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Abstract

In mammalian meiotic prophase, the initial steps in repair of SPO11-induced DNA double-strand breaks (DSBs) are required
to obtain stable homologous chromosome pairing and synapsis. The X and Y chromosomes pair and synapse only in the
short pseudo-autosomal regions. The rest of the chromatin of the sex chromosomes remain unsynapsed, contains persistent
meiotic DSBs, and the whole so-called XY body undergoes meiotic sex chromosome inactivation (MSCI). A more general
mechanism, named meiotic silencing of unsynapsed chromatin (MSUC), is activated when autosomes fail to synapse. In the
absence of SPO11, many chromosomal regions remain unsynapsed, but MSUC takes place only on part of the unsynapsed
chromatin. We asked if spontaneous DSBs occur in meiocytes that lack a functional SPO11 protein, and if these might be
involved in targeting the MSUC response to part of the unsynapsed chromatin. We generated mice carrying a point
mutation that disrupts the predicted catalytic site of SPO11 (Spo11YF/YF), and blocks its DSB-inducing activity. Interestingly,
we observed foci of proteins involved in the processing of DNA damage, such as RAD51, DMC1, and RPA, both in Spo11YF/YF

and Spo11 knockout meiocytes. These foci preferentially localized to the areas that undergo MSUC and form the so-called
pseudo XY body. In SPO11-deficient oocytes, the number of repair foci increased during oocyte development, indicating the
induction of S phase-independent, de novo DNA damage. In wild type pachytene oocytes we observed meiotic silencing in
two types of pseudo XY bodies, one type containing DMC1 and RAD51 foci on unsynapsed axes, and another type
containing only RAD51 foci, mainly on synapsed axes. Taken together, our results indicate that in addition to asynapsis,
persistent SPO11-induced DSBs are important for the initiation of MSCI and MSUC, and that SPO11-independent DNA repair
foci contribute to the MSUC response in oocytes.
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Introduction

During meiotic prophase in yeast and mammals, the induction of

DNA double-strand breaks (DSBs) by the transesterase SPO11

precedes stable pairing and synapsis of homologous chromosomes

[1,2]. Synapsis between chromosomes is achieved by the formation of

a specific protein complex, consisting of lateral elements along the

chromosomal axes that contain SYCP2, SYCP3 [3,4], different

components of the cohesin complex [5,6], and (before synapsis is

achieved, on axial elements) the HORMA-domain proteins HOR-

MAD1 and HORMAD2 [7,8]. Lateral elements are connected by a

central element containing SYCP1 [9] and several other meiosis-

specific proteins, including SYCE1, SYCE2 [10] and TEX12 [11];

reviewed by Yang and Wang [12]. Parallel to synaptonemal complex

formation, meiotic DSBs are repaired, thereby facilitating homologous

chromosomes interaction and the achievement of complete synapsis.

In male mammals, the X and Y chromosomes form a very

special pair; they can synapse only in their short pseudoautosomal

regions, and localize to the periphery of the nucleus. Furthermore,

the XY chromatin is silenced, forming the XY body, by a process

named meiotic sex chromosome inactivation (MSCI). This

requires the expression of the histone variant H2AX [13]. The

checkpoint kinase ATR phosphorylates H2AX at S139, generat-

ing cH2AX [14]. cH2AX is the earliest known marker of MSCI.

This specific histone modification is also found in somatic cells,

usually at sites of DNA DSB repair [15]. Interestingly, H2AX

phosphorylation in response to DNA damage has been coupled to

reduced levels of RNA polymerase II activity in somatic cells [16].

MSCI is considered a specialized form of a more general

mechanism termed meiotic silencing of unsynapsed chromatin

(MSUC), which silences unsynapsed chromatin in male and

female meiotic prophase cells [17–19]. The exact cascade of events

PLOS Genetics | www.plosgenetics.org 1 June 2013 | Volume 9 | Issue 6 | e1003538



that leads to this transcriptional silencing is not known, but it has

been established that there is a tight correlation between the

presence of unsynapsed chromosomal axes coated by HORMAD1

and HORMAD2 (the two mammalian orthologs, of the yeast

protein Hop1 [7,20,21]), the accumulation of ATR along these

axes, the formation of cH2AX, and the transcriptional silencing.

Indeed, it was recently reported that efficient accumulation of

ATR on the XY body requires the HORMAD1 and HORMAD2

proteins [22,23]. Many DNA repair proteins accumulate at the

XY body, together with histone modifications such as specific

methylation, sumoylation and ubiquitylation (reviewed by Inagaki

et al. [24]). The accumulation of DSB repair proteins may be

caused by delayed or stalled DSB repair in regions that fail to

synapse. Persistent meiotic DSBs can indeed be observed on the

X, but not on the Y chromosome, via immunocytochemical

detection of the homologous recombination proteins RAD51 and

its meiosis-specific paralogue DMC1 [25–28]. RAD51 and DMC1

have DNA-dependent ATPase activity and form filaments on

single-stranded resected DNA-ends at DSB repair sites, and are

essential for homologous recombination repair in mitotic and

meiotic cells, respectively [29–32].

Evidence for a relationship between meiotic DSBs and

homologous synapsis is provided by the observation that synapsis

is severely affected in the absence of SPO11-induced meiotic DSBs

[33,34]. Some heterologous synapsis can occur in Spo11 knockout

meiocytes, but both spermatocytes and oocytes do not proceed

beyond a zygotene-like stage [33,34]. In Spo11 knockout

spermatocytes, a pseudo XY body is formed, which most often

does not localize to the X and Y chromosomes, but to part of the

unsynapsed chromatin [35,36]. It has been defined as a condensed

chromatin structure that, similar to the XY body, is marked by

cH2AX and ATR, and is transcriptionally silenced [35,37]. Based

upon these characteristics, it has been proposed that the pseudo

XY body is a manifestation of MSUC [37]. However, in Spo11

knockout spermatocytes, HORMAD1 and HORMAD2 coat all

unsynapsed axes, but the pseudo XY body forms only on part of

the unsynapsed chromatin, indicating that somehow the MSUC

response is not complete [7,8] In addition, although more than

60% of the spermatocyte nuclei in Spo11 knockout testes contain a

pseudo XY body, only 11% show clear accumulation of ATR

along the unsynapsed axes in the pseudo XY body, compared to

100% ATR accumulation along the axes of true XY bodies in wild

type spermatocytes [23]. The restriction of MSUC to only part of

the unsynapsed chromatin is surprising, and raises the possibility

that, apart from asynapsis, also other mechanisms may contribute

to the activation of MSUC and MSCI. Since all known players in

these processes function also in DNA repair we hypothesized that

persistent DSBs on unsynapsed axes may contribute to the

activation of MSUC and MSCI. This would then suggest that,

even in the absence of SPO11, perhaps some damage-induced

DSBs are frequently present, and could play a role in restricting

the MSUC response to those areas that contain both unsynapsed

axes and DNA damage. This notion is supported by the fact that

radiation-induced DSBs in mouse leptotene cells enhance the

efficiency of MSUC of a small translocation bivalent that carries a

heterologous region of approximately 35–40 Mb [38]. In addition,

recent data also provide a link between DSB repair, the checkpoint

kinase ATM, and transcriptional silencing of surrounding chro-

matin in somatic cells [39].

Herein, we have generated a mouse model with a point

mutation, which inactivates the catalytical site of SPO11. We used

this mouse model to obtain more insight in the relation between

the presence of DSBs and MSUC.

As expected based on our hypothesis, we found that SPO11-

independent DNA repair foci are present in spermatocytes and

oocytes. Moreover, we observed de novo induction of DNA repair

foci in zygotene-like SPO11-deficient oocytes. Together with the

results of a thorough analysis of the relationship between the

localisation of DSB repair proteins and the MSUC response, our

data reveal a direct link between the presence of persistent damage

and the activation of MSUC and MSCI.

Results

Generation and initial analysis of the Spo11 Y138F
mutation

We used a Spo11 knock-in mouse model in which the

catalytically active tyrosine (Tyr) 138 residue is replaced by a

phenylalanine (Phe) (Spo11YF/YF) (Figure S1A, B). In yeast and

plants, mutation of the analogous Tyr residue abolished meiotic

DSB formation [40–42], and a similar mouse mutant was recently

described [43]. Presence of the point mutation and normal

expression of the mutant protein were verified by sequence

analyses, RT-PCR, and Western blot analyses (Figure S1C, D, E).

The amount of mutant and/or wild type SPO11 protein in the

testis of +/+, +/YF and YF/YF animals was comparable. Identical

to the Spo11 knockout [33,34], male and female Spo11YF/YF mice

are infertile, and leptotene and zygotene nuclei display global

absence of markers of DSB formation and repair (Figure 1A, B,

and C). Spermatocytes and oocytes reach a zygotene-like stage

with variable degrees of heterologous synapsis (Figure S2A, B, C).

A two-fold reduction in the amount of functional SPO11
reduces the number of RAD51 foci at leptotene but not
at zygotene

We analyzed the formation of meiotic DSBs in wild type,

heterozygote and homozygote Spo11YF/YF mice through immuno-

cytochemical analysis of the formation of RAD51 foci. The

number of RAD51 foci was quantified in leptotene and zygotene

spermatocyte and oocyte nuclei (Figure 1). In wild type leptotene,

Author Summary

Meiosis is a special cell division that generates genetically
divergent haploid germ cells. At the very beginning of this
process, during meiotic prophase, the enzyme SPO11
generates hundreds of DNA double-strand breaks (DSBs).
Meiotic DSBs are repaired via a mechanism that requires
the presence of an intact homologous template. This
repair process stimulates homologous chromosome pair-
ing, and the formation of a protein complex that connects
the paired chromosome axes, reaching a state called
synapsis. Male mammals carry a pair of largely heterolo-
gous sex chromosomes, the X and Y, which show delayed
DSB repair and extensive asynapsis. In addition, the X and
Y chromosomes are transcriptionally silenced by a mech-
anism named Meiotic Sex Chromosome Inactivation
(MSCI). This mechanism is a specialization of a more
general silencing mechanism, named Meiotic Silencing of
Unsynapsed Chromatin (MSUC), that is induced when any
pairing problem between homologous chromosomes
results in asynapsis, in male as well as female meiotic
prophase cells. Here, we demonstrate that in addition to
asynapsis, the persistent presence of DNA repair foci is a
hallmark of meiotic silencing. In addition, we show that
SPO11-independent DNA repair foci form during normal
oocyte development. We propose that these foci represent
sites of unrepaired DSBs that are capable of inducing
transcriptional silencing, irrespective of synapsis.

Persistent DNA Repair Foci and Meiotic Silencing
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Figure 1. SPO11-dependent and -independent RAD51 foci in mouse meiocytes. (A–C) The number of RAD51 foci decreases from leptotene
to zygotene in Spo11+/+ and Spo11+/YF spermatocytes, whereas a few foci are detected in Spo11YF/YF spermatocytes and oocytes at both stages. (A–B)
Double immunostaining with anti-SYCP3 (red), anti-RAD51 (green) of spermatocyte (A) and oocyte (B) nuclei from Spo11+/+ (A–B, left panel) and
Spo11YF/YF (A–B, right panel) mice. Arrowheads point to RAD51 foci in Spo11YF/YF spermatocytes and oocytes, both leptotene and zygotene. Extensive
accumulation of RAD51 along axial elements of one or few chromosomes (arrows) can be observed in both Spo11+/+ and Spo11YF/YF oocyte nuclei (B,
lower panel). Size bars represent 10 mm. (C) The number of RAD51 foci was counted in Spo11+/+, Spo11+/YF, and Spo11YF/YF leptotene and zygotene
spermatocytes and oocytes. Each dot represents the focus count of one nucleus. Black bars indicate mean number of foci. P values for the indicated
comparisons (Mann-Whitney, two-tailed), and genotypes are indicated in the plot. (D) The number of MLH1 foci in pachytene spermatocyte nuclei
was counted in Spo11+/+and Spo11+/YF mice. Black bars indicate the mean values. (E) Number of RAD51 foci at E17.5 in Spo11+/+ and Spo11YF/YF

oocytes.
doi:10.1371/journal.pgen.1003538.g001

Persistent DNA Repair Foci and Meiotic Silencing
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many DSBs are formed, concomitant with the assembly of short

patches of axial element along the chromosomal axes (Figure 1A,

B, left panels, 1C). In zygotene, repair of meiotic DSBs occurs,

parallel to the pairing of homologous chromosomes. Axial

elements of paired homologous chromosomes then synapse (and

are therefore termed lateral elements), through the formation of

the central element of the synaptonemal complex (SC) (Figure 1A,

B, left panel). The number of RAD51 foci gradually decreases,

from leptotene to zygotene (Figure 1 A, C), as has been observed

before [26]. It should be noted that, in mouse, male meiosis

induction occurs throughout postpubertal life, whereas female

meiosis is initiated only once during embryonic development

(around embryonic day 13 (E13)). Oocytes progress through

leptotene and zygotene in 15–20 h [44,45]. At E17, the vast

majority of oocytes has reached the pachytene stage, and around

E19, oocytes enter diplotene, reaching the first meiotic arrest.

Spermatocytes require a longer time span between leptotene

(induction of DSBs) and early pachytene (synapsis) of approxi-

mately 48 h [46]. In Spo11+/YF leptotene spermatocyte nuclei, the

number of RAD51 foci was approximately 30% lower compared to

wild type (Figure 1C). However, in zygotene nuclei, no difference in

the number of RAD51 foci between wild type and heterozygote

nuclei was observed (Figure 1C). Similar to the males, the number of

RAD51 foci was lower in Spo11+/YF leptotene oocytes, compared to

the wild type, and a small difference between the wild type and

heterozygote oocytes was still observed at zygotene (Figure 1C).

MLH1 is mismatch repair protein that is a well-known marker of

crossover sites [47], and functions in the resolution of joint

molecules at the final phase of crossover formation [48]. The

number of MLH1 foci was not different between wild type and

Spo11+/YF spermatocytes (Figure 1D).

SPO11-independent DNA repair foci in Spo11YF/YF and
Spo112/2 meiocytes

In Spo11YF/YF animals, a few RAD51 foci were observed on the

axial elements in leptotene and zygotene-like spermatocytes

(average foci number 1264.4, n = 54) and oocytes (average foci

number 563.7, n = 50) (Figure 1A–C). Surprisingly, from E17.5

onwards, when oocytes should have reached the pachytene stage,

we observed de novo RAD51 accumulation (Figure 1E), in oocytes

from Spo11YF/YF mice. These RAD51 foci formed along most of the

length of one or more axes (Figure 1B, lower panel, right). Such

marked accumulation of RAD51 is also observed in wild type and

Spo11+/YF pachytene oocytes (Figure 1B, lower panel, left), but in a

relatively small proportion of the nuclei (around 20%, see also

below). To confirm the specificity of this pattern of RAD51

accumulation, we also used a commercial RAD51 antibody

previously reported to mark RAD51 foci in spread meiotic nuclei

[49]. This antibody yielded a similar pattern of RAD51 accumu-

lation in oocytes (Compare Figure 1B to Figure S3). To ensure that

the RAD51 foci that are observed in Spo11YF/YF spermatocytes and

oocytes are not caused by remnant SPO11 activity, we also analysed

RAD51 localisation in Spo11 knockout meiocytes. As expected, the

pattern of RAD51 foci staining in Spo11 knockout spermatocytes

and oocytes was similar to what was observed in meiocytes of

Spo11YF/YF animals (Figure S4). This confirms that the observed

RAD51 foci in our Spo11YF/YF model are SPO11-independent.

A pseudo XY body is present in Spo11YF/YF

spermatocytes, and in Spo11+/+ and Spo11YF/YF oocytes
Extensive asynapsis is thought to elicit an MSUC response,

which can be observed in Spo112/2 spermatocytes as a cH2AX

positive domain in the nucleus [36,37]. This domain has been

termed pseudo XY body, since it does not necessarily include

chromatin from the X and Y chromosomes.

Similar to what has been described for Spo11 knockout mice, we

observed one or two pseudo XY bodies in late zygotene-like

spermatocytes from Spo11YF/YF mice (Figure S5A). In addition to

cH2AX, other components of the DNA repair machinery are

known to accumulate on the unsynapsed axes of the pseudo XY

body (BRCA1, TOPBP1), or on the surrounding chromatin

(MDC1) in Spo11 knockout spermatocytes [37,50], and this was

also observed for the pseudo XY bodies in Spo11YF/YF spermato-

cytes (Figure S5B–D).

As recently reported, pseudo XY body-like structures can also

be detected in Spo11 knockout oocytes [22], and even wild type

oocytes have been reported to contain a MSUC region in a small

percentage of the pachytene oocytes that fails to correctly synapse

all chromosomes [51]. We also observed areas of MSUC in a

minority of wild type and Spo11+/YFoocytes at E16.5 and E17.5

(Table 1). In addition, in Spo11YF/YF ovaries we observed a

cH2AX-positive chromatin domain in about 14% of oocytes at

E16.5 (Table 2), and in more than 80% of oocytes derived from

Spo11YF/YF ovaries at E17.5 (Table 2).

The transcriptional silencing in the XY body can be immuno-

cytochemically visualized as an area that is relatively depleted of

RNA polymerase II [17]. To verify that the cH2AX domain

detected in SPO11-deficient spermatocytes and oocytes is a

transcriptionally silenced region, we performed RNA polymerase

II (RNA pol II) staining and indeed observed a depletion of this

enzyme from the areas enriched for cH2AX in Spo112/2 and

Spo11YF/YFspermatocytes and oocytes (Figure 2A and B). To verify

the results, we quantified the relative average intensity of RNA pol

II staining in the cH2AX domain in oocytes, and compared it to

the relative intensity in the true XY body of wild type pachytene

spermatocytes (Figure 2C). Despite the fact that we observed

variable depletion levels within each of the three analysed

categories, the relative average level of RNA pol II in cH2AX

domains of wild type (0.7760.16, n = 30) and Spo11YF/YF

(0.7660.18, n = 30) oocytes is similar, and also comparable to

what is observed for the XY body in male wild type spermatocytes

(0.6960.14, n = 30) (Mann-Whitney, confidence interval

p,0.001), indicating a significant transcriptional silencing.

Based on these results, we will refer to the cH2AX domains that

are observed in both Spo11YF/YF and Spo11+/+ oocytes as pseudo

XY bodies.

RAD51 foci frequently localize to the pseudo XY body in
Spo11YF/YF spermatocytes

Having established that both SPO11-independent DNA repair

foci and pseudo XY bodies are present in SPO11-deficient

spermatocytes and oocytes, we subsequently analysed whether

these foci are indeed associated with the MSUC areas. Such an

association would be expected, if SPO11-independent DNA

damage, present on part of the unsynapsed axes, plays a role in

nucleating the formation of the pseudo XY body. To investigate

this, we performed co-immunostaining experiments for RAD51 to

visualize DSB repair sites, cH2AX to visualize the pseudo XY

body and SYCP3 to assess the stages of the cells.

Due to the severe impairment of meiotic prophase progression

in Spo11YF/YF animals, spermatogenesis is arrested at stage IV, but

spermatocytes never reach a true pachytene stage. We performed

our analyses on a subpopulation of spermatocytes which displayed

one or more areas of (heterologous) synapsis and showed no signs

of SC fragmentation, in order to select healthy spermatocytes

which had already entered the zygotene stage.

Persistent DNA Repair Foci and Meiotic Silencing
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First of all we determined the frequency of spermatocytes with

RAD51 foci and with a pseudo XY body. We split our population

(n = 240) in four classes (Figure 3A): 1) cells having both a pseudo

XY body and RAD51 foci; 2) cells having only a pseudo XY body;

3) cells having only RAD51 foci; and 4) cells lacking both a pseudo

XY body and RAD51 foci (Figure 3A, B). The results indicate that

the vast majority of nuclei (78.3%) contain both a pseudo XY body

as well as RAD51 foci. Although RAD51 is a well-known marker of

sites of DSB repair [52], it may also accumulate on ssDNA that is

formed in a different context of DNA damage, such as observed

during collapse of a replication fork in S phase [53]. To obtain

additional evidence for the presence of DNA damage in Spo11YF/YF

spermatocytes, we performed the same analysis by staining for two

more markers of DNA damage and repair: DMC1 and RPA.

DMC1 is the meiosis-specific homolog of RAD51 which partici-

pates in the process of repair of meiotic DSBs via homologous

recombination. Hence, we expected the results for DMC1 and

RAD51 to be similar. Indeed, comparable percentages of the

analyzed nuclei were found to fall in each of the four classes

(Figure 3A). In addition, we observed colocalization between

RAD51 and DMC1 foci in the cH2AX domains (Figure S6A).

Unlike RAD51 and DMC1, RPA is not a recombinase but a

single-stranded DNA (ssDNA) binding protein which takes part in

many processes involving DNA metabolism (reviewed by Saka-

guchi et al. [54]). At meiotic DSBs, the dynamics of RPA foci differ

from those of DMC1, and although both proteins are enriched on

the XY body, this occurs at different developmental time points

(Figure S7). Nevertheless, similar to what was found for RAD51

and DMC1, 72.3% of the cells (n = 108) showed presence of both

RPA foci and cH2AX domains (Figure 3A, lower panel).

The high percentages of cells with a pseudo XY body and DNA

damage markers, provided an indication for a possible correlation

between the presence of DNA damage, in particular DSBs, and

the formation of the pseudo XY body. To further test the

hypothesis for such a correlation, we determined the colocalization

between each DNA repair marker and the cH2AX domain, in the

fraction of spermatocytes that was positive for both of these

features. We counted similar average numbers of RAD51, DMC1

and RPA foci (5.7, 5.2 and 6.4, respectively) in the nuclei, and the

percentages of colocalization with the cH2AX domain(s) ranged

between 70.8% (RAD51) and 82.2% (DMC1) (Figure 3B).

Furthermore, up to 89–98% of the analysed pseudo XY bodies

contained at least one focus of RAD51, DMC1 or RPA

(Figure 3B).

To validate that the frequent localization of RAD51 in the

pseudo XY body is not coincidental, we compared the relative

area of the nucleus that was positive for cH2AX (pseudo XY body)

to the fraction of RAD51 foci that was found inside that area. We

observed that the fraction of RAD51 that localized inside the

pseudo XY body (more than 70%) was much larger than the

fraction of the nucleus that was taken up by this chromatin domain

(20% of the total area). In addition, there was no specific

correlation (Pearson linear correlation coefficient [Pcorr] = 0.0704)

between the size of the pseudo XY body and the percentage of

RAD51 foci that was found in the pseudo XY body (Figure 3C). In

Spo11 knockout spermatocytes, a similar pattern of colocalization

between RAD51, DMC1, and RPA foci and the pseudo XY body

was observed (Figure S8).

Radiation induced DSBs elicit an MSUC response in
Spo11YF/YF spermatocytes

The localised presence of DNA repair foci in one or a few

pseudo XY bodies indicates that DNA damage in spermatocytes

tends to concentrate in a single, transcriptionally silenced area. To

test this hypothesis, we induced exogenous DSBs in Spo11YF/YF

spermatocyte nuclei by whole-body irradiation, and analysed the

presence of DSB markers at different time points following the

treatment. We observed approximately 120 (65.3, n = 30) RAD51

foci and a nucleus-wide accumulation of cH2AX at 1 h following

irradiation. Interestingly, 48 hours after irradiation, we still observed

Table 1. Number of different subtypes of meiotic nuclei and frequency of pachytene nuclei with a pseudo-XY body in E16.5 and
E17.5 oocytes from Spo11+/+ and Spo11+/YFembryos.

genotype # leptotene (%)* # zygotene (%)* # pachytene (%)*
fraction of pachytenes
with pseudo XY body

pseudo XY body (+) pseudo XY body (2)

E16.5 Spo11+/+ 13 (8.4) 77 (50) 10 (6.5) 54 (35) 0.16

Spo11+/YF 10 (6.5) 105 (68) 7 (4.5) 32 (21) 0.18

E17.5 Spo11+/+ 0 (0) 6 (4.3) 32 (23) 103 (73) 0.24

Spo11+/YF 0 (0) 6 (3.8) 34 (22) 118 (75) 0.23

*percentage of the total number of counted nuclei.
doi:10.1371/journal.pgen.1003538.t001

Table 2. Number of different subtypes of meiotic nuclei and frequency of nuclei with a pseudo-XY body in E16.5 and E17.5
oocytes from Spo11YF/YFembryos.

genotype # leptotene (%)* # zygotene (%)*

pseudo XY body (+) pseudo XY body (2)

E16.5 Spo11YF/YF 33 (26) 18 (14.2) 76 (59.8)

E17.5 Spo11YF/YF 0 (0) 99 (81.1) 23 (18.9)

*percentage of the total number of counted nuclei.
doi:10.1371/journal.pgen.1003538.t002
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extensive H2AX phosphorylation emanating from the many

RAD51 foci (Figure 4A). However, 120 h following irradiation,

when cells that were irradiated at leptotene would have progressed to

pachytene in a wild type background, a pseudo XY body was

observed in about 90% (n = 70) of the analysed nuclei (Figure 4B).

These pseudo XY bodies always contained RAD51 foci (25.161.73,

n = 50), and the majority of the radiation-induced RAD51 foci that

are still present at this time point (65.7%) localized in the pseudo XY

body (Figure 4A). These data show that the persistent radiation-

induced DSBs tend to relocalize in a specific nuclear subdomain.

This phenomenon is in accordance with the colocalization of

unsynapsed or partially synapsed translocation chromosomes,

carrying persistent meiotic DSBs, with the XY body [38].

To confirm that the pseudo XY body in these irradiated

spermatocytes is an MSUC area, as observed in non-irradiated

Spo11YF/YF spermatocytes, we performed co-immunostaining for

cH2AX and RNA pol II. We detected a depletion of this enzyme

in the areas enriched for cH2AX, indicating that they are

transcriptionally silenced (Figure 4C).

Pseudo XY bodies in Spo11YF/YF oocytes correlate with
DSB markers

Next, we asked if RAD51, DMC1, and RPA foci also

preferentially localized in the pseudo XY bodies in E17.5

Spo11YF/YF oocytes.

As discussed above, RAD51 was found to accumulate exten-

sively on some chromosomal axes, often coating them completely,

so that single foci could not be easily resolved. Such marked

accumulation was not observed for DMC1 or RPA, which are

forming fewer foci (average number of 5.662.3, n = 20 and

7.466.9, n = 30, respectively). Despite this difference in foci

pattern, the percentage of oocyte nuclei that contained both a

cH2AX domain and RAD51 foci (79.2%, n = 120) was similar to

the percentage of oocyte nuclei with a cH2AX domain and RPA

foci (83.1%, n = 89) (Figure 5A, upper and lower panel respec-

tively). In contrast, only 25.9% of the analysed Spo11YF/YF oocytes

(n = 54) displayed DMC1 foci, but all these cells also had a

cH2AX domain. The rest of the nuclei had only a pseudo XY

body (57.41%) or were negative for both DMC1 and cH2AX

(16.67%) (Figure 5A, middle panel).

In the group of nuclei that contained both RAD51 foci and a

cH2AX domain, the pseudo XY body always contained RAD51

foci that coated part of the axes (Figure 5B). Also, in E17.5

Spo11YF/YF oocytes that contained a pseudo XY body and DMC1

or RPA foci, more than 90% of the pseudo XY bodies contained

DMC1 or RPA foci, respectively. Conversely, the vast majority of

RAD51, DMC1, and RPA foci in this subgroup of nuclei were

located in the pseudo XY body, similar to what was observed for

Spo11YF/YF spermatocyte nuclei. Furthermore, the DMC1 foci

were found to colocalize with some of the (more abundant)

RAD51 foci in the pseudo XY bodies of oocytes (Figure S6B).

For comparison, these analyses were also performed on Spo11

knockout E17.5 oocytes and this provided similar results (Figure

S8, right).

DSB repair proteins mark pseudo XY bodies that are
occasionally observed in wild type oocytes

Interestingly, also in wild type and Spo11YF/+ oocyte nuclei,

RAD51 coats the axial elements in cH2AX-positive domains

(Table 1). These pseudo XY bodies were observed in approxi-

mately 20% of pachytene oocytes, similar to what was previously

reported by Koutznetsova et al. [51] who observed BRCA1 and

ATR on unsynapsed axes in around 15% of the oocyte population

from E17 wild type embryos.

To analyse this further, we studied the localisation of other

proteins involved in homologous recombination (DMC1 and

RPA) in relation to the formation of a cH2AX domain. Again we

divided the oocyte population in four subgroups, based on the

detection of cH2AX and the three DNA repair markers. As

expected, the majority of pachytene oocytes showed complete

synapsis of all chromosomes and no clear cH2AX-positive

domain. Around 20–30% of nuclei showed pseudo XY bodies,

as defined by the presence of one or a few distinct cH2AX-positive

domains (Figure 6A). Approximately half of the pachytene nuclei

lacked both cH2AX domains and RAD51 or DMC1 foci, whereas

no nuclei were found without RPA foci (Figure 6A, B). We did not

observe any pseudo XY body in nuclei without RAD51 foci, but

13% of the nuclei contained a cH2AX domain but no DMC1 foci

(Figure 6A). RPA is known to mark DSB repair spots after

RAD51-mediated strand invasion and during homologous recom-

bination, to protect the ssDNA regions generated during this

process [55]. This explains the fact that RPA foci are always

present in E17.5 oocyte nuclei which are at a mid-meiotic stage

and have not yet completed the homologous recombination

process at all DSB repair sites. Also, since RPA is engaged in

completing recombination at synapsed autosomal sites, a relatively

small fraction of the RPA foci colocalizes with pseudo XY bodies.

In contrast, most DMC1 and RAD51 foci localize to cH2AX

domains, similar to what was found for Spo11YF/YF oocyte nuclei

(Figure 6B), although DMC1 foci are found more frequently and

in higher numbers in pseudo XY bodies in Spo11+/+ compared to

Spo11YF/YF oocytes. DMC1 foci colocalized with RAD51 foci

when both were present in the pseudo XY body (Figure S6C).

Pseudo XY bodies overlapping synapsed axes contain
RAD51 foci but lack DMC1

Since we observed some differences between the patterns of

RAD51 and DMC1 accumulation in pseudo XY bodies of wild

type oocytes, we wondered whether pseudo XY bodies that

contain both DMC1 and RAD51 foci differ from those that show

only RAD51 foci. First, we analysed the relation between DMC1

accumulation, formation of the pseudo XY body and synapsis,

using an antibody directed against the central element protein

TEX12. The results in Figure 7A and B show that DMC1 foci in

oocyte pseudo XY bodies localize mainly (58.6%) on unsynapsed

axes (inferred from the absence of TEX12, and placement of

DMC1 foci in an axis-like pattern), and rarely (12.8%) on

synapsed areas (Figure 7B). It is important to note that 28.6% of

oocytes with a pseudo XY body did not show any DMC1 foci

Figure 2. Transcriptional silencing of the pseudo XY body in spermatocytes and oocytes. (A–B) Double immunostaining with anti-cH2AX
and anti-RNA polymerase II of spermatocyte (A) and oocyte (B) nuclei from Spo112/2 (A, upper panel), Spo11YF/YF (A–B, lower panels), and Spo11+/+ (B,
upper panel) animals. Nuclear domains enriched in cH2AX are marked by a dashed circle. (C) Scatter plots of the relative amount of RNA polII in a
cH2AX domain normalized to the RNA polII level in a non-heterochromatic area of the same nucleus. Every dot represents a nucleus. RNA polII levels
are compared between cH2AX domains (pseudo XY body) of Spo11+/+ and Spo11YF/YF E17.5 oocytes, and the proper sex body in Spo11+/+ mid-
pachytene spermatocytes. Grey lines indicate the average. No significant difference between the wild type pachytene spermatocyte nuclei and either
E17.5 oocyte nuclei group was observed (Mann-Whitney, confidence interval p,0.01).
doi:10.1371/journal.pgen.1003538.g002
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Figure 3. Enrichment of DNA repair markers in the pseudo XY body of Spo11YF/YF spermatocytes. (A) Nuclei of Spo11YF/YFzygotene
spermatocytes were divided in four subgroups depending on their positivity for the pseudo XY body and for foci of one of the three DNA repair
proteins RAD51 (n = 120), DMC1 (n = 227) or RPA (n = 108) as follows: 1) with pseudo XY body and with foci, 2) with pseudo XY body and without foci,
3) without pseudo XY body and with foci, 4) without pseudo XY body and without foci. Spermatocyte nuclei were immunostained with anti-SYCP3
(red), anti-cH2AX (blue), and one of the following antibodies: anti-RAD51 (green, upper panel), anti-DMC1 (green, middle panel) or RPA (green, lower
panel). Every panel shows a representative nucleus for each of the four subgroups mentioned above. Numbers in the bottom left corner of every
picture represent the percentage of nuclei of this type in the analyzed cell population. (B) The average number of RAD51, DMC1 and RPA foci per
nucleus was counted in spermatocytes of the first subgroup (outlined in red). The table also shows the percentage of foci located within a pseudo XY
body and the percentage of pseudo XY bodies which contained at least one focus. (C) Scatter plot representing the colocalization percentage in
relation to the fraction of the nuclear area occupied by the pseudo XY body. Every dot represents a nucleus. Pearson linear correlation coefficient
[Pcorr] = 0.0741.
doi:10.1371/journal.pgen.1003538.g003
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(Figure 7A, B) and that all these nuclei were also characterized by

complete synapsis (based on the presence of 20 TEX12-positive

bivalents) (Figure 7B). In contrast, RAD51 always coats the

chromosomal axes of the pseudo XY body, irrespective of synapsis

(Figure 7C). These observations prompted us to further analyse the

occurrence of pseudo XY bodies in association with complete

synapsis. For this, we used an antibody directed against the

HORMAD1 protein, together with anti-TEX12 as well as anti-

cH2AX to identify the pseudo XY body. As reported previously,

HORMAD1 covered all unsynapsed axes at zygotene, and was

lost once the cells reached complete synapsis at pachytene [8]

(Figure 8A). Conversely, TEX12 gradually accumulated as

synapsis progressed, consistent with earlier reports [11]

(Figure 8A). When we analysed the pachytene population in more

detail, we observed unsynapsed axes that were positive for

HORMAD1 in a pseudo XY body in 9.8% of the pachytene

nuclei, and another 13.1% that showed partial (5.7%) or no (7.4%)

colocalisation of the pseudoXY body with HORMAD1

(Figure 8B). Whenever HORMAD1 was absent from the pseudo

XY body, TEX12 was present, indicating complete synapsis. To

verify that synapsis was complete in the nuclei that lacked

HORMAD1 but contained a pseudo XY body, we measured the

Figure 4. Relocalisation of persistent radiation-induced DSBs into a pseudo XY body. (A) Irradiated Spo11YF/YF spermatocytes were
collected 1 h, 48 h and 120 h upon irradiation and immunostained for RAD51 (green), SYCP3 (red), and cH2AX (blue). Spermatocytes that were
irradiated at the leptotene stage, should have reached zygotene and pachytene with respect to the pattern of cH2AX, at 48 and 120 h following
irradiation, respectively. (B) Fraction of cells showing a pseudo XY body upon irradiation at the analysed time-points (n = 50). (C) Immunostaining of
Spo11YF/YF spermatocyte 120 hours after irradiation with anti-RNA pol II (green) and anti-cH2AX (red). The intense cH2AX domain (pseudo XY body)
corresponds to a nuclear area depleted for RNA pol II.
doi:10.1371/journal.pgen.1003538.g004
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Figure 5. Enrichment of DNA repair markers in the pseudo XY body of Spo11YF/YF oocytes. (A) Oocyte nuclei from Spo11YF/YF E17.5
embryos were immunostained with anti-SYCP3 (red), anti-cH2AX (blue), and one of the following antibodies: anti-RAD51 (green, upper panel), anti-
DMC1 (green, middle panel), or RPA (green, lower panel). Foci of each marker listed above are indicated with arrowheads. Quantification of the four
fractions (defined in the legend to Figure 3A) was performed in 120, 54, and 89 oocyte nuclei, for RAD51, DMC1, and RPA protein foci, respectively.
Numbers in the bottom left corner of every picture represent the percentage of nuclei of this type in the analyzed cell population. (B) The number of
RAD51, DMC1 and RPA foci was counted in oocyte nuclei showing both a pseudo XY body and foci (red circle). The average total number of foci of
each protein per nucleus is reported in the first column of the table. The second and the third column show the percentage of foci located within a
pseudo XY body and the percentage of pseudo XY bodies that contained at least one focus.
doi:10.1371/journal.pgen.1003538.g005
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Figure 6. Enrichment of DNA repair markers in the pseudo XY bodies of Spo11+/+ oocytes. (A) Oocyte nuclei from Spo11+/+ E17.5 embryos
were immunostained with anti-SYCP3 (red), anti-cH2AX (blue) and anti-RAD51 (green, upper panel) or anti-DMC1 (green, middle panel) or RPA
(green, lower panel). Foci of each marker listed above are indicated with arrowheads. Numbers in the bottom left corner of every picture represent
the percentage of nuclei of the respective type in the analyzed cell population. Quantification of the four fractions (defined in Figure 3A) was
performed in 271, 54, and 53 oocyte nuclei, for RAD51, DMC1, and RPA protein foci, respectively. (B) The number of RAD51, DMC1, and RPA foci was
counted in pachytene oocyte nuclei showing both a pseudo XY body and foci (red circle). The average total number of foci of each protein per
nucleus is reported in the first column of the table. The second and the third column show the percentage of foci located within a pseudo XY body-
like domain and the percentage of pseudo XY body-like domains which contained at least one focus.
doi:10.1371/journal.pgen.1003538.g006
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total length of synapsed axes, visualized as TEX12 stretches, in

pachytene oocyte nuclei. We found that the total SC length was

comparable in pachytene oocytes without any HORMAD1

staining, independent of the presence of a pseudo XY body. On

the contrary, the total synapsis length was significantly lower in

pachytene oocyte nuclei which showed both a pseudo XY body

and HORMAD1 (Figure 8C). Finally, to confirm that these

pseudo XY bodies elicit true meiotic silencing, despite the absence

of asynapsis, we performed a triple staining for RNA polII,

TEX12 and cH2AX. As shown in Figure 8D and 8E, RNA polII

is depleted from the pseudo XY body, irrespective of synapsis.

Discussion

SPO11-dependent DSB formation
A point mutation in the Spo11 gene that results in the

replacement of Tyr 138 by Phe in the catalytic site of the enzyme

leads to the absence of detectable SPO11-dependent meiotic DSBs

in oocytes and spermatocytes. This observation is in accordance

with recent findings of Boateng et al. [43], who analysed a mouse

mutant carrying a mutation in the Spo11 gene that leads to

replacement of both Tyr 137 and Tyr138 by Phe.

Although having half the amount of functional SPO11 is sufficient

to generate a normal number of crossovers, as evidenced by the

analysis of MLH1 foci in Spo11+/YF spermatocytes and oocytes, the

dynamics of DSB induction was clearly altered. The lower number

of RAD51 foci that was observed in leptotene Spo11+/YF oocytes and

spermatocytes may indicate that fewer breaks are made. However,

near normal numbers of RAD51 foci are observed in zygotene

Spo11+/YF spermatocytes and oocytes. These data are consistent with

the homeostatic control mechanism that has been observed in yeast

[56] and mouse spermatocytes, allowing maintenance of normal

crossover frequencies when the number of DSBs is reduced [57]. In

addition, or alternatively, the recently identified feedback mecha-

nism, requiring ATM activity, which regulates the number of breaks

that can be formed by SPO11 [58] may ensure that a similar level of

DSB formation is reached in the heterozygote, albeit with different

kinetics when compared to the wild type.

Figure 7. DMC1 preferentially localizes to unsynapsed axes in wild type pachytene oocytes. (A) Triple immunostaining with anti-TEX12
(red), anti-DMC1 (green), and anti-cH2AX (blue) of pachytene oocyte nuclei from E17.5 wild type embryos. DMC1 foci are detected in the pseudo XY
body and localize to synapsed axes (left, close-up), or to unsynapsed axes (middle, close-up). The pseudo XY body is often devoid of DMC1 foci (right,
close-up). (B) Quantification of the number of synapsed and unsynapsed axes, present in pseudo XY bodies, that are positive or negative for DMC1
foci (n = 70). Percentages are shown in brackets. (C) Triple immunostaining with anti-TEX12 (red), anti-RAD51 (green), and anti-cH2AX (blue) of
oocytes from E17.5 wild type embryos. Axis-wide accumulation of RAD51 in the pseudo XY body was observed on both synapsed (left) and
unsynapsed (right) axes. Close-ups separately show TEX12 and RAD51 patterns in the pseudo XY body.
doi:10.1371/journal.pgen.1003538.g007
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Figure 8. Pseudo XY bodies containing synapsed axes in wild type embryonic oocytes. (A–B) Triple immunostaining with anti-HORMAD1
(red), anti-TEX12 (green) and anti-cH2AX (blue) of oocyte nuclei from E17.5 wild type embryos. In the lower right corner percentages are reported,
representing the frequency of each type of cell in the pachytene oocyte population (n = 244). (A) Representative pictures of early zygotene (EZ), late
zygotene (LZ), early pachytene (EP) and pachytene (P) oocytes, from left to right. HORMAD1 levels are decreasing while TEX12 accumulates as
synapsis progresses. Parallel to the increase of synapsis and HORMAD1 removal, cH2AX accumulation decreases. (B) Representative pictures of
pachytene oocytes with a pseudo XY body. HORMAD1 positive axes totally (left picture) or partially (middle picture) colocalize with the pseudo XY
body, or are not present (right picture) in the pseudo XY body. (C) Scatter plot of the total length of synapsed axes in E17.5 wild type pachytene
oocytes, belonging to the following categories: HORMAD1 and pseudo XY body absent (blue); HORMAD1 absent and pseudo XY body present (light
blue); presence of both HORMAD1 and a pseudo XY body. Every dot represents a nucleus. Black bars indicate the mean values. P values for the
indicated comparison (Mann-Whitney, two-tailed) are shown in the plot. (D–E) Triple immunostaining with anti-TEX12 (white), anti-RNA polymerase II
(green), and anti-cH2AX (red) of pachytene oocytes from E17.5 wild type embryos, imaged with the Zeiss LSM700 confocal microscope. Depletion of
RNA pol II can be observed in the area of the the pseudo XY body marked by cH2AX, both when synapsis is complete (D) and when unsynapsed axes
(E) are present in this region (E). Size bars represent 10 mm.
doi:10.1371/journal.pgen.1003538.g008
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SPO11-independent DNA repair foci
In the absence of SPO11, no meiotic DSBs are formed, and

accumulation of RAD51, DMC1 and RPA proteins is therefore

not expected. Nevertheless we observed significant numbers of

RAD51, DMC1 and RPA foci in Spo11YF/YF and Spo112/2

oocytes and spermatocytes that preferentially localized in the

pseudo XY body, identified on the basis of the cH2AX staining

pattern. In Spo11YF/YF oocytes, we observed a clear increase in the

number of RAD51 foci in oocytes at E17.5, compared to oocytes

at E16.5. However, the number of DMC1 and RPA foci was

much lower than the number of RAD51 foci in these nuclei. The

number of DMC1 foci in particular would be expected to follow

the same pattern as RAD51, because DMC1 has been reported to

participate in the formation of recombination filaments [26].

Nevertheless, it has been recently shown that the dynamics of

accumulation of DMC1 and RAD51 are different when extra

DSBs are induced by a supplemental copy of the SPO11b-isoform

[57]. Cole et al. [57] suggested that, in this situation, the extra

DSBs may be more likely to engage in a mitotic pathway of HR

repair, and thus less likely to recruit DMC1. In oocytes that

completely lack a synaptonemal complex, DMC1 was found to be

lost from persistent DSBs, whereas RAD51 foci were still observed

[59]. Based on this, it was suggested that DMC1 can only stably

associate with meiotic DSBs in the context of synapsed chromatin

and normal progression of repair [59]. Our own observations also

indicate that DMC1 is lost from SPO11-induced DSB repair sites

before RAD51 (data not shown). Together, these observations are

in accordance with the notion that the sites that recruit RAD51

foci in E17.5 oocytes can no longer recruit DMC1 with equal

efficiency. This may be due to differences in the composition of the

repair complexes at (persistent) DSBs in late compared to early

pachytene oocytes, or is possibly caused by a drop in the level of

DMC1 protein expression.

Nature of the SPO11-independent DNA repair foci
It is important to establish if the DNA repair foci represent

actual sites of DNA damage. The increase in the number of

RAD51 foci in oocytes between E16.5 and E17.5 may be due to a

DNA-damage independent association of RAD51 to chromosomal

axes, or foci formation might be induced by the specific chromatin

structure that is formed upon cH2AX formation, which would

explain why the foci tend to colocalize in a single subnuclear

region. However, we have observed that radiation-induced DSBs,

that localize throughout the nucleus, first lead to a nucleus wide

accumulation of cH2AX, and subsequently to a more concen-

trated presence of RAD51 foci and cH2AX in a specific

subdomain of the nucleus (the pseudo XY body). In addition, it

is known that in spermatocytes that carry autosomes with a pairing

problem, meiotic DSBs persist on the unsynapsed regions, in

association with MSUC, and these regions then also tend to

colocalize with the XY body, indicating that persistent DSBs in the

context of MSUC have a tendency to reside together in a single

nuclear area [38]. The preferred presence of DMC1 and RPA in

addition to RAD51 in the pseudo XY bodies supports the

hypothesis of the presence of a DNA damage event. One

particular feature of the SPO11-independent repair foci in

Spo11YF/YF oocytes is their inefficient processing. In fact, in oocytes

from E17.5 Spo11YF/YF mice, RAD51 appears to coat unsynapsed

axial elements, so that individual foci are no longer clearly

observed, indicating that the RAD51 filament formation is not

regulated as in a normal homologous DSB repair event. Upon

replacement of RPA by RAD51/DMC1, and subsequent persis-

tence of a DSB without further processing to a recombination

intermediate, such an axis-wide pattern for RAD51 may develop,

possibly due to an abnormal regulation of the foci dynamics,

compared to conventional DSB repair events. The spreading of

RAD51 along axial elements may result from spreading of RAD51

onto double-stranded DNA, a phenomenon that has also been

described for persistent DSBs in yeast [60]. Based upon these

considerations, we favour the conclusion that the SPO11-

independent DNA repair foci represent true sites of persistent

DNA damage.

Origin of SPO11-independent DNA repair foci
To explain what might cause spontaneous DNA damage in

Spo11YF/YF and knockout spermatocytes and oocytes, and possibly

also in wild type meiocytes, different mechanisms can be proposed.

First, during S phase in somatic cells, and most likely also in

meiocytes, DSBs can form at stalled replication forks. In human

cells, 50 endogenous DSBs have been proposed to occur in every

cell cycle [61]. Most of these DSBs will be repaired before the cells

enter G2, but some may persist, and the number of persisting

breaks appears to vary between different cell types [62,63]. A

second mechanism that could generate endogenous DSBs is

transcription-associated recombination (TAR). The causes of

DSBs that form in association with ongoing gene transcription

are thought to be related either to generation of stalled replication

forks in association with transcription, or to increased accessibility

of DNA during transcription, making it more vulnerable to DNA-

damaging agents (reviewed by [64,65]). Meiocytes are post S phase

cells, and leptotene, zygotene, and early pachytene spermatocytes

and oocytes display a low level of RNA synthesis, making TAR an

unlikely source of RAD51 foci in these cells [66,67]. A third

possible endogenous source of DSBs is impaired topoisomerase II

activity. Inhibition of topoisomerase II activity in pachytene

spermatocytes has been found to result in DSB formation,

indicating that topoisomerase II is indeed functional in meiocytes

[68]. Fourth, endonuclease activity of ORF2, encoded by Line1

transposons, generates DSBs during the transposition of mobile

elements in the genome [69–71]. Derepression of transposons has

been shown to cause SPO11-independent DNA damage in Mael

mutant spermatocytes [72]. In wild type oocytes and spermato-

cytes, transcription of Line1 elements is transiently derepressed at

the onset of meiosis [73]. Finally, we cannot exclude that DNA

damage may occur as a result of unknown environmental or

endogenous factors such as reactive oxygen species (ROS). ROS

generation has been described for normal rat spermatocytes [74],

but it is not clear to what extent such damage also results in

RAD51 foci formation.

In Spo11YF/YF spermatocytes, it appears most likely that some or

all of the SPO11-independent RAD51 foci result from carry-over

of spontaneous DSBs that were induced in the previous S phase. In

oocytes this may also occur, and the observed de novo generation of

RAD51 foci post S phase in Spo11YF/YF oocytes indicates that

(additional) spontaneous DSBs in oocytes may arise either from

impaired topoisomerase II activity or from ORF2 mediated

endonuclease activity in cells that should have progressed already

to pachytene. Such SPO11-independent DNA damage may also

be induced in wild type pachytene oocytes, but the close proximity

of the homologous template in these oocytes may facilitate

homologous recombination repair of most of the de novo induced

DNA damage. In Spo11YF/YF oocytes the appropriate template for

repair is not directly available due to almost complete lack of

homologous chromosome pairing. This difference in homologous

template availability readily explains the higher relative frequency

of pseudo XY body formation in Spo11YF/YF oocytes compared to

oocytes from wild type or heterozygote littermate controls. At

present, it is not clear whether the persistent repair foci are
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resolved at some later time point, or whether the persistent

presence of these foci and the associated cH2AX signaling triggers

a checkpoint that induces apoptosis. Daniel et al. [22] reported

increased apoptosis of oocytes in ovaries of newborn Spo11

knockout mice compared to controls. In addition, it has been

reported that only 10–20% of the normal number of oocytes is

present in Spo11 knockout ovaries at postnatal days 4 and day 8

[34,75]. This percentage nicely corresponds to the 19% of oocytes

that do not contain a pseudo XY body at E17.5 in our Spo11YF/YF

model. However, although these data confirm that oocytes with a

pseudo XY body are lost shortly after birth, cell death may also be

caused by a so-called synapsis checkpoint, mediated by HOR-

MAD proteins, rather than by a DNA repair checkpoint

[22,23,76].

Two types of pseudo XY bodies in wild type oocytes
Our analyses of RAD51 and DMC1 foci in relation to MSUC

and synapsis in pachytene oocytes from Spo11+/YF and wild type

E17.5 embryos has shown that two different types of equally

silenced pseudo XY bodies exist in wild type pachytene oocytes.

Approximately two-third of the pseudo XY bodies accumulate

DMC1 as well as RAD51 and form on unsynapsed chromatin

(Type I), whereas one-third accumulate RAD51, but little or no

DMC1, and form on synapsed chromatin (Type II). We propose

that the Type I pseudo XY bodies represent sites that contain

persistent SPO11-induced DSBs in areas that failed to synapse,

whereas the Type II pseudo XY bodies represent sites where

SPO11-independent damage has persisted that elicited a MSUC

response, independent of synapsis.

Persistent DSBs nucleate meiotic silencing
The percentage of cells with cH2AX accumulation in a pseudo

XY body is highly reduced in Spo112/2 Hormad12/2 or Spo112/2

Hormad22/2 double mutant spermatocytes [22,23]. This illustrates

the important role of HORMAD proteins in the MSUC response.

Yet the localization of HORMAD1 to all unsynapsed chromatin

in Spo11 knockout spermatocytes [22,23]), and the presence of

some nuclei with a proper MSUC response in Spo112/2

Hormad12/2 spermatocytes indicate that, apart from HORMAD

proteins, an additional localizing event is needed for pseudo XY

body nucleation. Taken together, these and our observations

support the hypothesis that both asynapsis, detected by HOR-

MADs, and persistent SPO11-independent DNA repair foci are

involved in the induction of H2AX phosphorylation and the

establishment of meiotic silencing in pseudo XY bodies in Spo11YF/

YF oocyte nuclei. We would like to propose that MSCI in wild type

spermatocytes is then also triggered by both persistent DSBs, in

this case SPO11-dependent, and the presence of unsynapsed

chromatin (schematically presented in Figure 9).

If RAD51 accumulation is as extensive as observed in pseudo

XY bodies in oocytes, HORMADs may not even be required, and

enough ATR may be recruited by the DNA repair machinery

itself, to elicit the MSUC response, as indicated by the existence of

pseudo XY bodies that lack HORMAD1 in oocytes.

Despite the more prominent RAD51 accumulation on axes of

the pseudo XY body in oocytes as compared to spermatocytes, we

propose that the mechanism of pseudo XY body formation in

Spo11YF/YF spermatocytes occurs in a similar fashion. The

differences in the pattern of RAD51 accumulation may be caused

by the fact that Spo11YF/YF spermatocytes are eliminated at stage

IV of the spermatogenic cycle, whereas Spo11YF/YF oocytes appear

to proceed normally throughout the stage that should correspond

to pachytene and are eliminated later [34]. Perhaps, the few

spontaneous DSBs in Spo11YF/YF spermatocytes modulate the

MSUC response in a slightly different way, compared to the

responses elicited by the more extensive accumulation of

endogenous DSBs in Spo11YF/YF oocytes. Still, the MSUC response

in both Spo11YF/YF spermatocytes and oocytes is characterized by

the same intense cH2AX accumulation and by the presence of

RAD51/DMC1 and RPA foci. It is interesting to note that such

foci can also be observed on the unsynapsed axes of the X

chromosome in wild type spermatocytes, as a hallmark of

persistent DSBs. HORMAD proteins may be instrumental to

spread the MSUC response along the chromosomal axes into

areas that lack persistent DSBs, such as the Y chromosome. In

somatic cells, formation of cH2AX chromatin domains has also

been coupled to transcriptional silencing, in the context of

radiation-induced damage [16]. More recently, Shanbhag et al.

[39] analysed the effect of persistence of an endonuclease-

dependent DSB on transcriptional activity in the neighbouring

genes. They observed that H2AX phosphorylation spreads along

the DNA surrounding the DSB, and that the accumulation of this

histone modification correlated with reduction of RNA polymer-

ase II activity. Persistent DSBs were shown to trigger the silencing

of neighbouring genes, and the mechanism was termed DSB-

induced silencing in cis (DISC) [39]. This mechanism, that occurs

in somatic cells, might have some aspects in common with MSUC

and MSCI in meiocytes.

In conclusion, this study has revealed the presence of SPO11-

independent DNA repair foci in oocytes and spermatocytes. In

addition, we show that unrepaired DSBs most likely are the initial

trigger of both MSCI and MSUC in spermatocytes and oocytes.

For wild type oocytes, the possible presence of de novo induced

DNA damage in a substantial part of the oocyte population may

contribute to the massive loss of such oocytes around birth. For

spermatocytes, the few SPO11-independent breaks that are

present will most likely be rapidly repaired once homologous

chromosome pairing is obtained with the help of the 200 or more

SPO11-induced DSBs. The MSUC and MSCI response may be

less unique than previously thought, and actually represent an

extreme and adapted form of DISC. Therefore, knowledge about

the molecular basis of meiotic silencing may also be relevant for

our understanding of DNA damage-induced chromatin modifica-

tions in somatic cells.

Materials and Methods

Ethics statement
All animal experiments were approved by the local animal

experiments committee DEC Consult.

All animals were housed in IVC cages under supervision of the

Animal Welfare Officer. Any discomfort of animals was daily

scored by the animal caretakers. No more than mild or moderate

discomfort of animals was expected from the treatments, and no

unexpected discomfort was observed.

Mice
All animal experiments were approved by the animal experi-

ments committee DEC-Consult.

Spo11 mutant mice were generated through a two-step

recombination strategy as described by Soukharev et al., [77].

First, two heterospecific lox sites flanking the selectable marker

hygromycin, replacing exons 4–8, were placed in the Spo11 gene,

in ES cells by homologous recombination. Next, a targeting vector

containing the same heterospecific lox sites flanking exon 4–8 of

Spo11 with the point mutation generating Y138F at exon 4 was

used to replace the selection marker by a site-specific double cross-

over event (Figure S1A). The final modified Spo11 locus carries a
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Figure 9. Model for the roles of SPO11-dependent and -independent meiotic DSBs in synapsis and meiotic silencing. In
spermatocytes and oocytes, SPO11 generates many meiotic DSBs which are repaired via homologous recombination (HR). This repair process
requires the use of the homologous chromosome as a repair template and promotes homologous chromosome synapsis. Once the homologs are in
close juxtaposition, synapsis proceeds. Subsequently, repair may occur faster, perhaps now allowing the use of both the homologous chromosome
and the sister chromatid as a template for repair. In the absence of a repair template, DSBs persist, inhibiting synapsis between non-homologous
partners, although some repair via the sister chromatid on chromosomes that are not synapsed is not excluded. Conversely, asynapsis also
contributes to the persistence of DSBs when repair via the sister chromatid remains suppressed. The presence of persistent DSBs on unsynapsed axes,
may lead to local accumulation of cH2AX and activate a positive feedback mechanism that involves HORMAD activation, followed by recruitment of
ATR, which will lead to rapid spreading of a signal along the unsynapsed axes that will then induce accumulation of cH2AX on the chromatin
surrounding these axes. This process always occurs on the XY pair in spermatocytes and leads to MSCI. In the absence of SPO11-induced DSBs,
SPO11-independent DNA damage nucleates MSUC via the same mechanism. In spermatocytes, SPO11-independent DNA repair foci may represent
remnant DSBs that have formed during the premeiotic S phase. In oocytes (both wild type and SPO11-mutant), SPO11-independent DNA repair foci
form late, at a time point corresponding to early pachytene. Such de novo induced DNA repair foci, most likely caused by some form of DNA damage,
together with unrepaired SPO11-induced DSBs, and frequently in combination with occasional asynapsis, result in cH2AX accumulation and
activation of MSUC. Representative images of the (pseudo) XY body in male and female nuclei from wild type (wt) and Spo11YF/YF nuclei are shown.
The immunostainings show SYCP3 (red), cH2AX (blue) and RAD51 (green).
doi:10.1371/journal.pgen.1003538.g009
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loxP site between exons 3 and 4, the point mutation generating

Y138F at exon 4, and a lox511 site between exons 8 and 9. ES cells

carrying a single modified Spo11 allele were used for blastocyst

injection to generate chimeras, and heterozygotes were obtained

upon germ line transmission of the mutated allele. Correct

targeting was verified using Southern blotting with 59and 39probes

outside the targeted region (Figure S1B), and sequencing (Figure

S1C). This Spo11 allele has been registered at Mouse Genome

Informatics (MGI) as Spo11,tm1Bdm. (Allele Accession ID:

MGI:5432496).

Wild type, heterozygote and homozygote Spo11 mutant mice

were kept on a FVB background. To genotype the animals, the

following primers were used: forward, 59CTGGTCGATGCA-

GATCCCTACGG39; reversed, 59TAGATGCACATTATCTC-

GATGCC39 (Figure S1B)

Spo11 knockout mice carried the Spo11tm1M allele described in

[34].

For the analysis of radiation-induced DSBs in spermatocytes,

Spo11YF/YF male adult mice were exposed to 5Gy whole body

radiation and sacrificed 1 h, 48 h, and 120 h after the treatment to

collect the testes.

Antibodies
For primary antibodies, we used mouse monoclonal antibodies

anti-phosphorylated H2AX, anti-BRCA1, anti-TOPBP1, anti-

MDC1, anti-phospho H2AX (all from Upstate), anti-DMC1

(DMC1-specific), anti-RAD51, anti-RNA Polymerase II (all from

Abcam); rabbit polyclonal antibodies anti-RAD51 (recognizing

both DMC1 and RAD51) [78], anti-RPA (gift from P. De Boer,

described in Schaarmidt et al., ([79]), anti-SYCP3 (gift from C.

Heyting), anti-HORMAD1 (gift from A. Tóth) and anti-phos-

phorylated H2AX (Upstate); rat polyclonal anti-SYCP3 [80];

guinea pig anti-TEX12 (gift from Christer Höög). SPO11

antibody (Spo11L56S9) was raised from rabbits immunized with

GST-Spo11a produced by the service of recombinant protein of

CRBM (UMR5237-CNRS). For secondary antibodies, we used a

goat anti-rabbit IgG alexa 405/488/546/633, goat anti-mouse

alexa IgG 350/488/546/633, goat anti-rat IgG alexa 546, goat

anti-guinea pig 405/555 (Molecular Probes).

Expression analysis
RNA was extracted and reverse transcribed according to

standard procedures. PCR amplifications were performed with

forward primer 59AATAGTCGAGAAGGATGCAACA39and

reversed primer 59TAGATGCACATTATCTCGATGC39

Immunoprecipitations were carried out with rabbit polyclonal

anti-SPO11 antibody, followed by western blot detection with the

same primary antibody and Trueblot secondary antibody

(eBioscience).

Histology
Testes were fixed and stained with hematoxilin and eosin using

standard histological methods.

Meiotic spread nuclei preparations and
immunocytochemistry

Testis tissues were processed to obtain spread nuclei for

immunocytochemistry as described by Peters et al. (1997) [81].

Spread nuclei of spermatocytes were stained with antibodies

mentioned above. Before incubation with antibodies, slides were

washed in PBS (3610 min), and non-specific sites were blocked

with 0.5% w/v BSA and 0.5% w/v milk powder in PBS. Primary

antibodies were diluted in 10% w/v BSA in PBS, and incubations

were overnight at room temperature in a humid chamber.

Subsequently, slides were washed (3610 min) in PBS, blocked in

10% v/v normal goat serum (Sigma) in blocking buffer

(supernatant of 5% w/v milk powder in PBS centrifuged at

14,000 rpm for 10 min), and incubated with secondary antibodies

in 10% normal goat serum in blocking buffer at room temperature

for 2 hours. Finally, slides were washed (3610 min) in PBS (in the

dark) and embedded in Prolong Gold with or without DAPI

(invitrogen). Fluorescent images were observed by using a

fluorescence microscope (Axioplan 2; Carl Zeiss) equipped with

a digital camera (Coolsnap-Pro; Photometrics). To distinguish

zygotenes from aberrant pachytenes, we used specific parameters

defined in Figure S9. Aberrant pachytene oocytes,have also been

described in previous publications [7,51], and are characterized by

the presence of one to three chromosome pairs lacking synapsis.

We also included rare nuclei in which some chromosomes are

entangled and not fully synapsed. Normal (late) zygotene nuclei

are characterized by a higher proportion of homologs that have

not completed synapsis, compared to what is observed in the

aberrant pachytenes, and SYCP1/TEX12 patches can be

observed which have not yet converged to become a single

complete central element. In addition to specific characteristics of

the SC, the labelling patterns of the repair associated recombinase

RAD51 and phosphorylated H2AX are also helpful to distinguish

late zygotenes from aberrant pachytenes. Single, isolated RAD51

foci are observed in zygotene nuclei, whereas multiple closely

adjacent foci are present in aberrant pachytenes. H2AX

phosphorylation,occurs in a nucleus-wide pattern at zygotene. In

contrast, aberrant pachytene oocytes have one to three bright and

defined cH2AX domains.

Fluorescent images were taken under identical conditions for all

slides, and images were analyzed using the ImageJ (Fiji) software

(Rasband, W.S., ImageJ, U.S. National Institutes of Health,

Bethesda, Maryland, USA [http://rsb.info.nih.gov/ij/]). Confocal

imaging was performed on a Zeiss LSM700 microscope (Carl

Zeiss, Jena): we used 636 oil immersion objective lens (N.A. 1.4),

pinhole 1AU. DAPI was excited at 405 nm and imaged with a

short pass filter (SP) 490 nm; Alexa 488 was excited at 490 nm and

imaged SP 555 nm; Alexa 546 was excited at 555 nm and imaged

SP 640 nm; Alexa 633 was excited at 639 nm and for the imaging

no filter was required.

Quantification of repair foci, synaptonemal complex
length, and RNA pol II intensity

Imaging of nuclei immunostained for RAD51 or DMC1 or

RPA and SYCP3 was performed with the same exposure time for

each nucleus. Images were analysed without any manipulation of

brightness and contrast. Foci were subsequently counted using

Image J software, including the Fiji plug-in. We used the analyze

particles function and set the threshold manually, in order to

include the smallest visible focus in the analysis. The average area

of one RAD51 focus was assessed to be 40–50 pixels, therefore foci

with an area larger than 100 pixels were counted as multiple foci

to allow approximate quantification of RAD51 foci also when it

was observed as a continuous signal along the axial elements.

Measurement of synaptonemal complex length was performed

using a homemade ImageJ macro. The macro generates a

skeletonized image of the original picture and measures the length

of that skeleton.

Relative quantification of the RNA polII levels in the (pseudo)

XY body was performed comparing the average intensity per pixel

area in the cH2AX domain with the average intensity in a non-

heterochromatic nuclear area of the same shape and size.
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Supporting Information

Figure S1 Generation of Spo11YF/YF mice. (A) Intron/exon

structure of the Spo11 gene. Step I: homologous recombination

using a NotI fragment that replaces exons 5–9 and part of the

flanking introns for a HYG/TK positive/negative selectable

marker cassette and two heterologous lox sites, loxC33 and

lox511. Step II: Cre-mediated cassette exchange using a donor

plasmid that replaces the HYG/TK cassette for a mutated Spo11

fragment carrying the F138 codon in exon 5. (B) (left) Southern

blot to visualize a diagnostic BclI fragment using the 59 probe as

indicated in A. Correct integration enlarges the BclI fragment

from 12 kb to 18 kb (right). PCR using primers in exon 9 and 10

distinguishes the wild-type allele (394 bp) from the mutant allele

carrying the lox511 site in intron 9 (482 bp). (C) Sequencing of

Spo11 cDNA from wild-type (+/+), heterozygote (+/YF) and

homozygote (YF/YF) knock-in mice. The A-T mutation that

changes the TAC codon for Tyrosine into a TTC codon for

Phenylalanin is boxed. (D) RT-PCR to analyse mRNA expression

using testis RNA from 15 day-old-mice, wild-type (+/+),

heterozygote (+/YF) and homozygote (YF/YF). Using a forward

primer in exon 8 and a reversed primer in exon 10, two splice

variants can be detected in wild type and knock-in testes (drawing

on the left). Due to the fact that a Loxp site resides between exon 9

and 10, the splice variant that includes these intronic sequences is

larger in the Spo11YF/YF. (E) Immunoprecipitation and detection of

SPO11 in testis extracts from adult wild type (+/+) and Spo11

knockout (2/2) and 16 days old wild-type (+/+), heterozygote (+/

YF) and homozygote (YF/YF) knock-in mice (16d). The positions

of the two SPO11 isoforms (b and a) are shown. M: molecular

weight marker.

(TIF)

Figure S2 Spermatogenesis and oogenesis are blocked
at a zygotene-like stage in Spo11YF/YF mice. (A) Hematox-

ylin-eosin staining of testis from adult wild type (+/+) and Spo11YF/YF

(YF/YF) mice. Immunostaining of spread nuclei of spermatocytes (B)

and oocytes (C) of wild-type (+/+), Spo11+/YF (+/YF) and Spo11YF/YF

(YF/YF) mice. For wild type and heterozygote mice, leptotene,

zygotene and pachytene nuclei are shown. For the Spo11YF/YF mice,

leptotene, zygotene and late zygotene -like nuclei are shown.

(TIF)

Figure S3 Pattern of RAD51 foci in E17.5 oocyte nuclei
is confirmed by ab1837 Abcam antibody. (A–B) Double

immunostaining of pseudo XY body-positive Spo11YF/YF (A) and

Spo11+/+ (B) E17.5 oocyte nuclei with anti-SYCP3 (red), anti-

RAD51 (green), and anti-cH2AX (blue).

(TIF)

Figure S4 RAD51 foci in Spo112/2 spermatocyte and
E17.5 oocyte nuclei. (A–B) Double immunostaining of Spo112/2

spermatocyte (A) and E17.5 oocyte (B) nuclei with anti-SYCP3 (red)

and anti-RAD51 (green). Arrows indicate RAD51 foci (A) and axis-

wide RAD51 accumulation (B).

(TIF)

Figure S5 Pseudo XY body in Spo11YF/YF spermatocytes.
(A–D) Double immunostaining of Spo11YF/YF spermatocytes with

anti-SYCP3 (red) and different DNA repair proteins or histone

modifications (green). Antibodies used for immunostaining are

indicated. Arrows mark the localization of the pseudo XY body.

(TIF)

Figure S6 RAD51 and DMC1 foci colocalize in mouse
meiocytes. (A–C) Immunostaining of Spo11YF/YF spermatocyte

(A), Spo11YF/YF E17.5 oocyte (B), and Spo11+/+ E17.5 oocyte (C)

nuclei with anti-RAD51 (red), anti-DMC1 (green) and anti-

cH2AX (blue). Close-ups show RAD51 and DMC1 foci in the

area of the pseudo XY body next to every nucleus: red and green

channels overlaid (top) and offset (bottom).

(TIF)

Figure S7 Limited colocalization of RPA and DMC1
during spermatogenesis. Mouse spermatocyte nuclei were

stained with anti-DMC1 (green) and anti-RPA (red). DAPI was

used to visualize the DNA and stage spermatocytes from leptotene

(L) through zygotene (Z) to pachytene (P). Early to late pachytene

spermatocytes were distinguished based on the conformation of

the X and Y chromosomal axes, that were visible in the DAPI

image. Consecutive prophase stages are shown from top to

bottom. Dashed circles show the nuclear area of the sex body.

Both RPA and DMC1 are very abundant at the onset of meiosis.

Most likely, RPA is first loaded on the processed 39 ssDNA strands,

and then replaced by DMC1 and RAD51. Starting from late

zygotene onwards, DMC1 foci decrease in number, presumably

because the recombinase has accomplished its function and its

presence is no longer needed. At the same time RPA is recruited

again to protect areas of ssDNA generated during the recombi-

nation process. Note that at early pachytene, the X chromosome is

clearly enriched for DMC1 but not for RPA foci. However, RPA

foci increase on the X at late pachytene, when almost all DMC1

and autosomal RPA foci have disappeared. In general, colocaliza-

tion of DMC1 and RPA is only sporadically observed at all stages

examined.

(TIF)

Figure S8 Correlation between DNA repair markers
and pseudo XY body formation in Spo112/2 spermato-
cytes and oocytes. (A) Immunostaining of spermatocyte (left)

and E17.5 oocyte (right) nuclei from Spo112/2 animals with anti-

SYCP3 (red), anti-cH2AX (blue) and anti-RAD51 (green, upper

panel) or anti-DMC1 (green, middle panel) or anti-RPA (green,

lower panel). SPO11-independent foci are observed in the same

pattern as in Spo11YF/YF meiocytes (B) Quantification of pseudo

XY body and DNA repair marker foci positive spermatocytes

(n = 120) in Spo112/2 animals. Nuclei with four different staining

patterns were distinguished as indicated by the cartoons above the

colums. Numbers indicate percentages. (C) The number of

RAD51, DMC1, and RPA foci was counted in the subpopulation

of spermatocytes showing both foci and a pseudo XY body. The

average total number of foci is reported in the first column of the

table. The percentage of colocalization of RAD51, DMC1 or RPA

foci with pseudo XY body is shown in the second column. The

percentage of pseudo XY bodies which also contain at least one

focus of RAD51, DMC1 or RPA is reported in the third column.

(EPS)

Figure S9 Parameters to discriminate between zygotene
and aberrant pachytene wild type oocytes. (A) Summary of

the applied parameters to discriminate between zygotene oocytes

and aberrant pachytene oocytes. Patterns of SYCP3, SYCP1 (or

TEX12), cH2AX, and RAD51 are described for both categories.

(B) Representative images of the described oocyte categories.

Oocytes were immunostained for TEX12 (red), RAD51 (green),

and cH2AX (blue).

(TIF)
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