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ABSTRACT

The work reported in this paper concerns the problem of mathematical expressions recognition. This task is
known to be a very hard one. We propose to alleviate the difficulties by taking into account two complementary
modalities. The modalities referred to are handwriting and audio ones. To combine the signals coming from
both modalities, various fusion methods are explored. Performances evaluated on the HAMEX dataset show a
significant improvement compared to a single modality (handwriting) based system.
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1. INTRODUCTION

Mathematical language is an universal language. It allows sharing knowledge around the world regardless of
the mother tongue of the people involved. The widespread use of mathematical equations exceeds largely the
context of specialist users, particularly because of the expressive power of such a language. Actually, they are
used in various fields: in science such as computer science, physics ..., or in human sciences such as economics,
sociology, law and so on. The mathematical formalism is often used to modelize the behaviour of a particular
phenomenon for prediction or just understanding. During the edition of documents containing such a type of
language, specialized tools are needed. This is because mathematics are a bi-dimensional language. This means
that the allowed directions of writing are in a 2D plane unlike the text edition which is from left to right (or
from right to left) as shown on Fig.1. Consequently, it is more difficult to insert a mathematical expression
(ME) than a standard text using common tools dedicated to the document formatting task.

Usually, to insert a ME in a document, editors based on a WIMP (Windows, Icons, Menu, Pointing)
interaction are provided. The two most famous ones are LATEX and MathType. They are designed to make
the ME edition as userfriendly as possible. Their major drawback is the difficulty of handling such tools since
new edition rules are needed to manage the 2D aspect of the ME. Beside of that, the ME edition remains time
consuming.

Recent technological advances have allowed the development of new tracks relying on natural human-
machine interaction modes [1]. These tracks concern handwriting and speech, which are very intuitive commu-
nication modes for human beings. Both of them offer an easier alternative to enter 2D structures on documents
once systems in charge of handwriting and speech signals interpretation are set up.

Figure 1. Direction of composition of a (a) standard text, (b) mathematical expression



Thus, the handwriting recognition and the automatic speech transcription communities have been highly
interested by the problem of graphical language (2D) interpretation, especially for the case of ME. Even though
the 2D aspect is more perceptible in the case of handwriting modality than in the case of speech, it is very
relevant to use both signals since they are very complementary. More precisely, from the handwriting point of
view, the ME layout is implicitly contained in the signal (points coordinates), even if the exact positions of the
basic units (strokes) with respect to each others can be fuzzy. The speech signal does not embed implicitly the
2D layout information of the ME, but requires a linguistic post processing step to be able to recover the 2D
organisation.

That is how the problem of handwritten ME recognition has been widely investigated [2, 3]. The efforts
made by the scientific community led to the development of several competitive systems. Nevertheless, these
systems are not hundred percent reliable. In fact, there are some intrinsic limitations that cannot be overcome
because of the nature of the handwriting signal (symbol and relation ambiguities). Most of the time, these
confusions are not obvious to discern, even for an experienced observer who would look at the handwritten ME
layout (Fig.2).

More recently, works on spoken ME recognition have emerged [4, 5]. Most of them rely on a classical
automatic speech recognition (ASR) system that provides the basic automatic transcription of the speech
signal. Then, this latter is sent to a parsing module to convert the simple text describing the ME (1D) into its
mathematical language writing (2D) [5, 6]. Here again, the systems set up are far from being hundred percent
reliable. In addition to the resulting errors during the recognition step (common to all ASR systems), the
transition from the textual description of the ME to its 2D writing is not obvious at all (Fig.2). Figure 2 shows

Figure 2. Examples of encountered problems in automatic MER with respect to (a) handwriting modality, (b) speech
modality

some examples of cases where the two systems are in failure. In this example, we can observe the existing
complementarity between the two modalities. The problems encountered by both modalities are of different
kinds. So, the missing information in one modality is generally available in the other one.

Starting from this observation, in this paper we propose a bimodal system, exploiting both handwriting and
speech modalities, in order to overcome the weaknesses of each modality taken separately. Thus, the remainder
of this paper is organized as follows: in section 2 the specificities of the mathematical expression language are
described. We briefly review the necessary background for the work proposed in this paper in sections 3 and 4.
In section 5 we present our system. We will devote section 6 to the presentation of results and their analysis.
Section 7 concludes this paper and gives perspectives of the current work.

2. MATHEMATICAL LANGUAGE SPECIFICITIES

Because they belong to the 2D graphical languages, the ME are a structure composed of elementary units
called symbols in the bidimensionnal space. These symbols are spatially arranged according to different pos-
sible relationships. Thus, the spatial relationship between two symbols can be various (left/right, up/down,
subscript/superscript, inside) giving rise to a possible complex layout.

On this basis, considering the handwriting or speech modalities for ME typing, beside of the classical
problems which this kind of systems has to address, some ME specificities make this task more difficult. These
difficulties can be of two types: those due to the symbols and those related to the spatial relationships.



• At symbol level:

1- The total number of symbols is very large ( ∼= 220 various symbols ) compared to a standard text
( ∼= 60 ). This makes the classification task harder.

2- There are many confusions between the symbols. Since there are many symbols, there are also many
similarities in the display of some symbols (see Fig.3-a).

3- The role of a symbol depends on the context, for example if the sign ’-’ is encountered by the
handwriting system, this sign can represent a ’minus sign’, a ’fraction bar’ or a part of another
symbol such as the ’equality sign’ (Fig.3-b).

4- Concerning the speech modality, symbol pronounciation can be ambiguous (for example: ’m’ and
’n’, ’x’ and ’s’ ). This makes the automatic transcription of the speech signal more difficult.

Figure 3. Examples of symbols confusion with respect to the handwriting modality due to (a) inter-symbols confusion
(b) symbol role

• At relation level:

1- The nature of relationships between symbols is fuzzy. This means that between the extreme cases
(subscript, horizontal pair or superscript) which are easily identified, there is an ambiguity concerning
the intermediate cases. This is illustrated on Fig.4-a.

2- Another property is the relative symbol position as reported on Fig.4-b.

3- Considering the speech modality, the language ambiguity during the dictation makes the choice of
a relation instead of another one non trivial (Fig.4-c).

Figure 4. Confusions at relationship level due to (a) their fuzzyness nature (b) the dependence on the relative positions,
(c) the audio description ambiguity

Thus, we can see that the problem of mathematical expression recognition rises very interesting challenges
from a scientific point of view, in addition to the importance of the language itself as presented in the intro-
duction section.



3. ONLINE HANDWRITTEN MATHEMATICAL EXPRESSION RECOGNITION

In this paper we are interested by online handwritten signals. This means that the handwriting recognition
system receives a set of elementary strokes. These strokes are temporally ordered according to their time of
acquisition. Each stroke is defined by a certain number of points bounded by a pen-down and a pen-up points.
In this work, we will consider that a pen-up is present at the end of every symbol, which can be written with
several strokes. These strokes are not necessarily consecutive, since some strokes can be delayed. The number
of points depends on the temporal sampling rate of the digital pen, the speed of writing and of course on
the length of the stroke. Mostly, before starting the recognition process itself, the input signal undergoes a
preprocessing step [7]. It consists of spatially resampling each stroke using a constant rate. This preprocessing
ensures consistency during the following processing steps, especially for the recognition step.

Chan and al. [2] have identified three independent steps that a handwritten ME recognition system has to
include to achieve its task. The first step is the segmentation process in which the possible groups of strokes
are formed. This stage is not trivial when as supposed here, interspersed symbols are authorized. Each group
is called a segmentation hypothesis (’hs’ ). Ideally, each ’hs’ corresponds to a mathematical symbol. The
recognition process is the second step. It aims to assign a symbol label (or a list of possible symbols) and a
recognition score for each ’hs’. The third step is the structural analysis. All the recognized symbols are used
to deduce the final ME. This is done through a spatial-grammatical analysis. The main limit of the approaches
consisting on optimizing each step alone is that the failure of one step will lead to the failure of the next one.
Rhee and Kim reported in [8] a solution to reduce this error propagation which consists in the simultaneous
optimization of the segmentation and recognition steps. In this case, the classifier is trained separately on
isolated symbols. Furthermore, Awal and al. proposed a more global architecture [9]. The strengths of their
system are the following. First of all, the recognition module is trained within the expressions and not longer
uses an isolated symbol database. This allows a direct interaction between the different stages of the system
(segmentation, recognition and 2D parsing). Secondly, during the segmentation step, a non-consecutive stroke
grouping is allowed to form valid symbols. Finally, the structural analysis (2D parsing) is controlled by both
symbol recognition scores and a contextual analysis (spatial costs). The handwritten MER sub-part used in
our architecture will be largely based on Awal and al.’s system.

4. SPOKEN MATHEMATICAL EXPRESSION RECOGNITION

To achieve a MER task based on automatic speech recognition (ASR), two main modules are mainly needed
[4, 5]. The first one achieves the automatic speech recognition task. The output of this module provides a
textual description as reliable as possible (depending on the performance of the ASR) of the audio description.
This text is composed of words written with alphabetic characters as they are recognized by the ASR system.
This text is ideally a fair description of the ME (it also depends on the accuracy of the speaker who speaks out
the ME). The second module is a parser, which processes the previous transcription in the 2D space to deduce
the associated ME.

The automatic transcription in the global MER system is given by ASR system which is quiet similar to
the one described in the case of handwriting modality. The main difference is the nature of the signal which
is processed (acoustic one in this case). The recognition procedure involves three stages. During the first one,
the acoustic signal is filtered and resampled, then a frame description is produced, where a feature vector is
computed for each window of 25 ms with an overlap of 10 ms. The features are most of the time the cepstral
coefficients and their first and second derivatives [10]. Segmentation into homogeneous parts is operated in a
second step. Resulting segments are close to minimal linguistic units. The last step is to perform the decoding
itself using models and tools learned within a training step (acoustical model, pronunciation dictionary and
language model).

Parsing the resulting transcription from the previous module is a very hard task. In the rare existing systems
[4, 5], the parsing is most of the time assisted by either introducing some dictation rules (for delimitating
fraction’s numerator and denominator for example) or using an additional source of information (such as using
a mouse to point the position where to place the different elements). By adding such constraints, the editing
process becomes less natural and far from what is expected from this kind of systems.



The work we report in this paper concerns the French spoken language. The task of speech recognition in
our system is carried out by a system largely based on the one developed at the LIUM [10], which kernel is one
of the most popular worldwide speech recognition systems (CMU-Sphinx)[11].

5. BIMODAL MATHEMATICAL EXPRESSION RECOGNITION

5.1 The concept of data fusion

The idea of multimodal human-machine interaction comes from the observation of the human beings’ interac-
tion. Usually, people simultaneously use many communication modes to converse. In so doing, the conversation
becomes less ambiguous. The main goal of this work is to mimic this procedure to be able to set up a multimodal
system dedicated to mathematical expressions recognition (MER).

Generally, data fusion methods are divided in three main categories [12, 13]: early fusion which happens
at features levels; late fusion which concerns the intermediate decisions fusion and the last one is the hybrid
fusion which is a mix of the two. Within each approach, three kinds of methods can be used to carry out the
fusion process. Rules based approaches represent the first category, it includes methods using simple operators
such as max, (weighted) mean or product. The second category is based on classifiers and the last one is based
on parameter estimation.

Let us remember that we are interested in combining the information coming from handwritten and audio
streams. These two signals are of heterogeneous natures. This prevent from considering an early strategy
of fusion and suggest using a late one. In such a way, we will also make sure to use suitable recognition
systems with respect to each modality. In addition, the matter of this paper is to explore some of the different
possibilities of combination and the synchronization problem is not investigated here. In the following sections
we describe the architecture of the proposed collaborative system.

5.2 Data fusion for mathematical expression recognition

The proposed architecture for bimodal mathematical expressions recognition (BMER) is presented in Fig.5. Its
overall operation is as follows.

As input, the system receives a ME available at both speech and handwritten forms. The audio signal
describing the ME is sent to the automatic speech recognition system (ref. section 4). This latter processes the
audio signal and gives as an output an automatic transcription which is a text describing the ME. For each word
of this text a recognition score is assigned. At this level, the recognition result has still only one dimension, as a
standard text. Not all the words composing the textual description are useful in a mathematical language point
of view. So, the automatic transcription should undergo a preprocessing step. It is the keyword extraction
step. This procedure will be detailed in the next section. Meanwhile, the online handwritten signal is also
processed by the module in charge of the handwriting recognition part. This signal consists on a sequence
of strokes. As explained in section 3, the first step aims to form the basic symbols composing the ME, by
grouping together the strokes belonging to the same symbol. Second, each group is assigned a list of labels and
their corresponding scores. The set of formed symbols is then parsed in the 2D plan to define the ME layout.
Practically speaking, the fusion process for MER can be carried out at two levels: during the recognition step
(symbol level) which ensures a larger reliability at the symbol recognition level (Fig.3). The second level is the
relational one. This is done during the structural analysis process and it aims to reduce the occuring confusion
at this level (cf. Fig.4). This merging process is done thanks to the fusion units (grey boxes) in the architecture
of Fig.5 which will be described below.

5.2.1 Keyword extraction from the audio transcription

The purpose of this step is to analyze the text describing the ME given by the audio system. As a result, two
word categories are identified. The first one is composed of words which are useful for the MER process. They
spot either symbols (such as: ’x’, ’deux’, ’parenthèses’ ); relations (’indice’, ’exposant’ ); or both (’intégrale’,
’racine’ ). The second category of words includes all the other words (stopwords). These words are only used
to make sense from a language point of view. Here, we consider the words from the first category, as keywords.
A dictionary is built in such a way that each symbol and each relation is associated to one or more keywords.



Figure 5. The collaborative architecture for complete mathematical expression recognition

For example if the word ’carré’ (which means ’squared’ in French) is existing in the transcription, the ME
we are processing could contain the symbol ’2’ and the relation ’superscript’. If any confusion concerning
these symbols appears during the handwriting recognition, the fact that they are less ambiguous in the speech
modality increases the confidence about them.

5.2.2 Fusion units description

As presented in the beginning of this section, the goal of the fusion unit is to ensure the fact that the information
(symbols and relations) taking part in the construction of the final solution of the ME layout is coming from
the two modalities. This can be achieved thanks to various fusion methods. We summarize in the following,
the different approaches we explored.

A Fusion methods at symbol level (IFSL): In this paper, we mainly explored rule based methods to
achieve the task of fusion at symbol level. The details of these methods are given below.

First, let us define some notations which will be used within the remainder of this paper. Let
C = {c1, c2 . . . cN} be the set of the N possible classes of symbols we consider in our system. This
means that, both handwriting and audio systems choose symbol labels from this list. In other words,
for each group of strokes, also called segmentation hypothesis, the handwriting system assigns a list of
the possible labels with their respective scores (ranked according to their score). This list is a part of C.
The speech recognition system does the same for each segment of the audio signal, which corresponds to
the segmentation hypothesis in the ASR system. We define di,j(x) as the score (before fusion) that the
symbol to classify x is the class cj with respect to the modality i (i ∈ {s, h}, s for the speech modality
and h for the handwriting modality). After the fusion process, we denote the resulting score as dj(x).

Based on these notations, we focus on the methods used to obtain the scores after fusion.

A-1 Weighted summation[12, 13]: the score dj(x) is obtained by summing the weighted scores of
that class (j) from the two modalities. Formally, this is given by the equation (1)



dj(x) =
∑

i={s,h}

wi,jdi,j(x) (1)

where wi,j is a weight applied to the recognition score of the class cj from the modality i. These
weights can be:

- whether the same in the two modalities; in which case we are just calculating the mean score
(for example ws,j = wh,j = 0.5). No parameters are considered in this case.

- or depending on the global performances of the two systems taken alone (global symbols recog-
nition rates)


wh,j =

Rh

Rh +Rs

ws,j =
Rs

Rh +Rs

(2)

where Rh and Rs are the symbol recognition rates according to handwriting and speech modal-
ities respectively. Only two parameters are considered here.

- or even depending on the performances of the two systems taken alone (symbols recognition
rates) at a class level.


wh,j =

Rh,j

Rh,j +Rs,j

ws,j =
Rs,j

Rh,j +Rs,j

(3)

where Rh,j and Rs,j are the symbol recognition rates according to handwriting and speech
modalities respectively for the symbol class cj . In this case, for each class there exists two
parameters.

A-2 Borda count method[12, 13]: this method uses the rank of a class symbol instead of its score
during the fusion process. This prevent from the existing problem of score normalization within the
differents systems (modalities). For example, in our case, each modality (speech and handwriting)
proposes a ranked list (according to the recognition scores) of the classes for a given hypothesis.
During the fusion process, each class is assigned a number which is the sum of the ranks with
respect to each modality. After that, a new ranking is done according to this number. The resulting
list corresponds to the fused list.

A-3 Belief functions theory: before presenting the usage of the belief functions theory in the context
of MER, let us briefly recall some notions of this theory [14]. Its aim is to determine the belief
concerning different propositions from some available information. It is based on two ideas: the idea
of obtaining degrees of belief for one question from subjective probabilities, and the combination of
such degrees of belief when they are based on independent items of evidence.
Let Ω be a finite set, called frame of discernment of the experience. The concept of belief func-
tion is the representation of the uncertainty. It is defined as a function m from 2Ω to [0, 1] with∑
A∈Ω

m(A) = 1. This quantity m(A) gives the belief that is exactly allowed to the proposition A.

We call a focal element of m every element A that satisfies m(A) > 0. Various combination oper-
ators are defined in literature. In this work, we focus on the most used and optimal one [15]. It is
the Dempster’s combination rule. For two belief functions m1 and m2, we obtain m̃ thanks to the
conjunctive binary operator:

∀A ∈ Ω, m̃(A) =
∑

B∩C=A

m1(B) ∗m2(C). (4)



In our experiment, the beliefs functions are deduced from the recognition scores of symbols as-
signed by the specialized systems (handwriting recognition and speech recognition). These scores
are normalized to be in the range [0, 1]. For example, let us consider Hhyp and Shyp respectively a
handwriting and speech hypotheses to be combined. The recognition processes in both modalities
give recognition lists (symbol label with according score). The associated masses (beliefs) can be
deduced as follows:

recognized labels list (with

their associated scores)

for Shyp :

{
s(x) = 0.62
s(s) = 0.1

for Hhyp :

{
s(n) = 0.52
s(x) = 0.46

⇒

example of associated

beliefs (masses)

for Shyp :

 m(x) = 0.62
m(s) = 0.10
m(ω) = 0.28

for Hhyp :

 m(n) = 0.52
m(x) = 0.46
m(ω) = 0.02

The score dj(x) for a class ′x′ using this formalism is then equal to m̃(x) calculated using Eq.4,
where m1 and m2 are respectively the handwriting and speech masses.

B Fusion method at relational level (IFRL): the fusion at relational level is done during the spatial
analysis phase. The parser in charge of this task, in the handwriting modality, explores all the possible
relations for each group of elementary symbols proposed by the recognition module (after IFSL). For
example if we consider the case of two symbols, the relations explored including only these two symbols
can be: left/right, superscript, subscript, above, under and inside (if one of the symbols is the ’square
root’ sign for example). For each explored relation a cost is associated (calculated from the geometrical
properties of the symbols involved in this relation [9]). The relation which will be considered in the ME
is the one having the smallest cost and satisfying the considered grammar. The fusion at this level is
done by exploring the keyword list extracted as explained in section 5.2.1. If an explored relation exists
in this keywords list, its cost is decreased, otherwise it is increased. This is expressed in Eq.5.

R̃C(Ri) =

{
αe ×RC(Ri) if the relation Ri is present in both modalities.

αp ×RC(Ri) otherwise.
(5)

where RC(Ri) and R̃C(Ri) are respectively the relational costs before and after fusion for the relation
Ri. αe and αp are two parameters to set. They are used to decrease the relational cost of the relations
which are also available in the speech modality (αe < 1), and in the contrary, increase those that are
missing in the audio stream (αp > 1).

6. EXPERIMENTAL RESULTS AND DISCUSSION

The bimodal nature of our experiments requires the use of a database which gives each ME in both modalities
(handwritten and spoken). We used the HAMEX database [16] which is set up for that purpose (the audio part
is currently available in the French language). The handwriting recognition task we used to run our experiments
is the one we participated with for the second edition of the Competition on Recognition of On-line Handwritten
Mathematical Expressions (CROHME2012∗) [17]. Since the parameters of the fusion system (cf. equations 2, 3,
4 and 5) are experimentally tuned, we used a data set of 500 ME from the HAMEX train part to do that. The
results reported here are from a data set of 519 ME of the HAMEX test part. These ME are chosen in such a

∗
http://www.isical.ac.in/~crohme/

http://www.isical.ac.in/~crohme/


way to satisfy to the the CROHME grammar (task 2). Finally, the models of the ASR system are trained on
the whole speech data of the train part of HAMEX. Concerning the fusion process itself, in this first experiment
exploiting the complete information (labels and scores), the selection of the speech segment to combine with
the handwriting group of strokes (hypotheses) is done according to the labels intersection in the top N (N is
set experimentally to 3). Thus a handwriting segmentation hypothesis is combined with a speech segmentation
hypothesis only if there is a common label in the 3-best recognition lists from both modalities. In other words,
the handwriting segmentation is processed by the handwriting recognition system. This latter provides a list
of possible labels with their scores (cf. section 3). The speech segmentation hypothesis undergoes the same
processing (cf. section 4). After that, at most three labels are considered in both lists and this couple segment
(speech) group (handwriting) is considered for the fusion process only if there is a common label in these two
sublists. The combination is done thanks to the methods presented in section 5.

We report in figure 6, the obtained results after the fusion process (at both symbol and relation levels)
compared to baseline system which is the handwriting based system (first bar).
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Figure 6. Recognition rates at expression level before (Handwriting) and after fusion
Handwriting: baseline system; Mean: weights are set to 0.5 in Eq.1; MeanWGR: weights from Eq.2; MeanWCR: weights
from Eq.3; Borda: for using Borda count as a fusion method; Belief function: fusion thanks to belief functions Eq.4

As expected, the use of the bimodal aspect of the ME helps to improve the recognition rate at expression
level. The best fusion configuration is the one based on the belief functions theory. This is consistent with
the literature about the performances of such a theory dealing with the combination problem in the context of
multimodal systems. The exploration of the mean weighted methods, with various weights, showed that a good
weighting of the scores coming from both modalities is important, since it allows to deal with the problem of
score normalization in the two modalities and take into account the performances of the systems at elementary
level (symbols). The Borda count combination method, even unsensitive to the score normalization problem,
does not show a good behaviour in our case since the information from the ASR system is not rich enough
(often only one hypothesis per segment).
We present in figure 7 a real example of the obtained results. This example shows an expression which is only
well recognized considering the belief functions aproach. In this example, the first two strokes (the red and



Figure 7. Real example of a contribution of the bimodal processing; (a) the ground-truth ME, (b) its handwritten
version, (c) the recognized result without fusion, (d) the automatic transcription of its spoken description

black ones in figure 7-b) belong to the same symbol in the ground truth. However during the handwritten signal
recognition, combining both of these strokes into the same symbol hypothesis leads to its missclassification.
Indeed, the classifier suggests that this segmentation is not valid and assign a high score for rejection label.
Beside of that, the ’x’ label is ranked second in the classifier list of labels propositions, even with a very low
score. When we use the fusion process, this segmentation hypothesis is combined with the audio segment
containing also the ’x’ label as a recognition hypothesis. In other words, knowing that scores are in the range
[0, 1], according to handwriting classifier, this segmentation hypothesis is rejected with a score of 0.84 and can
be an ’x’ with a score of 0.15. Unfortunately, the belief functions fusion method aside, all the other methods
do not allow to recover the right label. This is mainly due to the fact that in the audio segment also, there is a
conflict between the labels ’s’ (with a score of 0.48) and ’x’ (with a score of 0.45). The belief functions based
method, by modeling a part of ignorance in both modalities as presented in Eq. 4, helps to make the ’x’ label
score enough high to rank it as a first hypothesis and include it during the structural analysis process.

The table 1 gives a comparison at lower levels (strokes and symbols recognition rates) between the best
fusion configuration and the baseline system (handwriting based).

Table 1. Comparaison of the performances of the handwriting recognition system with the belief functions fusion based
system

Evaluation level in [%]
stroke classi-

fication rate

symbol recog-

nition rate
expressions recognition rate with

exact match 1 error at most 2 errors at most

handwriting based

system
80.05 82.93 34.10 46.44 49.52

fusion based system 83.40 85.40 38.34 50.10 53.37

Table 1 shows that the benefit of the fusion process concerns both low level (strokes) and high level which is
the complete ME. The results concerning the complete ME with one or two errors (either in symbol recognition
or in relation interpretation), suggest that there is still scope for aditional contribution of the fusion process
(38.34% of ME are completely recognized without any error and 50.10% of ME are well recognized if one error
at most is allowed).

7. CONCLUSIONS AND FURTHER WORK

In this work we presented a new approach for mathematical expressions recognition. It is based on bimodal
processing. The modalities involved are speech and handwriting. In this first experiment on the use of the full
information from the two specialized systems, we showed the added value of a such processing. This can be
seen either at expression level or in lower levels (strokes and symbols).

In a future work, we plan to improve the choice of the couple (speech hypothesis segment, handwriting
hypothesis group) to be fused, by exploiting the temporal information in both modalities. The final goal is to
reach the best possible synchronization between the two streams. Another interesting point to explore is the
use of word lattice from the ASR system, which can provide more information for a considered speech segment.
Beside of that, the context of the symbol or relation is still not used, we believe that this can improve also the
accuracy of the global system.
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