
HAL Id: hal-00852842
https://hal.science/hal-00852842

Submitted on 3 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A necessary condition for weak lumpability in finite
Markov processes

James Ledoux

To cite this version:
James Ledoux. A necessary condition for weak lumpability in finite Markov processes. Operations
Research Letters, 1993, 13 (3), pp.165-168. �10.1016/0167-6377(93)90006-3�. �hal-00852842�

https://hal.science/hal-00852842
https://hal.archives-ouvertes.fr


A Necessary Condition
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Abstract

Under certain conditions, the state space of a homogeneous Markov process can be

partitionned to construct an aggregated markovian process. However, the verification of

these conditions requires expensive computations. In this note, we expose a necessary

condition for having a markovian aggregated process. This condition is based on proper-

ties of the eigenvalues of certain submatrices of the transition rate matrix of the original

Markov process.
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1 Introduction

Markov processes are frequently used as analytic models in quantitative evaluations of

systems. In the particular case of computer systems, they are useful in the resolution of

performance or reliability problems. In a wide class of situations, the user does not need

informations about each state of its model, but about state classes only. This leads to

considering a new process, called the aggregated process, whose states are the state classes

of the original one. To keep all the power of Markov processes theory, it is important to be

able to claim that, for a given initial distribution, the aggregated process is still markovian.

This property is called weak lumpability (see Kemeny [3]). The strong lumpability is the

particular case where any initial distribution leads to an aggregated markovian process.

Necessary and sufficient conditions have been studied in [3], Rubino and Sericola [6],[7]

for irreducible processes. These conditions are very expensive to verify: in the worst case,

the cost grows exponentially with the number of states [6].

A related problem analysed in Barr and Thomas [1] leads to necessary conditions for

strong lumpability of Markov chains. In spite of an easy extension to continuous time

processes, their work can not be applied to the more general problem of weak lumpability.

In this general situation, we give a new necessary condition based on the eigenvalues of

the submatrices composed of the transition rates between states of the same class only.

In Section 2, we review briefly the definition and caracterization of the weak and strong

lumpability properties of a finite Markov process. In Section 3, we recall the expression of

the distributions of sojourn times in a subset of states of a Markov process. Section 4 is
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devoted to the new necessary condition for weak lumpability. We show in Section 5 how

to benefit by the result of Section 4 for making easier the search of partitions allowing

the use of the aggregated process instead of the original one.

2 Weak and strong lumpability of Markov processes

Let (Xt)t≥0 be a homogeneous irreducible Markov process, E = {1, · · · , N} be its state

space and A be its transition rate matrix. This process X is completly specified by its

initial probability distribution α on E. It will be denoted by (α,A). We denote by π the

associated stationary distribution (i.e. the unique probability vector satisfying πA = 0).

Consider the partition P = {C(1), · · · , C(M)} of the state space in M classes, M < N .

To the given process X, we associate the aggregated stochastic process Y , denoted by

agg(α,A,P), with values on F = {1, . . . ,M} and defined by

Yt = m⇐⇒ Xt ∈ C(m). (1)

Following [7], a necessary and sufficient condition for having the weak lumpability of

X = (α,A) with respect to P , i.e. for having an aggregated markovian process, is that α

must satisfy a linear system with N× (M +1)N equations; its expression is not important

here. Furthermore, the following property holds.

Theorem 2.1 [7] When X is weakly lumpable there exists an unique matrix Mπ, inde-

pendent of α, so that the aggregated Markov process admits as infinitesimal generator

Â = MπAB (2)
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where ∀i ∈ E, ∀j ∈ F , B(i, j) = 1 if i ∈ C(j) and 0 otherwise and ∀i ∈ F , Mπ(i, j) =

π(j)/
∑
k∈C(i) π(k) , ∀j ∈ C(i) and 0 otherwise.

Example (adapted from [3]). Let A be the transition rate matrix

−18 6 12

0 −20 20

21 3 −24


.

Consider the partition P = {C(1), C(2)} with C(1) = {1} and C(2) = {2, 3}. The

stationary distribution is π = (7/16, 3/16, 3/8). The matrices B and Mπ are respectively

B =



1 0

0 1

0 1


, Mπ =

 1 0 0

0 1
3

2
3

 .

We get from (2)

Â =

 −18 18

14 −14

 .

The strongly lumpable particular case Barr and Thomas [1] dealt with, is the situation

in which every initial probability distribution on E yields to a markovian aggregated

process. The necessary and sufficient condition is that A satisfies the equation

BMAB = AB (3)

where M = (BtB)−1Bt is independent of π; ()t denotes the transpose operator. In this

case we have Â = MAB.
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Remark. These results are valid in discrete time, substituting matrix A by the transition

probability matrix P (see [3],[7]). The first theorem in [1] states that, if the Markov

chain is strongly lumpable, then the eigenvalues of the probability transition matrix P̂

of agg(α,A,P) (a partition P is fixed) are also eigenvalues of P . We can easily extend

this property to Markov processes and to weak lumpability. This is not the case with the

second theorem of [1] in the weak lumpability situation, essentially because the relation

(3) is only a sufficient condition for weak lumpability ([3], page 136). Hence we can not

use their procedure to point out “candidate” lumpings of E.

3 Sojourn times in a subset of states

Let D be a subset of the space state E. Rubino and Sericola [5] have shown that, for

n ≥ 1, the random variable SD,n “time spent during the nth sojourn of X in D” has the

distribution

IPα{SD,n ≤ t} = 1− un(α)eADt1T , (4)

where un(α) is the probability distribution of the D-valued random variable “state from

which the nth sojourn of X in D begins” and AD is the submatrix of A consisting of the

transition rates between the states of D only.

If the process agg(α,A,P) is markovian, sojourn times in a given state m ∈ F are

exponentially distributed with parameter Â(m,m). This implies that the right hand side

of (4) involving process X is reduced to 1 − exp
(
Â(m,m)t

)
, for D = C(m). The study

of this possible reduction will lead to the main result of this note.
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4 A necessary condition

The necessary condition for the process agg(α,A,P) to be markovian is obvious from

Section 3. The relation (4) must be reduced to IPα{SC(m),n ≤ t} = 1 − exp
(
Â(m,m)t

)
,

for all C(m) ∈ P . In fact, we shall prove that, for every state m ∈ F , Â(m,m) must be

an eigenvalue of the matrix AC(m).

Theorem 4.1 Let P be a given partition of the state space E and let Â = MπAB. If

agg(α,A,P) is markovian then Â(m,m) is an eigenvalue of the matrix AC(m) for each

m ∈ F .

Proof. If agg(α,A,P) is markovian, we have for each n ≥ 1 and t ≥ 0

un(α)eAC(m)t1T = eÂ(m,m)t. (5)

In the sequel, we omit the parameters n et α in the notation because they are not essential

to the discussion.

The matrix AC(m) is similar to a diagonal matrix of p Jordan’s blocks, each of them

being associated with an eigenvalue λk of AC(m) distinct of the remaining p−1 eigenvalues

(Ortega [4], page 181). The previous relation can be expressed in the following form:

∀t ≥ 0,
l∑

k=1

eλktPk(t) = eÂ(m,m)t (6)

where l ≤ p, the λk’s are each to each distincts and the Pk(t) are non-zero polynomials.

We recall that any finite set of functions of the form ti exp (λkt), where the i’s are

nonnegative integers and the λk’s are complex numbers, is linearly independent on any
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nonvoid open interval, unless two or more functions are identical (see e.g. Birkhoff and

Rota [2], page 79).

If we rewrite (6) as

∀t ≥ 0,
l∑

k=1

eλktPk(t)− eÂ(m,m)t = 0,

we deduce, applying the previous recalled result, that there exists an unique integer k0

such that

λk0 = Â(m,m) and Pk0(t) ≡ 1.

2

Remark. If the matrix AC(m) is irreducible we have the more precise result

Â(m,m) = ρ1

where ρ1 is the real eigenvalue of the matrix AC(m) such that ρ1 > Re(λk), for all the

remaining eigenvalues λk. This is based on the fact that (see Seneta [8], page 47):

eAC(m)t = eρ1tV +O(eτt),

where τ < ρ1 and where the real matrix V is positive. Then the polynomial associated

with ρ1 is non-zero and therefore ρ1 appears in the list of the λk’s in (6).

The theorem also holds for an irreducible Markov chain. The expression of the sojourn

time distribution in a state subset D is, following [5],

∀q ≥ 1, IPα{SD,n = q} = un(α)P q−1
D (Id− PD)1T , (7)
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where un(α) et PD have the same meaning than in (4). Then, for each classe C(m), the

distribution in (7) must be reduced to a geometric distribution with parameter P̂ (m,m).

A similar proof, with Jordan reduction of PC(m), leads to the following result.

Corollary 4.2 Let P be a given partition of the state space E, P be the transition prob-

ability matrix and let P̂ = MπPB. If agg(α, P,P) is markovian then P̂ (m,m) is an

eigenvalue of the matrix PC(m) for each m ∈ F .

Proof. The main formula (6) becomes in discrete time

∀q ≥ 1,
l∑

k=1

λk
q−1(1− λk)Pk = P̂ (m,m)

q−1
(1− P̂ (m,m)),

where the Pk are polynomials in q. As in the proof of Theorem 4.1, we recall that a

finite set of functions of the form qiλk
q, i being a nonnegative integer and λk a complex

number, is linearly independent, unless two or more functions are identical. This implies

that there exists an integer k0 such that λk0 = P̂ (m,m) and Pk0 = 1. 2

Example. With the same matrix A as in the previous example, we can prove that for

α = (0, 1/3, 2/3) the process agg(α,A) is markovian. It is easy to verify that Â(2, 2) =

−14 is an eigenvalue of

AC(2) =

 −20 20

3 −24

 .
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5 Conclusion

We must emphasize that weak lumpability is a desirable property for evaluating the

transient behaviour of Markov processes. It is clear that computing Â (or P̂ ) implies

explicit knowledge of the stationary probability vector π associated with A (or P ). Hence,

this takes classical “aggregation” methods for obtaining stationary probability distribution

of a Markov process apart. This being stated, we can use this necessary condition to

obtain “candidate” lumpings of E leading to an aggregated markovian process, as in

[1]. This condition allows the preselection of “candidate” partitions before applying the

characterization of weak lumpability in terms of the solution to some linear systems [6].

We propose here the following procedure. The first step consists of determining the

stationary vector π associated with A. For each partition P , we calculate {Â(m,m),m ∈

F} with

Â(m,m) =

∑
i∈C(m)

∑
j∈C(m)

π(i)A(i, j)

∑
i∈C(m)

π(i)

and we verify that, for each m ∈ F , Â(m,m) is an eigenvalue of AC(m). In this case, P is

a potential partition of E leading to an aggregated markovian process. Contrarily to [1],

we are sure that actual lumping partitions leading to aggregated markovian processes are

detected by the procedure above.
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