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1. Introduction  
The formation of aneurysm of abdominal aorta 
(AAA), is a multi-factorial and predominantly 
degenerative process that results from a complex 
interplay between biological processes in the 
arterial wall and the hemodynamic stimuli on the 
wall, i.e. wall shear stresses (WSS) and elongations 
of the wall directly applied on vascular endothelial 
cells (EC) partly regulate the arterial wall 
remodelling (Golledge et al, 2006, Humphrey et al 
2012). In the case of AAA, these mechanical 
stimuli strongly vary in space and time, leading to 
strong spatio-temporal gradients (Figure 1). The 
effect of these abnormal mechanical stimuli leads to 
EC dysfunction. This phenomenon plays a 
significant role in AAA pathology, where damage 
of EC, associated with changes of endothelial 
permeability and increased local inflammation, 
appears to be the initial step of AAA formation and 
expansion. In the last two decades, many in vitro 
studies have been performed in order to 
characterize the influence of WSS (Chiu and Chien 
2011) on the EC biological response. Recently the 
coupling between elongation and WSS has been 
also investigated. However, these stimuli remain 
usually very far from the ones encountered in AAA 
during its expansion, and do not allow to clearly 
understand the links between blood WSS – AAA 
wall stress and elongations - EC dysfunction. 
Within this context, new experiments need to be 
developed in order to reproduce such pathological 
loadings on EC. In the present study, we present 
results concerning the influence of WSS only on 
EC dysfunction in a parallel plate flow channel. A 
preliminary set of in vitro experiments have been 
performed applying three different values of WSS, 
which represent the WSS over a cardiac cycle at 
three different locations in a typical AAA 
geometry. These tests will be then used as reference 
in order to measure the influence of the 
pathological spatio-temporal gradients of WSS. 
 

2. Methods 

Primary human umbilical vein EC (HUVEC) were 
plated on fibronectin-coated slides (10 ȝg/mL) and 
confluent monolayers were exposed to flow in a 
closed circulating system using a peristaltic pump 
for 18 h or incubated under static conditions, in 
both cases with 5% CO2 at 37 °C. For flow 

experiments, we used a parallel plate flow chamber, 
as described previously (Chotard-Ghodsnia et al., 
2002). Constant shear stress applied on cells varies 
from 0.04 Pa to 3.7 Pa (0.4 to 37 dynes/cm

2
), which 

corresponds to levels of WSS during enlargement 
of AAA (Salsac et al., 2004). Cell alignment and 
shape were investigated on digitized images, 
analyzed with MetaMorph software (nı500/per 
experiment). Cell orientation (alignment) was 
determined as an angle between the long axis of the 
cell and the chosen direction (0° indicated perfect 
alignment with respect to the flow direction while a 
value of 45° indicated no alignment). Elliptical 
form factor, the ratio of the cell's breadth to its 
length, determined the level of cells elongation (1 
indicated circle i.e. no elongation). EC dysfunction 
was determined by immunocytochemistry, confocal 
fluorescence microscopy and flow cytometry.  
Data were analyzed using SigmaStat statistical 
software. One-way ANOVA followed by multiple 
comparisons with Holm-Sidak test was used. For 
direct comparisons, an unpaired Student’s t test was 
used. Values are presented as means±SE. 
Comparisons were judged to be significant at p < 
0.05. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1  a) AAA macro scale model. b) Micro 
scale study. c) Wall shear stress during the cardiac 

cycle at different locations of AAA. 
 

3. Results and Discussion 

The orientation and elongation of EC (figure 2a et 

b) were analysed (Table 1). Compared to static 

state, characterized by random orientation, we 

observed that HUVEC partially aligned in direction 

of flow after 18 h of exposure to shear stress of 2.0 

Pa. The alignment was even more pronounced
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in response to very high shear stress of 3.7 Pa. 

Confluent EC are known to be polygonal under 

static culture conditions, but become elongated in 

response to shear stress (Dewey et al., 1981). In our 

study, the elongation was significantly elevated in 

HUVEC already after exposure to shear stress of 

0.04 Pa and further increased with higher 

magnitudes of shear stresses, clearly demonstrating 

the gradual elongation of HUVEC. 

Then we investigated the response of cytoskeletal 

organization to the shear stress stimuli. After 18 h 

of 2.0 Pa shear stress, HUVEC displayed long, 

well-organized, parallel actin stress fibers largely 

aligned with the flow direction in the central 

regions of the cells and linear distribution of 

vascular endothelial (VE)-cadherin, adhesion 

molecule located at junctions between EC, was 

similar to immunostaining of cells-junctions in 

arteries in vivo (Noria et al., 2004).  

The effect of shear stress on surface expression of 

various adhesion molecules (i.e., ICAM-1, VCAM-

1, and E-selectin) was determined using flow 

cytometry analysis. Application of flow for 18 h 

significantly increased ICAM-1 surface expression 

in case of 0.04 Pa but not in case of higher levels of 

WSS (Table 1). This is consistent with general 

statement that inflammation develops mainly in 

areas of low shear stress, while areas exposed to a 

higher shear stress are protected (Cecchi et al. 

2011). Surface expression of neither VCAM-1 nor 

E-selectin was changed. To investigate the 

fibronectin-integrin-cytoskeleton linkage, we 

analysed the regulation of ȕ1 Integrin by shear 

stress. We observed strongly induced surface 

expression of ȕ1 Integrin by flow (Table 1) 

suggesting the important role of this protein in 

mechanotransduction pathways signalling. 

 
 static 0.04 Pa 2.0 Pa 3.7 Pa 

Orientation  44±2 42±2 29±3* 17±1* 

Elongation 2.2±0.1 2.7±0.1* 3.2±0.3* 3.7±0.2* 

ICAM-1 1±0.5 2.7±0.7* 1.9±0.5 1.5±0.2 

ȕ1 Integrin 1±0.2 3.6±1.1* 1.9±0.1* 1.8±0.1* 

Table 1 Shear stress-induced changes in EC 

orientation (°) and elongation and in surface 

expression of ICAM-1 and ȕ1 Integrin. Data are 

means ±SE (n=5). *Significantly different from 

static condition. 

4. Conclusions and perspectives 

Our preliminary results confirm that high levels of 

WSS are not apparently, in themselves, the cause of 

the AAA pathology, suggesting that rather WSSG 

plays a key role in this disease. The directly study 

of the spatio-temporal WSSG remains a challenge. 

For that purpose, we recentlty developed PDMS 

model of AAA and EC were placed and cultured 

inside of models to obtain confluent monolayer. We 

tested the maintaining of cells monolayers after 

exposure to WSS (2.0 Pa in “healthy“ part of aorta). 
Cells, exposed to flow in a closed circulating 

system using peristaltic pump for 8h, were fixed 

and observed by confocal microscope. As shown in 

Figure 2c, the cell monolayer was maintained even 

in area of maximum AAA radius. These original 

experimental set-up offer interesting perpectives in 

order to study spartio-temporal gradient of WSS in 

AAA. 

 
Figure 2a, b) Actin (Phalloidin Texas Red) and 

Cells’ nuclei (Hoechst). a) HUVEC without flow: 
random and short filaments at cell periphery. b) 

HUVEC with flow: Long and parallel stress fibers 
in central regions. c) Confocal microscopy of AAA 
model made of PDMS with EC covering the inside 

walls. 
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