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Abstract—Fog reduces contrast and thus the visibility of
vehicles and obstacles for drivers. Each year, this causes traffic
accidents. Fog is caused by a high concentration of very fine
water droplets in the air. When light hits these droplets, it
is scattered and this results in a dense white background,
called the atmospheric veil. As pointed in [1], Advanced Driver
Assistance Systems (ADAS) based on the display of defogged
images from a camera may help the driver by improving objects
visibility in the image and thus may lead to a decrease of fatality
and injury rates.

In the last few years, the problem of single image defogging
has attracted attention in the image processing community. Be-
ing an ill-posed problem, several methods have been proposed.
However, a few among of these methods are dedicated to the
processing of road images. One of the first exception is the
method in [2], [1] where a planar constraint is introduced
to improve the restoration of the road area, assuming an
approximately flat road.

The single image defogging problem being ill-posed, the
choice of the Bayesian approach seems adequate to set this
problem as an inference problem. A first Markov Random Field
(MRF) approach of the problem has been proposed recently
in [3]. However, this method is not dedicated to road images.
In this paper, we propose a novel MRF model of the single
image defogging problem which applies to all kinds of images
but can also easily be refined to obtain better results on road
images using the planar constraint.

A comparative study and quantitative evaluation with several
state-of-the-art algorithms is presented. This evaluation demon-
strates that the proposed MRF model allows to derive a new
algorithm which produces better quality results, in particular
in case of a noisy input image.

I. INTRODUCTION

Vehicle accidents may result from reduced visibility in bad

weather conditions such as fog. Increasing object visibility

and image contrast in foggy images grabbed from a camera

inboard a vehicle thus appears to be useful for various

camera-based Advanced Driver Assistance Systems (ADAS).

Two kinds of ADAS can be considered. The first system

consists in displaying the defogged image, for instance using

a Head-Up Display. Following [1], this kind of ADAS

is named Fog Vision Enhancement System (FVES). The

second system combines defogging as a pre-processing with

detection of vehicles, pedestrians and obstacles, in order to

deliver adequate warning. An example is to warn the driver

when the distance to the previous moving vehicle is too short

with respect to its speed. In [4], it is shown for two types of

Thanks to the ANR (French National Research Agency) for funding,
within the ICADAC project (6866C0210).

detection algorithms, that defogging pre-processing allows to

improve detection performances in the presence of fog.

With a linear response camera, an object of intrinsic

intensity I0 is seen with the following apparent intensity I

in presence of a fog with extinction coefficient β:

I = I0e
−βD + Is(1− e−βD)

︸ ︷︷ ︸

V

(1)

This equation is the so-called Koschmieder law, where D is

the object depth, and Is is the intensity of the sky. From (1),

it can be seen that fog has two effects: first an exponential de-

cay e−βD of the object contrast, and second an atmospheric

veil V is added. V is an increasing function of the object

depth D. The difficulty is that single image defogging is an

ill-posed problem. Indeed, from (1), defogging requires to

estimate both the intrinsic luminance I0 and the depth D at

every pixel, only knowing I .

The first method for single image defogging is in [5],

where an approximate depth-map of the scene geometry

is built interactively depending of the scene. Due to the

interaction, this method does not apply to camera-based

ADAS. In [6], this idea of using an approximate depth-map

is also investigated by proposing several simple parametric

geometric models dedicated to road scenes seen in front of

a vehicle. The model parameters are fit on each image by

maximizing the scene depth without producing black pixels

after defogging. The limit is the lack of flexibility due to

simple parametric models.

The same year, a different method based on the use of

color is proposed in [7]. The difficulty in the case of a road

image, is that road is gray and white and thus the method

does not apply correctly on this area. Then in [8], [9], [10],

three defogging methods are introduced which are able to

process a gray-level or as well as a color image. These three

methods rely on a single principle: the use of a local spatial

regularization. However, these methods are not dedicated

to road images and thus the roadway area in the defogged

image is usually over-contrasted. The road can be reasonably

assumed to be approximately flat. In [2], it is thus proposed

to introduce a planar constraint in method [10] for better

defogging of the roadway area.

From 2009, several other methods for single image defog-

ging were proposed. Nevertheless, only a few of them are

able to cope with the roadway area in the image. The single

image defogging problem being ill-posed, the choice of the



Bayesian approach is adequate. A first Markov Random Field

(MRF) approach was proposed in [3], based on Factorial

MRF to handle the two types of fields of unknown variables:

depth and intrinsic intensity. Based on our analysis of the 3D

reconstruction and defogging problem in stereovision [11],

we here propose to decompose the problem into two steps:

first infer the atmospheric veil using a first original MRF

model and second, estimate the restored image using a

second original MRF model assuming that the depth-map is

known. In practice, the depth-map is obtained from the map

of the atmospheric veil. The proposed MRF model is generic

and can easily be refined to introduce the planar constraint,

which leads to better results on road images.

To compare the proposed algorithm to previously pre-

sented algorithms, we use the evaluation scheme proposed

in [1] on a set of synthetic images with homogeneous fog.

Algorithms are applied on foggy images and outputs are

compared with the image without fog. The proposed MRF

defogging method is more efficient, particularly when input

image is noisy, a case which was never studied before. The

article is structured as follows. Sec. II presents the MRF

model for image defogging when the depth-map is assumed

known. In Sec. III, the MRF model for depth inference

is introduced based on the inference of the atmospheric

white veil from the foggy image. The two previous models

are combined in Sec. IV to derive the algorithm for MRF

single image defogging. In Sec. V, a comparison is provided

with five state of the art algorithms based on a quantitative

evaluation on a set of 66 synthetic foggy images, illustrat-

ing the advantage of the proposed algorithm. A qualitative

comparison on camera images is also proposed in Sec. VI.

II. IMAGE DEFOGGING KNOWING THE DEPTH-MAP

In this section, we are looking for I0, the restored image,

for input image I , assuming that the depth-map D is known.

Is is usually taken as the maximum intensity value over

the image, see [7]. For color images, the white balance

must be performed correctly before processing to achieve

correct colors after defogging. The value of β, the extinction

coefficient, can be obtained by fog characterization pre-

processing. Examples of such pre-processing can be found

for instance in [12], [13].

When the true depth-map D is known, as well as β

and Is, I0 can be found in close form at each pixel, by

reversing the Koschmieder law (1), see for instance [10].

The reversing of the Koschmieder law is valid only when

the input image I is assumed noiseless. In the presence of

noise, and due to the low signal to noise ratio on remote

objects, the noise on such objects is strongly emphasized

after contrast restoration. To address the presence of noise,

a MRF formulation is adequate and allows to better solve

the single image defogging problem knowing the depth-map.

The proposed MRF leads to a regularized solution, where

the quality of the restored image in presence of noise is

improved, even when the noise is small.

The problem of image defogging knowing the depth-map

can be formulated as the maximization of the posterior prob-

ability p(I0|D, I). By using the Bayes rule, this probability

can be rewritten as:

p(I0|D, I) ∝ p(I|D, I0)p(I0|D) (2)

where p(I|D, I0) is the data likelihood and p(I0|D) is the

prior on the unknown I0. In practice, the log-likelihood is

minimized instead of the maximization over the probability

density function. The energy derived from (2) using log-

likelihood is:

E(I0|D, I) = E(I|D, I0)
︸ ︷︷ ︸

Edata I0

+E(I0|D)
︸ ︷︷ ︸

Eprior I0

(3)

This energy is thus the sum of two terms: the data and prior

terms, which are now detailed.

A. Data term

By definition, the data term is the log-likelihood of the

noise probability on the intensity, taking into account that I0
is observed through the fog, see (1). As a consequence, it

can be written as:

Edata I0=
∑

(i,j)∈X

ρ(
|(I0(i, j)− Is)e

−βD(i,j) + Is − I(i, j)|

σ
)

(4)

where X is the set of image pixels and ρ is a function related

to the distribution of the intensity noise with scale σ. In

practice, a Gaussian distribution is usually used, i.e ρ(t) =
t2.

B. Prior term

The prior term enforces the smoothness of the restored

image by penalizing large differences of intensity between

neighboring pixels. As a consequence, it can be written as:

Eprior I0=λI0

∑

(i,j)∈X

e−βD(i,j)
∑

(k,l)∈N

ρg(|I0(i, j)−I0(i+k, j+ l)|)

(5)

where λI0 is a factor weighting the strength of the prior on

I0 w.r.t the data term, N is the set of relative positions of

pixel neighbors (4, 8 connectivity or other), and ρg a function

related to the gradient distribution of the image without fog.

In practice, the identity function for ρg gives satisfactory

results.

Notice that an exponential decay is introduced in (5).

Without this decay, and because of the exponential decay

on I0 in the data term, the effect of the data term becomes

less and less important as depth increases, compared to the

prior term. In such a case, the data term gets the upper hand

on the prior term, and the result is over smoothed at long

range distances. To avoid this effect, the exponential decay

e−βD(i,j) is introduced in the prior term. Fig. 1 shows the

restored image obtained with the proposed algorithm on a

foggy and noisy image without the regularization due to the

prior term, with the prior term without exponential decay and

finally, with the prior with exponential decay. As expected,

results shows that, without prior term, the noise is strongly

emphasized on remote objects. Next, when the prior with

exponential decay is used, the intensity of close objects



Fig. 1. Effect of the prior term Eprior I0 . From left to right: without
regularization i.e λI0 = 0 a, when λI0 = 2 and without exponential decay,
when λI0 = 2 and with exponential decay.

spreads on remote objects. With the prior with exponential

decay, the smoothing effect is homogeneous with the distance

and small details are kept even on remote objects.

C. Depth versus atmospheric veil

Rather than using the depth-map D in the previous MRF

model, it is equivalent to use the map of the atmospheric

veil V . The link between the map of the atmospheric veil

V (i, j) and the depth-map D(i, j) is:

V (i, j) = Is(1− e−βD(i,j)) (6)

After substitution of V in (1), the Koschmieder law is

rewritten as:

I = I0(1−
V

Is
) + V (7)

This substitution can be also performed on the data term (4):

Edata I0=
∑

(i,j)∈X

ρ(
|I0(i, j)(1−

V (i,j)
Is

) + V (i, j)− I(i, j)|

σ
)

(8)

and on the prior term:

Eprior I0=λI0

∑

(i,j)∈X

(1−
V (i, j)

Is
)
∑

(k,l)∈N

ρg(|I0(i, j)−I0(i+k, j+l)|)

(9)

leading to a MRF model for single image defogging knowing

the map of atmospheric veil V . One can notice, that the value

of the extinction coefficient β is not longer required in this

last MRF model.

III. ATMOSPHERIC VEIL INFERENCE

In this section, we propose a MRF model for inferring the

depth-map from a single foggy image. To avoid the sampling

difficulties pointed in [3], rather than inferring the depth-map

D, we prefer to equivalently infer the map of atmospheric

veil V .

As previously, the MRF model for the inference of V is

formulated as the minimization of an energy with data and

prior terms:

E(V |I) = E(I|V )
︸ ︷︷ ︸

Edata V

+ E(V )
︸ ︷︷ ︸

Eprior V

(10)

From (6), it is clear that the value of V cannot be estimated

exactly from a single image I , since image I0 is also

unknown. The problem is ill-posed, even when Is is known.

We only know that the values of the atmospheric veil V are

subject to several constraints.

A. Photometric constraint

The first constraint is the photometric constraint, as named

in [8]. It tells that V is higher than zero and that V is lower or

equal to I when the input is a gray level image, consequently:

0 ≤ V (i, j) ≤ I(i, j) (11)

where (i, j) ∈ X . For a color image, V is lower than

the minimum over the Red-Green-Blue color components:

min(Ir(i, j), Ig(i, j), Ib(i, j)).

B. Planar road constraint

For road images, the road can be assumed planar and the

depth of the road plane can be used as a maximum bound

for the depth-map D. This bound can also be written as a

maximum bound on the atmospheric veil V , as previously

in [2]. The vertical position jh of the line of horizon is

assumed known, as well as the camera calibration with

respect to the road plane. This implies that the distance to

the road plane is given by:

Droad(i, j) =
δ

j − jh
when j > jh (12)

where j is the index of a line in the image and δ is a function

of the camera calibration parameters. More details are given

in [1].

The maximum atmospheric veil which can be observed

between the camera and the flat road is thus by substitution

of (12) in (6):

Vroad(i, j) = Is(1− e
−

βδ
(j−jh) ) (13)

The planar road constraint on the atmospheric veil V is

consequently:

V (i, j) ≤ Vroad(i, j) (14)

C. Data term

The idea for building the data term is to maximize the

value of the atmospheric veil and to respect the bounds due

to the two previous constraints. By maximizing the value of

V , we enforce that the output image will have a contrast

restored as much as possible. We thus propose the following

data term:

Edata V =
∑

(i,j)∈X

Edata V (i, j) (15)

with






if 0 ≤ V (i, j) ≤ min(Vroad(i, j), I(i, j))

Edata V (i, j) = ρv(I
b
0(1−

V (i,j)
Is

) + V (i, j)− I(i, j))

else

Edata V (i, j) = +∞
(16)

where ρv is an arbitrary increasing function and Ib0 is the ini-

tial I0 value from which I0(i, j) is biased to. In practice, the

identity function for ρv gives satisfactory results, and allows

a good propagation of the atmospheric veil in neighboring

pixels. This is particularly useful when processing a gray-

level input image. The choice of Ib0 is important to control



Fig. 2. Comparison of defogging results. From left ro right: the input foggy image, the atmospheric veil obtained by minimizing (10), the restoration result
without regularization and without noise, the restoration result without regularization and with noise on the input image, previous method with smoothing
of the input image, our restoration result.

how dark or light are the gray areas in the result image.

We usually set its value as a percentage of Is, for instance

Ib0 = 0.25Is.

D. Prior term

We assume that close pixels have a greater chance to have

same depth, and thus the same atmospheric veil, compared to

remote pixels. The prior term thus consists in a smoothness

term which penalizes large jumps of the atmospheric veil in

neighbors. The prior term is written as:

Eprior V = λV

∑

(i,j)∈X

∑

(k,l)∈N

|V (i, j)−V (i+k, j+l)| (17)

where λV is a factor weighting the strength of the prior on

V w.r.t the data term, N is the set of relative positions of

pixel neighbors.

When the input image is a color image, the previous

MRF model is modified only with substituting I(i, j) by

min(Ir(i, j), Ig(i, j), Ib(i, j)) in (16).

IV. SINGLE IMAGE DEFOGGING

The proposed algorithm consists into two steps. In the

first step, the atmospheric veil V is obtained from I by

minimizing the MRF energy E(V |I) = Edata V +Eprior V ,

the sum of data and prior terms (16) and (17). When V is

inferred, the restored image is estimated in a second step by

minimizing the energy E(I0|V, I) the sum of data and prior

terms (8) and (9).

In these two steps, the two involved energies are of the

form:

f(Y ) =
∑

x∈X

Φx(Yx) +
∑

x∈X,x′∈X

Φx,x′(Yx, Yx′) (18)

and it is known [14] that, when Φx,x′ is sub-modular,

the global minimum of the problem can be obtained in

polynomial time for binary variables Yx. In our case, which

is multi-label, a local minimum can be reached using the α-

expansion algorithm, which is based on the decomposition

in successive binary problems.

The algorithm scheme is thus the following:

• First, compute the atmospheric veil by finding the V

minimizing (10) with α-expansion optimization, using

the identity function for ρv .

• Second, the restored image is obtained by minimiz-

ing (3) again with α-expansion optimization, using the

identity function for ρg . For a color input image, the

last step is performed on every channel independently.

V. RESULTS ON SYNTHETIC IMAGES

Fig. 2 shows results for different parameters on the same

synthetic input image with and without added noise. Without

noise, the restored image can be computed without any

regularization, i.e with λI0 = 0. With added noise, the noise

is emphasized with the distance in the output. The input

image can be smoothed before restoration, but details are

then lost and incorrect clusters of colors appear on remote

objects. When the prior term is used during the restoration

with the exponential decay, the smoothing effect is more

uniform as already shown in Fig. 1. In particular, the color is

more homogeneous at long range distances and small details

are better restored.

TABLE I

AVERAGE ABSOLUTE ERROR BETWEEN RESTORED IMAGE AND TARGET

IMAGE WITHOUT FOG, FOR 6 DEFOGGING METHODS ON 66 SYNTHETIC

IMAGES WITH UNIFORM FOG. RESULTS WITHOUT NOISE ARE IN THE

SECOND COLUMN, AND IN THE THIRD ONE, WITH ADDED NOISE.

Algorithm mean error (in gray levels) mean error (+ noise std=1)

Nothing 81.6± 12.3 81.2± 12.4

DCP [9] 46.3± 15.6 49.2± 14.4

FSS [4] 34.9± 15.1

NBPC [10] 50.8± 11.5 50.4± 11.8

NBPC+PA [2] 31.1± 10.2 26.4± 8.7

CM+PA [15] 19.9± 11.1 19.1± 6.7

Proposed 19.6± 10.7 16.9± 5.1

We evaluate the proposed algorithm on 66 synthetic im-

ages with uniform fog from the database named FRIDA21.

This database was introduced first in [1] and contains a

ground-truth for defogging methods. The proposed algorithm

is compared with five other algorithms: Dark Channel Prior

(DCP) [9], Free Space Segmentation (FSS) [4], No Black

Pixel Constraint (NBPC) [10], No Black Pixel Constraint

and Planar road Assumption (NBPC+PA) [2], Contrast Max-

imization and Planar road Assumption (CM+PA) [15]. In

order to experiment with noise, we present, in Tab. I, results

without and with an added Gaussian noise (with standard

deviation one gray level) on all the input images. With noise,

the weight λI0 is increased to take into account this increased

noise. The value used for Ib0 is 0.25Is.
For road scenery, this table shows that the proposed

algorithm is better than the five other algorithms, in particular

in presence of noise. The average error is more reduced in

1www.lcpc.fr/english/products/image-databases/article/frida-foggy-road-
image-database



Fig. 3. Defogging results on synthetic images from FRIDA2 database. First line: the image with homogeneous fog and Gaussian noise. Second line: the
obtained restored images using proposed MRF model. Notice how long range distance vehicles are better seen on the restored images.

the noisy case, in comparison to the noiseless case. This is

not the case for most of the other algorithms since they are

not designed to take into account input image noise. Thanks

to this smoothing, the proposed algorithm is also more stable,

with a standard deviation reduced to 5.1 gray levels in the

noisy case, compared to 10.7 in the noiseless case. Sample

results obtained on the FRIDA2 database are shown in Fig. 3.

One can notice how far away vehicles are better seen in the

restored images.

VI. RESULTS ON CAMERA IMAGES

The proposed algorithm also produced nice results on

camera images as illustrated on gray-level and color images

in Fig. 4. The smoothing weight λI0 is set to 2 for the

estimation of I0 in these experiments. One can notice that,

even if the smoothing removes noise, the structures of remote

objects are well preserved.

In Fig. 5, we show a comparison of the proposed algorithm

with other previously proposed algorithms: [8], DCP [9],

NBPC [10], NBPC+PA [2]. Only the NBPC+PA algorithm

is dedicated to road images since it includes the flat road

constraint, like the proposed algorithm. As a consequence,

results obtained with the proposed algorithm are quite close

to the one obtained using NBPC+PA algorithm. However,

remote areas are better smoothed and some thin objects are

better restored.

VII. CONCLUSION

We propose a new MRF model for Bayesian defogging

and derive the defogging algorithm from this model by

α-expansion optimization. The algorithm is in two steps:

first, the atmospheric veil (or equivalently the depth-map) is

inferred using a dedicated MRF model. In this MRF model,

the flat road assumption can be introduced easily to achieve

better results on road images. Once the atmospheric veil

is inferred, the restored image is estimated by minimizing

another MRF energy which models the image defogging in

presence of noisy inputs. Evaluation on both synthetic images

and real world images shows that the proposed method

outperforms the state of the art in single image defogging,

when an homogeneous fog is present.

In the future, we intend to investigate the case of non-

homogeneous fog. We will also study means to speed up the

proposed algorithms in order to achieve close to real-time

processing.
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