,p(Sx) =
(

1 − (1 − p)2
n−d

)2d

. (15)

Proof: From (3), Sx is the intersection of the events Cx,η , η ∈ {0, 1}x. We will prove that these events

are independent under Pn,p and that each has probability

Pn,p(Cx,η) = 1 − (1 − p)2
n−d

. (16)

We start with the latter. For an event B let us denote by B its complement

B = P({0, 1}[n]) \ B.
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We will use calligraphic capital letters to denote classes of functions and regular capital letters to denote

events. Let C be a fixed class and F be a random class. Consider the event C := ‘F contains at least one

element of C’. Its complement C is: ‘no function of C is contained in F’. By Definition 1, its probability

is

Pn,p(C) = (1 − p)|C|. (17)

Let Cx,η be the class of functions that coincide with η on x, i.e., f|x = η (there are 2n−d such functions).

Applying (17) to the event Cx,η yields (16).

It remains to show that the events Cx,η , η ∈ {0, 1}x are independent. It is a basic fact (see for instance

Feller (1968), p. 115) that the independence of (Bi)i∈I is equivalent to the independence of their com-

plements (Bi)i∈I . For 1 6 h 6 2d, let η1, . . . , ηh be distinct elements of {0, 1}x. Consider the class

C =
⋃

i=1,...,h Cx,ηi
whose cardinality is |C| = h2n−d. The event ‘F ∩C = ∅’ means that for all functions

f in F , f|x 6= ηi, 1 6 i 6 h, or equivalently, the event
⋂

i=1,...,h Cx,ηi
occurs. Resorting once more to

(17) we have

Pn,p





⋂

i=1,...,h

Cx,ηi



 = (1 − p)h2n−d

=

h
∏

i=1

Pn,p(Cx,ηi
).

From this it follows that the events (Cx,η)η∈{0,1}x are mutually independent, and hence, so are the events

(Cx,η)η∈{0,1}x . ✷

From (15), and using the standard expansion

(1 − t)N = exp



−N
∑

i>1

ti

i



 (18)

which holds for −1 < t < 1 (see Feller (1968), p. 49), it follows that Pn,pn
(Sx) tends to zero if pn ≪ 2−n

and to 1 if pn ≫ 2−n. As it was previously done for the event Ed (Lemma 3 and Remark 1), we now

state the critical value of the expected cardinality for the event Sd under the binomial model.

Corollary 1 The probability Pn,pn
(Sd) that the initial-dimension is at least d tends to 0 or 1 according

to whether the expected cardinality pn2n of the class tends to 0 or ∞, respectively. In particular, for any

fixed d > 0, if the expected cardinality tends to infinity then the initial dimension is at least d w.h.p.

The proof follows from Lemma 4 and the above arguments. When pn = c2−n the initial-dimension

converges in distribution according to the following result.

Proposition 2 Fix any c > 0 and d > 1 and assume pn satisfies limn→∞ pn2n = c. Then

lim
n→∞

Pn,pn
(Sd) = (1 − exp(−c2−d))2

d

.

Proof: From (18) we have limN→∞(1 − c/N)N = e−c hence

lim
n→∞

(1 − pn)2
n−d

= exp(−c2−d).

The result directly follows from Lemma 4. ✷
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For pn = c2−n, it is interesting to compare the asymptotic probability distributions of the VC-dimen-

sion and the initial dimension, deduced from Propositions 1 and 2.

P(VC(F) = d) ≡ Pn,pn
(Ed) − Pn,pn

(Ed+1) and P(ID(F) = d) ≡ Pn,pn
(Sd) − Pn,pn

(Sd+1) .

They turn out to be remarkably close. Table 1 gives their significant values, for c = 10. The two

distributions differ by approximately one unit.

d 1 2 3 4

P(VC(F) = d) .0098 .2099 .7310 .0487
P(ID(F) = d) .2766 .6428 .0672 .0000

Tab. 1: Asymptotic distributions of the VC and the initial-dimensions under the binomial model Pn,pn for pn = c2−n

and c = 10.

Remark 3 From Propositions 1 and 2, the asymptotic probability distributions of the events Ed and Sd

have a similar functional form with respect to the expected cardinality c, but the former has a significantly

earlier transition from zero to one. On Figure 2, the asymptotic probability of E4 and S4 are plotted

against the expected cardinality of the class.

0 24 48 72 96 120

0.5

1

c

Fig. 2: Limiting probability distribution of the events Ed (solid) and Sd (dots) for d = 4, with respect to the expected

cardinality c of the random class. Inflection points at c = 15 and c = 44, respectively.

Suppose that pn is chosen so that the binomial class F has expected size pn2n = c = 2d. Using

the above probability distributions for the VC-dimension and the initial-dimension, the corresponding

expected values E(VC(F)) and E(ID(F)) can be computed and analyzed in terms of the expected class

size c. Table 2 displays these values for c = 2d, d = 1, . . . , 10. As seen, the expected value of the

VC-dimension of F is just slightly smaller than the size d of a set that could in theory be shattered by

some class of the same cardinality as F .

5 Asymptotics for the testing-dimension

From Lemma 3 (Corollary 1) it follows that as the cardinality k (or expected cardinality pn2n) of a random

class tends to infinity, the VC-dimension and the initial-dimension both tend to infinity. It is still possible
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d 1 2 3 4 5 6 7 8 9 10

E(VC(F)) 0.74 1.52 2.51 3.52 4.52 5.52 6.51 7.51 8.51 9.50
E(ID(F)) 0.42 0.91 1.55 2.24 2.96 3.75 4.55 5.30 6.07 6.97

Tab. 2: Expectations of the asymptotic probability distributions of the VC-dimension and initial-dimension under the

binomial model Pn,pn for pn2n = c = 2d, d = 1, . . . , 10.

however that as this occurs, the event Ad of the random class shattering all sets of size d (see Section 2.1)

does not occur, even for d = 1. As we now show, the expected value of the number of unshattered sets of

size d may tend to infinity even when the cardinality of the class tends to infinity.

In order to show this, we use the standard first-moment method (see Janson et al. (2000), p. 54). Let X
be the random variable that counts the number of sets of size d which are not shattered by a random class

F . We may express X as a sum of indicators ISx

(F) of the complement of the events Sx (see Section

2.1), over all sets x with |x| = d. Hence the events ‘X = 0’ and Ad are identical. Using Lemma 4, we

may express the expected value of X as

En,p(X) =
∑

x:|x|=d

En,p(ISx

(F))

=
∑

x:|x|=d

Pn,p(Sx)

=
∑

x:|x|=d

(

1 −
(

1 − (1 − p)2
n−d

)2d)

=

(

n

d

) (

1 −
(

1 − (1 − p)2
n−d

)2d)

. (19)

Assume p = pn = c 2−n log n, for some positive constant c. As n tends to infinity then

En,pn
(X) =

2d

d!
nd−c2−d

(1 + o(1)). (20)

Thus En,pn
(X) tends to 0 if c < d2d, to +∞ if c > d2d, so pn = d2d−n log n appears as a threshold for

the expected number of unshattered sets. As we have previously done for the events Ed and Sd (Lemma 3

and Corollary 1) we now state the behavior of the probability of Ad at the extreme values of the expected

cardinality of the class. It is reasonable to expect that the same threshold as for the expected value of

X , also holds for the probability of Ad. Lemma 5 below states that the probability of Ad tends to 1 if

pn ≫ d2d−n log n. We believe that it tends to 0 if pn ≪ d2d−n log n. However, the first moment method

only gives the first claim. For the second claim, the second-moment method (see for instance Janson

et al. (2000) p. 54 or Spencer (1991) Theorem 3.1) may be used. This requires estimating the correlation

between pairs of events Sx, Sy which we were not able to do under the binomial model.

Lemma 5 If pn ≫ d2d−n log n, then the probability Pn,pn
(Ad) that the testing-dimension is at least d

tends to 1.

Proof: Assume that pn = c2−n log n. Then from (20), En,pn
(X) tends to zero if c > d2d. Hence

lim
n→∞

Pn,pn
(Ad) = lim

n→∞
Pn,pn

(X > 0) 6 lim
n→∞

En,pn
(X) = 0
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which follows from an application of Markov’s inequality for a non-negative integer-valued random vari-

able. ✷

To obtain more precise estimates around the threshold, we shall use the uniform model. Proposition 3

below gives the asymptotic probability of the event Ad at the threshold, as was previously done for the

events Ed and Sd in Propositions 1 and 2.

Proposition 3 Let d > 1 and k = kn be positive integers such that

lim
n→∞

kn − αd log n = c,

where

αd = −
d

log(1 − 2−d)

and c is a real constant. Then

lim
n→∞

P ∗
n,kn

(Ad) = exp

(

−
2d

d!
(1 − 2−d)c

)

.

Remark 4 Denote cn = kn − αd log n. If cn tends to +∞, then P ∗
n,kn

(Ad) tends to 1. If cn tends to

−∞, then P ∗
n,kn

(Ad) tends to 0. Hence the critical value of the class-cardinality kn is αd log n: between

the binomial model and the uniform one, the threshold for the class cardinality shifts from 2d log n to

αd log n.

Consider a random class of cardinality kn = α log n. If α 6= αd for all d, then w.h.p. the testing dimension

of the class equals the largest integer d such that α > αd. If α = αd for some positive integer d, then

w.h.p. all sets of size d − 1 are shattered (since α > αd−1), at least one set of size d + 1 is not (since

α < αd+1), and there may be a positive probability that all sets of size d are shattered. Therefore the

testing dimension of the class in this case (α = αd) is either d − 1 or d w.h.p. Hence for any value of

α the testing-dimension of a random class with cardinality α log n concentrates on one or two values.

Thus Proposition 3 expresses a concentration result for the testing-dimension which is similar to the well-

known concentration theorem by Matula for the clique number of random graphs (see Theorem 7.1 in

Janson et al. (2000) or Theorem 11.4 p. 228 of Bollobás (2001)).

We now proceed with the proof.

Proof: As in Section 3, we use Lemma 2 and replace P ∗
n,k by Q∗

n,k. In terms of matrices, the event

Sx is identical to the event that the submatrix M with row indices i ∈ x ⊂ [n] and column indices

1 6 j1, . . . , j2d 6 k, is equal to the matrix Md up to a permutation of columns (see the proof of Lemma

3).

As before, let X count the subsets x of size d that are not shattered by the random class F , i.e.,

X =
∑

x:|x|=d

ISx

(F) .

Consider any x ⊂ [n] then recall from (3) that Sx =
⋂

η Cx,η hence Sx =
⋃

η Cx,η where η runs over

the set {0, 1}x.



VC-dimensions of random function classes 125

Consider any h distinct functions η1, . . . , ηh ∈ {0, 1}x. A random matrix has every one of its k columns

different from every ηi, 1 6 i 6 h, with probability

Q∗
n,k(Cx,η1

∩ . . . ∩ Cx,ηh
) = (1 − h2−d)k .

Using the expression for the probability of a union of events (see Feller (1968) (1.5), p. 89) one obtains

Q∗
n,k(Sx) =

2d

∑

h=1

(−1)h−1

(

2d

h

)

(1 − h2−d)k .

If k = kn tends to infinity, this sum tends to zero and the first term dominates. Hence:

Q∗
n,kn

(Sx) = 2d(1 − 2−d)kn(1 + o(1)) .

For kn = αd log n + c + o(1),

Q∗
n,kn

(Sx) = 2d(1 − 2−d)cn−d(1 + o(1)) . (21)

Denoting by En,k(X) the expectation of X with respect to Q∗
n,k, we have

En,kn
(X) =

(

n

d

)

Q∗
n,kn

(Sx) , (22)

which tends to 2d

d! (1 − 2−d)c with increasing n. It remains to show that

lim
n→∞

Q∗
n,kn

(X = 0) = lim
n→∞

exp(−En,kn
(X)) ,

i.e. that a Poisson approximation holds for X (Barbour et al., 1992). The technique of proof, based on the

Stein-Chen method, is quite standard: we shall use the results stated in Janson (1994).

For d = 1, the subsets x are singletons and the events Sx are independent. Their common probability

is Q∗
n,kn

(Sx) = n−1(1 + o(1)). Hence

Q∗
n,kn

(X = 0) =
(

1 − n−1(1 + o(1))
)n

= exp(−1)(1 + o(1)) .

For d > 2, the family of indicators (ISx

) is dissociated in the sense of Janson (1994) p. 10: the two sets

of random variables {ISx

, x ∈ J} and {ISy

, y ∈ K} are independent whenever every x ∈ J is disjoint

from every y ∈ K. Denote by Γ the set of all x ⊂ [n] with |x| = d. For x ∈ Γ, denote by Γx the set of

all y such that x ∩ y 6= ∅. By Theorem 4 p. 10 of Janson (1994), the total variation distance between the

distribution of X and the Poisson distribution with parameter En,kn
(X) is bounded above by

(1 ∧ E(X)−1)





∑

x∈Γ

∑

y∈Γx

Q∗
n,kn

(Sx)Q∗
n,kn

(Sy) +
∑

x∈Γ

∑

y∈Γx\{x}

Q∗
n,kn

(Sx ∩ Sy)



 (23)
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The result will follow by proving that each of the two sums in (23) converges to zero. The first sum

has O(n2d−1) terms, each of order O(n−2d), by (21). We decompose the second sum according to the

number of elements in x ∩ y as follows:

∑

x∈Γ

∑

y∈Γx\{x}

Q∗
n,kn

(Sx ∩ Sy) =

d−1
∑

h=1

∆h ,

where

∆h =
∑

|x∩y|=h

Q∗
n,kn

(Sx ∩ Sy).

Clearly, there are O(n2d−h) terms in ∆h. From (3) we have

Sx ∩ Sy =





⋃

η∈{0,1}x

Cx,η





⋂





⋃

ζ∈{0,1}y

Cy,ζ



 =
⋃

η,ζ

(

Cx,η ∩ Cy,ζ

)

.

A randomly drawn function f on [n] generated by n coin flips with probability 1/2 has a probability

of (1/2)d for each of the individual events ‘f|x = η’ and ‘f|y = ζ’. The probability that both events

‘f|x = η’ and ‘f|y = ζ’ occur simultaneously is (1/2)2h−d provided that η|x∩y = ζ|x∩y and 0 otherwise.

It follows that

Q∗
n,k(Cx,η ∩ Cy,ζ) =

{

(1 − 2−d+1 + 2−2d+h)k if η ≡ ζ on x ∩ y

(1 − 2−d+1)k otherwise.

Hence

∆h 6 an2d−h(1 − 2−d+1 + 2−2d+h)k

for some positive a, not depending on n and k. For k = kn = αd log n + c + o(1), there exists a positive

constant b such that

∆h 6 b n2d−h+αd log(1−2−d+1+2−2d+h) .

That ∆h tends to zero follows from having a negative exponent, i.e.,

2d − h + αd log(1 − 2−d+1 + 2−2d+h) < 0 (24)

for d > 2 and h = 1, . . . , d − 1. Indeed, the left hand side of (24) vanishes both for h = 0 and h = d. As

a function of h, its second derivative is positive on [0, d] hence it is strictly convex. Therefore it is strictly

negative for all h = 1, . . . , d − 1. Hence ∆h tends to zero with increasing n. ✷
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