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Abstract. We give, for each countable ordinal £ > 1, an example of a A9 countable union of Borel
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graph of a partial injection with disjoint domain and range, which is a difference of two closed sets,
and which has no Ag—measurable countable coloring.
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1 Introduction

In this paper, we work in products of two Polish spaces. One of our goals is to give an answer
to the following simple question. Assume that a countable union of Borel rectangles has low Borel
rank. Is there a decomposition of this union into countably many rectangles of low Borel rank? In
other words, is there a map 7:w; \ {0} —w; \ {0} such that TI N (A x A}), C (HE(O X Hg(g))g for
each { ewy\{0}?

By Theorem 3.6 in [Lo], a Borel set with open vertical sections is of the form (A% X Z?)o. This
leads to a similar problem: is there a map s : wq \ {0} — wy \ {0} such that, for each £ € w; \ {0},
112 N (AL x329), € (T x 29),2

The answer to these questions is negative:

Theorem 1.1 Let 1 < & < wy. Then there exists a partial map f:w* — w® such that the complement
—~Gr(f) of the graph of f is TIS but not (Zg x Al),.

In fact, we prove a result related to Ag—measurable countable colorings. A study of such colorings
is made in [L-Z]. It was motivated by the Gq-dichotomy (see Theorem 6.3 in [K-S-T]). More pre-
cisely, let B be a Borel binary relation having a Borel countable coloring (i.e., a Borel map c: X —w
such that ¢(z) # c(y) if (x,y) € B). Is there a relation between the Borel class of B and that of the
coloring? In other words, is there a map & :w;\{0} —w1\{0} such that any Hg binary relation having
a Borel countable coloring has in fact a Ag(g)—measurable countable coloring, for each £ € w;\{0}?
Here again, the answer is negative:

Theorem 1.2 Let 1 < & < wy. Then there exists a partial injection with disjoint domain and range
1:w” — w” whose graph is the difference of two closed sets, and has no Ag-measurable countable
coloring.

These two results are consequences of Theorem 4 in [M4] and its proof. This latter can also be
used positively, to produce examples of graphs of fixed point free partial injections having reasonable
chances to characterize the analytic binary relations without Ag—measurable countable coloring. We
will see in Section 4 that such a characterization indeed holds when £ =3, and give an example much
simpler than the one in [L-Z]. In Section 2, we give a proof of Theorem 4 in [M4], in w® instead of 2%,
and also prove some additional properties needed for the construction of our partial maps. In Section
3, we prove Theorems 1.1 and 1.2. At the end of Section 4, we show that Theorem 1.2 is optimal in
terms of descriptive complexity of the graph, and also give a positive result concerning the first two
problems in the case of finite unions of rectangles.

2 Matrai sets

Before proving our version of Theorem 4 in [M4], we need some notation, definition, and a few
basic facts. The maps with closed graph will be of particular interest for us.



Lemma 2.1 Let (X;)icy, (Yi)icw be sequences of metrizable spaces, and, for each i€ w, f;: X;—Y;
be a partial map whose graph is a closed subset of X; X Y;. Then the graph of the partial map
=y fi:llicw, Xi— ey Y is closed.

Proof. Let (27 )jcw be a sequence of elements of Il;c,, X; converging to x := (z;);c., such that
(f(xj))j@ converges to ¥ := (¥;)icw € e, Y;. Then y; = f;(x;), since Gr(f;) is closed, for each
i € w. This implies that y= f(z) and the proof is finished. O

Notation. Let X be a set and F be a family of subsets of X. Then the symbol (F) denotes the
smallest topology on X containing F.

The next two lemmas can be found in [K] (see Lemmas 13.2 and 13.3).

Lemma 2.2 Let (X,0) be a Polish space and F be a o-closed subset of X. Then the topology
op:= (0o U{F}) is Polish and F is o p-clopen.

Lemma 2.3 Let (0y,)new be a sequence of Polish topologies on X. Then the topology (| J
Polish.

new On) IS

Lemma 2.4 Let (H,)ncw be a disjoint family of sets in a zero-dimensional Polish space (X, o) and
(0n)new be a sequence of topologies on X such that

o9 = o, Hy is og-closed,
On+1={(on U{Hp}), Hpt1 is opt1-closed for every n € w.

Then the topology o= (| on) satisfies the following properties:

new
(a) 0 is zero-dimensional Polish,
(b) Ooo|X\U, e, Hn = | X\U, e, Hn
and, for every n € w,
(¢) Oco|H,, =O|H,,»

(d) H,, is 0s-clopen.

Proof. Using Lemma 2.2 we see that each topology o, is Polish. Then the topology ¢, is Polish by
Lemma 2.3. Now observe that the following claim holds.

Claim. A set G C X is 0o-open if and only if G can be written as G = G’ U (|
G', G, are c-open.

G, N H,), where

new

Note that H,, € £9(0,,11) C X9(0s) and H,, € T1Y(0,,) CTIY (0w ), thus H,, is 05 -clopen. Thus
(d) is satisfied. Let 3 be a basis for o made of o-clopen sets. Then the family

BU{GNH,|GeB N ncw}

is made of o,-clopen sets and form a basis for o, by the claim. This gives (a).

Let G € XY (o). By the claim, we find o-open sets G’, Gy, such that G=G"U(U,,c,, Gn N Hy).
Then G N (X\U,eo, Hn) =G N (X\U, e, Hn). This implies (b). Moreover, G N H, =G, N Hy,
and (c) holds. O]



Notation. The symbol 7 denotes the product topology on w®.

Definition 2.5 We say that a partial map f :w* — w* is nice if Gr(f) is a (7 x 7)-closed subset of
W Xwv.

The construction of P and 7¢, and the verification of the properties (1)¢-(3)¢ from the next lemma,
can be found in [M4], up to minor modifications.

Lemma 2.6 Let 1 < § < wy. Then there are P Cw®, and a topology T¢ on w® such that

(1)¢ T¢ is zero-dimensional perfect Polish and T C1¢ C 22(7’),

(2)¢ P¢ is a nonempty T¢-closed nowhere dense set,

(3)eif Se EE(w“’, T) is T¢-nonmeager in P, then S is T¢-nonmeager in w®,

(4)¢ if U is a nonempty T¢|p,~open subset of P, then we can find a T¢-dense G subset G of U,
and a nice (¢, T)-homeomorphism ¢ ¢ from G onto w*,

(5)¢ if V is a nonempty T¢-open subset of w®, then we can find a T¢-dense G5 subset H of V, and
a nice (¢, T)-homeomorphism ¢ p from H onto w®,

6)¢ if U is a nonem Te p -open subset of Pr and W is a nonem open subset of w*, then
(0)¢ Pty Te| p,~OP € pty op

we can find a T¢-dense G subset G of U, a T¢-dense Gs subset K of W\ Pe, and a nice (1¢,T¢)-
homeomorphism ¢ ¢ K from G onto K,

(7)¢ if V,W are nonempty 1¢-open subsets of w*, then we can find a T¢-dense G5 subset H of
V\ P, a 1¢-dense G5 subset L of W\ P, and a nice (¢, 7¢)-homeomorphism )¢ g 1, from H onto L.

Proof. We proceed by induction on &.
The case £ =1

We set P :={a€w” | Vn€w «(2n) =0} and 71 := 7. The properties (1);-(3); are clearly
satisfied.

(4); Note that (P, ) is homeomorphic to (w“, 7). As any nonempty open subset of (w*,7) is
homeomorphic to (w*, 7), (U, 71) is homeomorphic to (w*, 7). This gives ¢ 7, which is nice since
w* is closed in itself. This shows that we can take G:=U.

(5)1 As in (4); we see that (V, 1) is homeomorphic to (w*“, 7), and we can take H :=V'.

(6); Note that U is the disjoint union of a sequence (C, ). of nonempty clopen subsets of (Py, 71).
Let (U1,n)new be a partition of W'\ P; into clopen subsets of (w“, 71). As any nonempty open subset
of (P, 1) or (w*, 1) is homeomorphic to (w*, 7), we can find homeomorphisms

8003(0077'1)—)(U Uin,T1)
n>0

and ¢1: (U, Cn, 1) = (Ur,0,71). As Cp and Uy g are 7-closed, @ and ¢y are nice. This shows
that the gluing of (g and ¢; is a nice homeomorphism from (U, 1) onto (W\ Py, 71). Thus we can
take G:=U and K :=W\P;.

(7)1 As in (6); we write V' as the disjoint union of a sequence (D, )ne., of nonempty clopen subsets
of (w”,71). As the (D,,, 71)’s are homeomorphic to (w*, 71), we can take H :=V\P; and L:=W\P.



The induction step

We assume that 1 < & <w; and that the assertion holds for each ordinal 6 < £. We fix a sequence
of ordinals (§,,)necw containing each ordinal in £\ {0} infinitely many times. We set

Pg =w" X (HiEw —\P&.),

’7'§< =7x (e, 7¢,)s

Uen=w" X (Iljcp, 7 Pg,) X P, X (w)¥  (n€w).

The family {Ug ,, | n €w} is disjoint. We set o9 = T§< and 0,41 = (op U {Ugn}). Itis easy to check
that Ug ,, €I1Y(0,,). Applying Lemma 2.4 we get a topology 7¢ := 0o such that

(@) T¢ is zero-dimensional Polish,
_ <

(b) Te|p, =T P

and, for every n € w,
<

(C) Tg‘UE,n _T£ |U5’n’

(d) Ug,y, is T¢-clopen.
We defined the topology 7¢ on (w“)“ instead of w*”. However, since the spaces ((w*)“,7*) and

(w®, 7) are homeomorphic we can replace the latter space by the former one in the proof. Since there
is no danger of confusion we will write 7 instead of 7% to simplify the notation.

(1)¢ Clearly, 7 C 7¢. Note that Uy ,, € 22(7) for every n € w and ’7'£< C 22(7), so that 7¢ C 22(7).
Moreover, (w*, 7¢) is clearly perfect.

(2)¢ As Ug , is Te-clopen, P is 1¢-closed. Note that T\ p, = 7'£< P and P contains no nonempty basic
Tg—open set. This implies that P is T¢-nowhere dense.

(3)¢ Let S € 22(7) be 7¢-nonmeager in P;. We may assume that S € II)(7) for some 6 < &. As
Tép, = 7’§< P, and S has the Baire property with respect to the topology 7’§< there exists a 7’§< -open set
€

V such that S is T?—comeager in Pz N'V. Moreover, we may assume that V' has the following form:
V= ‘7 X (Hzgk ‘/Z) X (w‘”)”,

where Ver, Ve 7¢; and V; € =P, for each i <k. The set V* = V x (Mi<p Vi) x (g =P, ) is T£<-
comeager in V' since —F%, is 7¢,-comeager in w® for every icw. As Pe NV =V"*,5is 7'£< -comeager
in V*. Let p € w be such that p >k and &, > 6. Define

Tt =7 X (i 75,),
Z=VxVox: - xVixaPg X X=aPg,_ x(w),
Tﬁ:TX(HZ(p Tgi)XTX(Hi>p Tgi).

For av € w® define a set (—.5), by

(_‘S)Oz::{(g7y07y17 o 7yp—17yp+17 .. ')eww ’ (g7y07y17' . 7yp—17a7yp+17' . )G_US}



Denote S*:={a €w® | (—S), is 7*-nonmeager in Z}. Note that -5 € £)(7) C 29(7*). By the
Montgomery theorem (see 22.D in [K]), S* € X9 () C ng (7). By the Kuratowski-Ulam theorem, S*
is 7¢,-meager in —FP%,. Using the induction hypothesis, Condition (3)¢, implies that S* is 7¢ -meager
in P, . Using the Kuratowski-Ulam theorem again, we see that S is 7'§< -comeager in the T¢-open set

W=VxVyx - xVix =P, X+ x=Pe,_ X Pe, x (w*).

As W CUgp, Telw = 7-§< W by (c), and consequently S is 7¢-comeager in W. Thus S is 7¢-nonmeager

in (w*)* since W is T¢-open.
(4)¢ We first construct a 7¢-dense open subset of U, which is the disjoint union of sets of the form
U™ :=(W"x (Icp, W) x (w)*) N Pe=W"x (W, W\ Pe,)x (Wi>k, —Pe,)s

where W™ is a nonempty 7-clopen set and ;" is a nonempty 7¢,-clopen set. In order to do this, we
fix an injective 7¢-dense sequence (2 )new of U, which is possible since (P, 7¢) is nonempty and
perfect. We first choose W and the Wio’s in such a way that UY is a proper Te-clopen neighborhood
of x( in U, which is possible since T¢|p :T£< e For the induction step, we choose p,, minimal such

that zp,, ¢ J,<,, U?. Then we choose Wn+1 and the W™ '*s in such a way that U"*! is a proper
T¢-clopen neighborhood of z,,, in U\ (U U9).

q<n

There is a nice homeomorphism %, from W™ onto N,, :={a € w* | @(0) =n}. The induction
assumption gives,

- for i <ky, a 7¢;-dense G5 subset G} of W'\ P,, and a nice (7¢;, 7)-homeomorphism ¢, g of
G onto w®,

- for i > ky,, a 7¢;,-dense G subset G of =P, and a nice (7¢,, 7)-homeomorphism ¢¢; gn of GY'
onto w®.

By Lemma 2.1, the map ¢, X (Iliew ¢, g7 ) is a nice (T§<, 7)-homeomorphism from

W' x (Hiew G?)

onto Nyx(w®)®. If we set G:=|J,,¢,,
from GG onto w“. We are done since T¢|p, :’T§< P
3

(W"x(Ilie,, GT')), then we get a nice (7'§<, 7 )-homeomorphism

(5)¢ We essentially argue as in (4)¢. As P is 1¢-closed nowhere dense, we may assume that

VC-P= U Ut .-

new

We first construct a 7¢-dense open subset of V' M Ug ;,, which is the disjoint union of sets of the form
VP = WX (Iicn W "P\Pe, )X(Wr P O P, )X (1L, s WP )x(w®)*, where W™ is a nonempty

2

T-clopen set and W, is a nonempty 7¢,-clopen set. This is possible since e\, = T€<|U . We are
T &n

done since Ug j, is T¢-clopen.



(6)¢ As in (4)¢ we construct a 7¢-dense open subset of U, which is the disjoint union of sets of the
form U™ := (W™ x (I;<p,, W) % (w*)*) N Pe=W"x (jck, W\ Pe,) % (Hj>k, ~P,), where W™
is a nonempty 7-clopen set and I¥;" is a nonempty 7¢,-clopen set. Recall also that

Ug,n:w“ X (Hz<n —|P§Z) X Pgn X (w‘”)“.
We also construct a 7¢-dense open subset of 1V, which is the disjoint union of sets of the form
i =Z"x (Wi, Z7\Pe,) X (Z)) 0 P, )% (U, <i<m, Z') < (w°)* CUgy,,,

where Z" is a nonempty 7-clopen set and Z;" is a nonempty 7¢,-clopen set. Let (Wor )pew (respec-

tively, (Z%P),e,,) be a partition of W0 (respectively, Z°) into nonempty 7-clopen sets. Using the
_ < _ < : :

facts that T¢| P, =T \Pe and T¢| Uen =T Ve’ we will build

- a nice (7¢, 7¢)-homeomorphism from a dense G4 subset G%? of
UOP:=WOP x (Micr, Wi\ Pe,) X (g, Pe,)

onto a dense G5 subset KP of 7”+1. Then, using the fact that the W%P’s are 7-clopen, the gluing of
these homeomorphisms will be a nice (7¢, 7¢)-homeomorphism g from G%:={]J ., G*? CU" onto

K%:={,c, KO?CU,. 7.
- a nice homeomorphism from a dense G5 subset G'? of UP*! onto a dense G5 subset K 1P of
Z%% x Wity Z{\ Pe;) X (Z)) N Pey ) X (Wg<icmy Zi) % (w*)*. Then the gluing of these home-
GLP C Upso U? onto

pEW

omorphisms will be a nice (7¢, 7¢)-homeomorphism ¢ from G! :=
K! =Upew Kbt Cql,

pEW

The gluing of these two homeomorphisms will be a nice homeomorphism from G':=GYUG" onto
K:=K%UK"'. The set GO (respectively, K %P) will be of the form WP x (IL;¢,, G?) (respectively,
ZPT % (e, KP)). Note first that there is a homeomorphism 1, from WP onto ZP™!. Then we
build a permutation % — j; of the coordinates (with inverse g+ .J,;). This permutation is constructed
in such a way that £;, = &;, which will be possible since (&,)nc., contains each ordinal in £\ {0}
infinitely many times. If ¢ < m,; (respectively, ¢ < ko), then we choose j; > ko (respectively,
Jq > my1), ensuring injectivity. For a remaining coordinate g ¢ {0, ...,ko—1} U {j; | { <mp41},
we choose J; ¢ {0, ..., mpy1 —1} U {J; | I <ko}, ensuring that the map ¢ — J; is a bijection from
({0, ..., ko =1} U {51 | I <mps1}) onto =({0,...,mpi1 —1} U {J; | I < ko}). Then, using the
induction assumption, we build our homeomorphism coordinate by coordinate, which means that Gfi
will be homeomorphic to K7. The induction assumption gives

- for i <lp11,a 7¢; -dense G subset Gi of ~P, , a 7¢,-dense G5 subset K? of Zf’“\Pgi, and a
nice (¢, , 7¢,)-homeomorphism e, v v from G% onto K.
-aT1e, -dense Gssubset G of =P ,aTg -dense Gs subset K] of Py, ,anda
S/ Jipiq Tyt e p+1 p+1

nice (7¢, . 7¢, ., )-homeomorphism ap; kv fromGY - onto K, l’;

J 1’
p+1’ lp+l7 le+1 p+1 +



-for [, 11 <i<mpi1, aTg, -dense Gs subset G, of ~ P, , a7g,-dense G subset K} of Z TPy,
and a nice (¢, , 7¢,)-homeomorphism 'lpgi’G?i’ ke from G% onto K7.

- for ¢ < ko, a 7¢,-dense G5 subset G of WqO\qu, a 7¢, -dense G subset Kf}q of -, ,and a
nice (7, , 7¢,)-homeomorphism v, r K, from Gg onto K .

- for a remaining coordinate ¢ ¢ {0, ...,ko—1} U {j; | | <mypi1}, a ¢ -dense G subset G, of
P, a Uy -dense G5 subset K?q of —|P§Jq, and a nice (7¢,, 7¢, )-homeomorphism TIZ)&hGIq)’ K7 from
Gy onto K .

By Lemma 2.1, the product gpg of 1, with these nice homeomorphisms is a nice (T§<,’T§<)-
homeomorphism from GOP := WP x (Il;e,, GY) onto K*P := ZPT! x (Il;¢,, K7), as well as a

_ . . — < — < 0 .
(7¢, T¢)-homeomorphism since el = TE |, and Telue, ., =€ Ver ) As G" is the sum of the

GOP’s, Gisa T¢-dense G5 subset of UY. Similarly, K is a T¢-dense G5 subset of Up>0 7P. More-
over, the gluing ¢° of the pp'sisa (7¢, T¢)-homeomorphism from GY onto K.

The construction of (! is similar.
(7)¢ We argue as in (6);. ]

Lemma 2.7 Let 1 < £ < wy. Then there are disjoint families F¢, G¢ of subsets of w* and a topology
T¢ on w® such that

(a)¢ Tt is zero-dimensional perfect Polish and T CT¢ C 22(7’),

(b)¢ F¢ is Te-dense, i.e., for any nonempty T¢-open set V, there is '€ F¢ with F'CV,
and, for every F € F,

(c)¢ F is nonempty, Te-nowhere dense, and in Hg(Tg),

(d)¢ if S€ 22(7’) is Te-nonmeager in F, then S is Tg-nonmeager in w®,

(e)¢ there is a nice (T, T)-homeomorphism @ from F onto w*,

(f)e for any nonempty T¢-open sets V, V', there are disjoint G,G' € Ge with GCV, G' CV’, and
there is a nice (T, T¢ )-homeomorphism o ¢ from G onto G',

and, for every G € G,
(g)¢ G is nonempty, Te-nowhere dense, and in Hg(T 5),
(h)e if Se 22(7) is Tg-nonmeager in G, then S is T-nonmeager in w®.

Proof. Let P: and 7¢ be as in Lemma 2.6. We set T¢ = (7¢ ). Let (U, )new be a basis for the topology
T, made of nonempty sets. For each n € w, there is a finite sequence (V;");<, of nonempty 7¢-open
sets such that (IT;x,, V") x (w*)* C U,. Moreover, the sequence (ky)nc., is chosen to be strictly
increasing. Lemma 2.6 provides

- for i <k, a T¢-dense G5 subset H[' of V;*\ P¢ and a nice (7¢, 7)-homeomorphism v¢ .,
- a T¢-dense Gis subset Gy of P and a nice (7¢, 7)-homeomorphism ¢¢ g ,

- for i > k;,, a T¢-dense G5 subset H]' of w* and a nice (7¢, 7)-homeomorphism )¢ n.



We then put F,:= (<, Hj') x Gy X (Ilisg, HT'), so that Fy, CU,,. We set Fe={F), | n€w}.
Then F¢ is clearly a disjoint family and the properties (a)¢ and (b)¢ are obviously satisfied.

(c)¢ As P is Te-nowhere dense, each F, is T¢-nowhere dense. Each Fj, is obviously also in Hg(Tg).
(d)¢ Letncwand S€ 22(7) be T¢-nonmeager in F},. We define

Z =1z, HY,
TEZHi;ékn T\ Hr>
ng(Hz<kn Tg‘Hln)XTX(HZ>kn T£|Hzn)

If a € w®, then we denote

Sa::{(y07' s Ykn—15Ykp+1s - - ')eww ’ (y07' o Yk, -1, Yk 41, - - )GS}

We set S* = {a € w* | Sy is T{-nonmeager}. By the Montgomery theorem, S* € 22(7’) since
S € Eg(fg). The set S is 7¢-nonmeager in GJ; by the Kuratowski-Ulam theorem, in P also,

and thus S* is 7¢-nonmeager in w*. Using the Kuratowski-Ulam theorem again, we see that S is
Te-nonmeager in (I, H) xw* x (Il;>y, H'), and thus in (w*)~.

(6)5 We set Yp= (Hi<kn ¢§7H?) X SO&GZ” X (Hi>kn ’l/)&HZL). The map g is clearly a (Tg, T)—homeo—
morphism from F onto (w*)“. It is nice by Lemma 2.1.

We now construct G¢. For each m € w, there are finite sequences (V;™)i<k,,, (W/")i<i,, of

nonempty 7¢-open sets such that (I, V™) x (w*)* C Uy, and (i<, W) x (w*)“ CU(p), -
Moreover, the sequences (K, )mew and (1, )me. are chosen to be strictly increasing and disjoint.
Assume for example that k,,, <I,,,. Lemma 2.6 provides

- for i < kyy, a T¢-dense G5 subset H™ of V™ \ P, a 7¢-dense G's subset L of W™\ P, and a
nice (7¢, 7¢)-homeomorphism ¢ gm 1m,

- a T¢-dense G subset G of P, a 7¢-dense G subset K} of W™\ P, and a nice (7¢, 7¢)-
homeomorphism ‘~P£,G2” K

- for ky, <@ <lp, a 1¢-dense G5 subset Hi™ of =P, a ¢-dense G5 subset L] of W™\ P, and a
nice (¢, 7¢)-homeomorphism ¢ g 1,

- a Te-dense G5 subset K" of =P, a 7¢-dense Gy subset G of P, and a nice (Te,T¢)-

. ~1

homeomorphism LP&G%? K

- for i > I,,,, a T¢-dense G5 subset H™ of =P, a 7¢-dense G subset L;" of =P, and a nice
(7¢, 7¢)-homeomorphism ¢ gm pm.

We then put

by =ik, H?) X G < (U, <ict, HY) X K" x (Wi, H),
G =, L:“) X Kg:n X (Hkm<i<lm L:“) X G;:L X (Hi>lm le),

so that F, X G C Uy, X Uy, - We set Ge ={Fy, | mew} U{Gp, | mew}. Then G is clearly a
disjoint family.



(f)¢ The map ¢ ,, is by definition

—1
(Wicky, Ve am L) ¥ oy g X (W <ict, Ve 1) X g am gem X (Wist,, Ye e ).

Note that 5 ¢, is clearly a (T, T¢ )-homeomorphism from F}, onto Gy,. It is nice by Lemma 2.1.
()¢ We argue as in (c)¢.

(h)e We argue as in (d);. O]

3 Negative results

Proof of Theorem 1.1. We apply Lemma 2.7 to the ordinal £+ 1, which gives a family F¢; and a
topology T satisfying (a)¢q1-(€)¢y1. Let (Up x Vi )new be a sequence of nonempty sets such that

- U, €141, Vi is T-Clopen,
-{U, xV,, | n€w} is a basis for the topology T¢ ;1 X 7.

For each n e w we find F;, € Fe \{ Fy; | ¢<n} with F;, CU,. By the property (e)¢1 of F¢4q we find,
for each n € w, a nice (T¢41, 7)-homeomorphism f,, from F;, onto V,,. We define f:|J,,c,, Fn —w"
by f(z):= fy(x)if € F,,. As F¢yq is adisjoint family, f is well-defined. The graph of f is £3(7x7)
since each Gr( f,,) is (7 x 7)-closed.

Suppose, towards a contradiction, that there exist, for n € w, C;, € () and D,, € Aj(7) such
that =Gr(f)=U,,c., Cn X Dy,. By the Baire category theorem there is ng € w such that Cy,, is T¢ ;-
nonmeager and D,,, is T-nonmeager. As Cp,, has the Baire property, we find a nonempty T¢_1-open
set O1 such that Cy, is T¢1-comeager in O;. Similarly, we find a 7-open set O3 such that D, is
T-comeager in Oy.

Let n € w and F,, C O;. Suppose that Cy,, is not T¢ j-comeager in F},. Then O\ Cy,, is T¢i1-
nonmeager in F},. Note that O; € ZgH(T) and Cy, € 22(7). Therefore O\ Cy,, € Engl(T). Thus
O1\Cy, is T¢1-nonmeager in w* by (d)¢;1. Consequently, O1\ Cy,, is T¢1i-nonmeager in Oy, a

contradiction. Thus (), is T¢1-comeager in F;, for any n € w with F, COj.

Find n € w such that Gr( f,,) C O1xO,. Then C,,, is T¢1-comeager in F), and D, is T-comeager
in V,,. As f,, is a homeomorphism, f,,1(V;, N Dy, ) is T¢1-comeager in F,,. As F,, €IIJ(T¢ 1) there
exists a € £, 1(V,, N Dy, ) N F, N G, This implies that (a, fn(oz)) € Cpy X Dy, a contradiction. [

Proof of Theorem 1.2. Apply Lemma 2.7 to the ordinal £ + 1, which gives a family G¢; and a

topology T¢ 1 satisfying (a)¢41-(h)eq1. Let i = {U,, | n € w} be a basis for the space (w*, Tz 1)
made of nonempty sets. For each n €w we find T¢ 1-open sets V;,, W,, such that

Vo X Wy € Broer (A(w®),277) N (Up, x Up)\A(w*)

(we use the standard metric on (w*, 7)).
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By the properties ()¢ and (g)¢11 of Gey1 we find, for each n € w, sets F, and H,, from G¢ 4
such that
() FCVa\( FUH) A H,CW\(F 0 (| FuH).
j<n j<n

Moreover, there is a nice (T§+1, T§+1)—homeomorphism fn from F}, onto H,,. We set

G=| J{Gr(fn) | new}.

Now we check the desired properties.

AsTCTe iy, G " =GUA(w®), by construction. Thus G is a difference of two (7x7)-closed sets.
As each f, is a homeomorphism, the property () implies that f is a partial injection with disjoint
domain and range. In order to see that G has no Ag—measurable countable coloring, we proceed by
contradiction. Suppose that there are G-discrete sets C), € Ag(T) (a set C is G-discrete if C>NG =10),
for n € w, such that A(w”) C U, e, C2. By the Baire theorem there exists ng € w such that C,,

n
is T¢ 1 1-nonmeager. As Cp,, has the Baire property, we find a nonempty T¢-open set O such that

Cho N O is Tg-comeager in O.

Let F' € Geyq with FF C O. Suppose that Cy,, is not T¢i-comeager in F. Then O\ Cy, is

T¢,1-nonmeager in F. Note that O € 32, (1) and Cp, € A(7). Therefore O\ Cy, € B¢ (7).

Thus O\ C,,, is T¢41-nonmeager in w* by (h)¢y1. Consequently, O\ Cy,, is T¢;1-nonmeager in O, a
contradiction. Thus C,, is T¢41-comeager in F' for any F'€ G¢ 1 with FCO.

Find n € w such that Gr(f,,) € O% Then C,,, is T¢y1-comeager in Fj, and in H,. As f, is a
homeomorphism, f,,*(H,, N Ch,) is T¢1-comeager in F,, € II(T¢1). Thus there exists

€ frr Y (H, N Cry) N FyNCyy.

This implies that («, f()) € C,, a contradiction. O

4 Positive results
(A) Ag-measurable countable colorings
In [L-Z], the following conjecture is made.

Conjecture Ler 1 <& <wj. Then there are
- a O-dimensional Polish space X,
- an analytic relation A¢ on X

such that for any (0-dimensional if £ = 1) Polish space X, and for any analytic relation A on X,
exactly one of the following holds:

(a) there is a Ag-measurable countable coloring of A (i.e., a Ag-measumble map c¢: X —w such
that AC (cxc)~Y(#)),

(b) there is a continuous map f:X¢— X such that Ag C(f x f)~1(A).

11



This would be a Ag-measurable version of the Gg-dichotomy in [K-S-T]. This conjecture is
proved for £ <3 in [L-Z]. Our goals here are the following. We want to give

- areasonable candidate for A in the general case,

- an example for £ =3 that is much simpler than the one in [L-Z].
We set H8 = A?. The following result is proved in [M4] (see Theorem 4 and Lemma 13.(i)).

Theorem 4.1 (Mdtrai) Let 1 <& <wy. There are a true Hg subset P¢ of 2, and a Polish topology ¢
on 2% such that

(1)¢ ¢ is finer than the usual topology T' on 2,
(2)¢ Pt is ¢-closed and T¢-nowhere dense,

(3)¢ if G is a basic T¢-open set meeting Py, and D € Hgg(Qw, ') is such that D N P: N G is
comeager in (P: NG, T§|P§mG)’ then there is a T¢-open set G' such that PeNG'=P: NG and DN G’

is comeager in (G', Tg‘G/).

Notation. In the sequel 1 <& <wy. Fix, for each &, an increasing sequence (7, )ne., of elements of £
(different from 0 if £ >2) such that sup,, ., (7, +1)=&.

e Let < .,. >:w? — w be a bijection, defined for example by < n,p >:= (Sg<pyp k) +p, whose
inverse bijection is ¢— ((¢)o, (¢)1).

o If u €25 and n €w, then we define (u),, €25% by (u),(p):=u(< n,p >)if < n,p ><|ul.

e Let (¢,,)new be a dense sequence in w<* with |¢,| =n. For example, let (p;,)ncw be the sequence of

prime numbers, and [ :w<“ —w defined by I(0)):=1, and I(s) ::;D(S](O)H...pfs(l‘i_l)Jrl if s (). Note

that I is one-to-one, so that there is an increasing bijection : I [w<“] —w. Set 1 := (iol) "1 1w —w<¥,
so that ¢ is a bijection. Note that |1)(n)|<n if n € w. Indeed,

I(4(n)]0) <I(¢(n)1) <..<I(3(n)),

so that (bo I)(¢(n)]0) < (boI)(¢(n)|1) <...<(boI)(1(n)) =n. As [¢(n)| <n, we can define
ty:=1(n)0" 1M and (t,,)new is suitable.

e Theorem 4.1 gives P¢ and 7¢. Let Q¢ :=2X P, T :=discrete X 7¢, and T£< =Iliee T, if €>2.
o (We n)new is a sequence of nonempty 7¢-open sets.

0 Si:=Qn UlU,cw Whin (foricw), and S:=1l;e, S;, so that S € Hg(Tg) is a Polish space.

o If £>2, then we set

Kei=Upew {(008)€29x27 | (Vi<n (a)i=(8)i€ Wy 1)) A

(3P, (@) (Bn) =(0717) A (Yi>n (a)i=(8):) },

12



—_— T,
Lemma 4.2 Let 2 < £ < wy. We assume that Q,, C UnEW Waim " for each i € w. Then any
Ke-discrete Zg subset C of (S,7') is T£< -meager in S.

Proof. We may assume that C' is Hg ¢- We argue by contradiction. This gives n € w with C' € Hon, a
basic T£<—open set O such that C N O is T£<-comeager inONS#0,1>n,and a sequence (O;);<;
with O; € T}, and O={a€2¥ | Vi<l («); € O;}. The assumption gives, for each i <[, n; € w such
that O; N W, 5., #0. Let m > 1 such that ¢, (i) =n; for each i <1, and

U= {aeS Vi<l (@)i€0; A Vi<m (a)ie Wm,tm(i)},
which is a nonempty T§< -open subset of S. In particular, C' N U is T§< -comeager in U. We set
V= {(ai)#m ETizm S | Vi<l a; €0; AN Vi<m oy € Wm,tm(i)},
so that, up to a permutation of coordinates, U = 5,,, x V. We also set
C'= {aESm | (CN (S xV)),, is Tizm Tp,-comeager in V}.

By the Kuratowski-Ulam theorem, C”’ is T;,,,-comeager in S, (see 8.41 in [K]). Write C'=D N S,
where D € Hgn (2¢). Note that C":=S,,, N {a €29 (Dn(2¥x V))a is it Ty,-comeager in V}.

As m>n and w4y, Ty, is finer than the usual topology, D N (29X V) eIL) (2,7 X (Tizm Ty )v)-
By the Montgomery theorem, C” is Hgm (Sm,T') (see 22.22 in [K]).

The set C’ cannot be T}, -comeager in Q,,,, NNy and Q,,,, NN;. Indeed, we argue by contradiction
to see that. We set ho(a) :=< 1—-a(0), a(1), (2), ... >. As ho|q,, NN, 18 a T}, -homeomorphism,
c'n hO\_anmnNo(Cl N Qn,. N N1) is T, -comeager in Qy,, N No, and if 0y is in it, then 1y € C’,
which gives § € (C N U)o, N (C NU)1 and contradicts the K¢-discreteness of C.

Assume for example that C” is not T, , -comeager in Q,,, N No. Then —=C" is T},  -non meager in
Q- As C'is I (S,,,7'), there is a sequence (Cj)je,, of TIZ, (2) sets such that

Sm\C'={J C;n S
JEW
This gives j € w such that C; N Qy,, is Ty, -non meager in @, and a basic T}, -open set O such
that C; N @y, N O is T),  -comeager in @, N O#{.

The set O is of the form {e} x G, where € € 2 and G is a basic 7,,,-open set. Let S : N, — 2
be the map defined by S(cc) := a. Note that S is a 7/-7" and T¢-7¢ homeomorphism. In particular,
E:={ae2¥|eaecC}is7-N%, and EN P, NG is comeager in (P, N G,Tnm|anmG).
Theorem 4.1.(3) gives a 7, -open set G’ such that P, NG'=P, NG and EN G’ is comeager in
(G Ty cr)- Now O":={e}xG" is aT;,, -open set such that Q,,, N0’ =Q,,,. NO and C;NO" is Ty, -
comeager in O’. The assumption gives n € w such that W,, ., N O’#0. Note that C; " W, , N O’
is Ty, -comeager in W, , N O, so that =C" is Ty, -non meager in S,,,, which is absurd. O
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Corollary 4.3 Let 2<{ <w;. We assume that Q,,, CJ,,c,, Wni’nTni for each i €w. Then

(a) there is no Ag-measurable map c:2* —w such that K¢ C (cxc)"H(#),

(b) if X¢ € TIY(2¥) and K¢ C Xg, then there is no Ag-measurable map c: X¢ — w such that
Ke C (cx ) 1(#).
Proof. (a) We just have to apply Lemma 4.2.

(b) We argue by contradiction. This gives a partition (C)re., of X¢ into Ke-discrete Ag(Xg) sets.
We set Dy := 2“\ X¢, and choose Dy € 22(2“) such that Cj, = Dy 1 N X¢. Then (Dy)pew is a
covering of 2 into K¢-discrete 22 sets. It remains to apply the reduction property of the class Zg to
contradict (a). O]

The case £ =2
Example. Let a— o* be the shift map on 2*: a*(j):=«a(j+1). Then we set
Avi=U,c, {(a,ﬁ)ezw x2 | (Vi<n (a);=(8)i A 0D1C(a)F) A
((@)ns (B)n) = (0,10%) A (Vi>n (a);=(8):) }-
Theorem 4.4 (2, Ay) satisfies the conjecture.

Proof. We set P; :={0°°} and 7 :=7’, so that P, and 7; satisfy the properties of Theorem 4.1. We
also set Wy p, := Ngn+17 UN1gn1, so that (W7 ,,)ne. is a sequence of nonempty 77 -open sets satisfying
the assumption of Corollary 4.3, so that Ay = Ko satisfies its conclusions. In particular, (a) and (b)
cannot hold simultaneously.

We define, for (g,n) € 2xw, K5 :={a €2¥ | Vi<n 001 C (a)f A (),(0) = ¢},
and also C¢ := K5\ (U<, Kp U K}), so that C is closed, the CS’s are pairwise disjoint, and
A2 CU,cn CY9% CL. We set, for each p, g €w,

Kg\(Un<k§q K)UK})if p=2n+e<2q+1,
Og:: 2w\(Up’§2q+1 Og ) 1fp:2q+29
(0 if p>2q+3,

so that (Of)pe is a covering of 2 into clopen sets. Assume that p=2n-+¢e #p' =2n'+¢' <2¢+1

and a€ Ol N Of;,, so thatn,n’ <q. Asa€ KEN K:;I/ n#n’ and for example n <n/, which is absurd.
Thus (OF) e is a partition of 2.

(a) Assume that ¢ <n. Note that CQUC!! is contained in or disjoint from each set of the form K| with
k < q. By disjonction, there is at most one couple (¢, ') such that 2r+¢ <2¢+1 and COUC} C Og”“f .

If it does not exist, then C0 U CL C 0272,
(b) Assume that ¢ >n. Note that C; C K. As ¢>n, p:=2n+ec<2¢+1. Thus C} C Og.

It remains to apply Proposition 4.6 in [L-Z] to see that (a) or (b) holds. U
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The case £ =3

Example. Let (s,,)nc., be a dense sequence in 2<¢ with |s,,| =n. For example, let ¢:w — 2<“ be a
natural bijection. More specifically, ¢(0):=1) is the sequence of length 0, ¢(1):=0, ¢(2):=1 are the
sequences of length 1, and so on. Note that |¢(n)| <nif n €w. Let n €w. As |¢(n)| <n, we can
define s,,:= ¢(n)0"~ V(I We set Py:={a €2 | V¥pcw J¢>p alq)=1}, and

Az:=Upe., {(a,ﬁ)€2wx2w | (Vi<n (a)i=(8)i=s4,(;10°) A

(3r€Ps (@) (B)n) =(07,17)) A Vi>n (a);=(8); }.

We will see that A3, together with a suitable IT) subset X3 of 2, satisfies the conjecture. The topology
75 makes the countably many singletons of =P, open. Then P is a true ITJ subset of 2% (see 23.A
in [K]), 7 is Polish finer than 7/, P, is closed nowhere dense for 7 since 7 coincides with 7/ on P,
and P, is 7'-dense, and 4.1.(3) is satisfied since a basic To-open set meeting P is a basic 7/-clopen
set and P is 7/-comeager. Thus P and 75 satisfy the properties of Theorem 4.1. We set

Wa 5 :={5,10>}.

Then Q2 C U, ¢, WZHTQ since (Sp )new is dense. This shows that Az =Kj satisfies the conclusions
of Corollary 4.3. In particular, (a) and (b) cannot hold simultaneously. In order to prove that (a) or
(b) holds, we simply indicate the modifications to make to Section 5 in [L-Z]. We just need to prove
the right lemmas since the final construction is the same.

Lemma 4.5 (a) Let n€w and i <n. Then t,,(i) <n—i.
(b) The map M :{s;, 10 [ n€w A i<n}—w, defined by M(a):=max{pew | a(p)=1}, is
one-to-one.

Proof. (a) Recall the map 1) defined after Theorem 4.1. It is enough to prove that ¢(n)(i) <n—1
if ¢ < |¢)(n)|. We argue by induction on n, and the result is clear for n = 0. We may assume that
1 (n)(i) = q+1 for some natural number q. We define t € w<* by t(i) := ¢, and t(j) :=1(n)(j) if
j#i. Let p€w with ¢(p) =t. Note that I (¢(p)) <I(1(n)), so that p<n. The induction assumption
implies that =1 (p)(i) <p—i, so that Y)(n)(i)=q¢+1<p—i<n—i.

(b) Assume that M(a) = M(a). Let n,n’,4,7" with a = 54,10 and o = s, ,(;)10°. Then
tn(i) =15y, @) |=M(a) =M (') =t (i), so that a =/, O

Notation. If () £ v € 2<%, then v :=u|(|u|—1).
The following notion is technical but crucial.

Definition 4.6 We say that v € 2<% is placed if

(a) u#0,
(b) Vi< (’um’)o (u)l gst(‘um‘)o(i)low,
(c) u(|u™[)=1if (ju™[)1>0.
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We are now ready to define
X3:={a€2” |Vnew Ip>n alpis placed}.
Note that X3 is a TIJ subset of 2. In particular, X3 is a O-dimensional Polish space.

Lemma 4.7 (a) The set Ag is a 2% (and thus analytic) relation on Xs.
(0) (X5,A3) Zag (w, ~A(w)).

Proof. (a) Ag is clearly a 2% relation on 2%. So it is enough to see that it is a relation on X3. Fix
(a, B) € A (which defines a natural number 7). Choose an infinite sequence (pg)re., Of natural
numbers such that (), (px) = (8)n(px) = 1. Then a|(< n,pr > +1) and B|(< n,py > +1) are
placed, so that o, 5 € X3.

(b) This comes from Corollary 4.3. ]

Lemma 4.8 Let n € w, a €2 such that (a); = sy,,(;)10%° for each i <n, and p >< n,0 > such that
alp is placed. Then (p—1)¢>n.

Proof. We argue by contradiction. As p—1>< n,0 >, (p—1)o+(p—1)1 > n+0=mn. Thus
(p—1)1 >n—(p—1)o>0. As a|p is placed, a(p—1)=1. But

a(p—1)=a(< (p—1)o, (p—1)1 >) = (@) 1), (P—=1)1) = (8, ((p-1)0)10°) ((p—1)1).
By Lemma 4.5.(a), we get (p—1); <n—(p—1)o, which is absurd. O

Definition 4.9 Let u€2<“ and | € w.

(a) If u is placed, then we will consider
e the natural number l(u) := (|u™|)o
o the sequence u!™ € 21"\ {u} defined by u'™) (m):=wu(m) exactly when m#< 1(u),0 >. Note that
u!™ s placed, 1(u!™)=1(u) and (u!W)®) =y
o the digit e(u):=u(< I(u),0 >). Note that ¢(u!™)=1—¢(u).

(b) We say that u is l-placed if u is placed and l(u) = 1. We say that u is (< 1)-placed (resp.,
(<1)-placed, (>1)-placed) if there is I <l (resp., I <, I >1) such that w is I'-placed.

When we consider the finite approximations of an element of A3, we have to guess the natural
number n. We usually make some mistakes. In this case, we have to be able to come back to an
earlier position. This is the role of the following predecessors.

Notation. Let u € 2<%, Note that < n > is 0-placed with (< n >) =17 if n € 2. This allows us to

define
u_:{ 0if Ju| <1,
" | ulmax{l<|u| | u|l is placed} if |u| >2,
and, for [ e w,
ul._{ 0if u| <1,
" umax{k < |u| | ulk is (<1)-placed} if |u|>2.

The following key lemma explains the relation between these predecessors and the placed sequences.
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Lemma 4.10 Let | €w and u € 2<% be l-placed with |u| > 2.

(a) Assume that u™ is l-placed. Then e(u™) = e(u). If moreover (u')~ is I-placed, then the
equality (u')~ = (u™)" holds.

(b) u=! is I-placed if and only if (u')~ is I-placed. In this case, e(u™") = e(u) and the equality
(u) =t = (u= holds.

(c) Assume that u™ or (u!)~ is (<1)-placed. Then v~ =u~"'=(u')~ = (u')~".

(d) Assume that u~ or (u')™ is (> 1)-placed. Then exactly one of those two sequences is (> 1)-
placed, and the other one is I-placed. If u™ (resp., (u')~) is (>1)-placed, then u="' = ((ul)*)l (resp.,
ul'=u")and e(u~') =e(u) (resp., e((u') ") =e(u')).

Proof. We first prove the following claim:

Claim. (i) Assume that (|u™|)1 =0. Then v~ =u~'= (u!)~ = (u}) "V is (<1)-placed.
(ii) Assume that (|u™|)y > 0. Then u™ (resp., u™!) is (>1)-placed and there is jo (resp., j1) with
u”=ul(< I(u),jo >+1) (resp., vl =u|(< 1,51 >+1)).

Proof. (i) Note that [ > 1 since |u| > 2. As (|u™|); =0, |[u™| =< (|u™])o, (|[u™|)1 >=< (u),0 >
and the sequence u~ is (< [)-placed, which implies that v~ =u "' = (u!)~ = (u!)~".

(ii) The last assertion about jy and j; comes from the first one. It is enough to see that u~ is (>1)-
placed since the proof for u ! is similar. We argue by contradiction. Then u|(< 1,0 >+1) is I-placed
and ul(< 1,0 > +1) Sul(< I, (Ju™|)1 > +1) Cu, so that u|(< 1,0 >+1) S u~. This implies that
I+0<l(u")+(Ju" |— )1, (Ju™|=1)1>1—1(u")>0and u™ (Ju~ |— )=1. But

u(lu”[=1) = (< I(u"), (Ju"[=1h >)= (<10L) (lu™[=1)1 >)
= (W) (™= 1)1) = (s, 1(u 20%) ((Ju™[=1)1)-
Lemma 4.5.(a) implies that (|u~|—1); <!—I(u"), which is absurd. o

(a) By the claim, (|u™]); > 0. Therefore u[(< 1,0 >+41) Su|(< I, (|u™])1 > +1) Cu is [-placed,
ul(< 1,0 >+1)Cu~ and < 1,0 ><|u"|. Thus e(u™)=(u")(< 1,0 >)=u(< 1,0 >)=¢(u).

Assume now that (u')~ is I-placed. As u|(< 1,0 >+1) Cu~ Su, we get

(ul(< 1,0 >+1)) C(u}) .

Thus < 1,0 >< |[(u)~|. Ifu~™ =u|(< I,jo > +1), then there is no jo < j < (|u™|)1 such that
u(< 1,5 >)=1,and (u')”=u'[(< 1, jo >+1)=(u")".
(b) Assume that ! is I-placed. By the claim, we get (Ju™|); >0 and j; with

u_l:u‘(< L1 >+1)

Thus (u)~' =u!|(< 1,51 >+1) = (u~")! is I-placed, by Lemma 4.8. The equivalence comes from
the fact that (u')! =u. We argue as in (a) to see that e(u™") =¢(u) if u~" is I-placed.
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(c) Assume first that = is (< [)-placed. Then (|u"|); = 0, by the claim, (ii). Now the claim, (i),
gives the result. If (u!)~ is (< 1)-placed, then we apply this to u', using the facts that u! is [-placed
and (u!)! =u.

(d) Assume first that = is (> [)-placed. The claim, (i), implies that (|u™|); > 0, and the claim,
(i), gives j; with u=' = u|(< 1,51 > +1). Note that u~! Su, (u) C St, 7)([)1000 and
M(stl(u_)(l)looo) <l(u~)—I, by Lemma 4.5.(a). Thus

< l,M(stl(ui)(l)l()oo) ><<(u™),0 ><<l(u"),(Ju"|—1)1 >=u"|—-1
and (u‘)l(M(stl( 7)(1)1000)) is defined. This shows that j; :M(stl( 7)(1)1000).

Note that u'|(< 1,51 > +1) C (u!)~. The claim, (ii), shows that (u!)~! = u!|(< 1,5, > +1).
We argue by contradiction to see that (u')~ is not (> [)-placed. The proof of the previous point
shows that j; :M(stl(( l)_)(1)10°°). Lemma 4.5.(b) shows that St 7)(1)1000 =5t l)_)(l)10°°. Thus

(W ™)u(0)=(s1,,,_, 010°)(0)=(s¢,, ,, -, ) 10)(0) = ((u')7),(0),

e(w)=u(< 1,0 >)=(u)(0)= (u" )i(0) = ((u')"),(0) =< (u'),

which is absurd. This shows that (u!)™ =u!|(< [,5; >+1) = (v~ is I-placed, by Lemma 4.8, so
that u=! = ((ul)_)l. Moreover, £(u™") = (u"") (< 1,0 >)=u(< 1,0 >)=¢(u).

Assume now that (u')~ is (>1)-placed. As u! is I-placed and (u')! = u, the previous arguments
show that v~ is I-placed. In particular, ' =u"". O

Theorem 4.11 (X3, A3) satisfies the conjecture.

Proof. We already noticed that it is enough to see that (a) or (b) holds. In Condition (5) in the proof of
Theorem 5.1 in [L-Z], v~ should be replaced with u ("), We need to check that the map f defined
there satisfies Az C (f x f)71(A). So let (o, 3) € Az, which defines n. Let (p;);e. be the infinite
strictly increasing sequence of natural numbers p; > 1 such that (p; —1)o = n, (pj —1); > 0 and
a(pj—1)=1. In particular, «|p; is n-placed and e(c|p;) = 0. Note that (p;) ;e is also the infinite
strictly increasing sequence of natural numbers p; > 1 such that (p; —1)g =n, (pj —1)1 > 0 and
B(pj—1)=1 on one side, and a subsequence of both (p¢)xec., and (pg) kew on the other side.

If moreover p > pg and «|p is placed, then I(«|p) > n, by Lemma 4.8. In particular, if p > py and
alp is (< n)-placed, then ap is n-placed. This proves that (p;);c,, is the infinite strictly increasing
sequence of integers p; > pg such that a|p; is (<n)-placed. Therefore (a|pji1)™" =a|p;.

By Condition (3), (Ua‘pj )jcw is anon-increasing sequence of nonempty clopen subsets of AN y2
whose GH-diameter tend to 0. So we can define F'(a, ) € A by {F(a, 8)}:=( ¢, Uap,- Note that

F(o, f)=1lim;_,5 (ma‘pj,xmpj) = (f(a), f(ﬂ)) € A, sothat A3 C (f x f)~1(A).

It remains, when k> 2 (second case), to replace [ — 1 with [(u ™). O
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The general case

Here we just give, for each i € w, a sequence (W), »,)ne. of nonempty 7;,-open sets such that

Qn; CUnecw Wasm - This will imply that K¢ has no Ag-measurable countable coloring, by Corol-
lary 4.3. We assume that £ >4, so that we may assume that 7; > 3. If n=sup,,,, (f,+1) > 2, then we
set Vyni={a€2¥ | Vi<n (a)i¢ Py, N (a)n € Py, }. We set, for n>3,

Wiyni={a€2” | a(0)=s,41(0) A (a*)n€Py, A Vi<n (a*);€ U Voij}-
JI<n—u
Matrai’s construction ensures that V;, ;, is 7,-open, and that W), ,, is a nonempty 7;-open set. Let O
be a basic T;-open set meeting (),,. As T;, = discrete X 7;, and Tnip, = (Iew 7-91,)| p,» we can find
e€2and (O;)ic; € Ticy Tp, such that O ={a € 2¥ | a(0) =¢ A Vi<l (a*); € O;}. As Py,
is 7p,-closed nowhere dense and —Fp, = Unew Vo, n» we can find n; such that O; meets Vjp, ,,. We
choose n>max;<; (n;+1%) such that s,,1(0)=e. Then W, ,, meets O.

Our motivation to introduce these examples is that they induce a set K3 satisfying the conjecture.
This is the reason why we think that they are reasonable candidates for the general case.

(B) The small classes

In Section 3, we met Do (TI) graphs of fixed point free partial injections with a Borel countable
(2-)coloring, but without Ag—measurable countable coloring. Their complement are Do (TI)) sets in
(A} xX9),, but not in (B x B2),. However, a positive result holds for the simpler classes, which
shows some optimality in our results.

Proposition 4.12 Let I' C DQ(H?) be a Wadge class (in zero-dimensional spaces), and A be a set in
LN (AIx X)), (resp., (Al x Al),). Then Ac(TxXY), (resp., (TxT),).

Proof. Let us do it for (Al x £9),, the other case being similar. The result is clear for {§}, {f}, A9,
S0 I T =119, then we can write A=J,,c,, Cn X Dy, with C;, € Al and D, € Y. We just have to
note that A=, ,, CrxDy. HT=TI{® X, then we can write A={J,,.,, CnxDp=(CND)U(O\D),
with Cy, € A}, =C,0,D,-D, D, € &Y. Note that A= (D N{J,,c,, Cnx Dy) U (O\D). Finally, if
T = Dy(I1Y), then write A={J,..., C,, x D,, =C N O, with C,, € AL, =C, 0, D,, € Y. Note that

~ new
A=0nyY C, xD,,. O

new
(C) The finite case

Proposition 4.13 Assume that I is closed under finite intersections and continuous pre-images, X,Y
are topological spaces, k is finite, and A€ (X xXY) is the union of k rectangles. Then A is the union
of at most 2" rectangles whose sides are in T.

Proof. Assume that A=, _,.
A= U (1) A= (U Bu).
1SR (Nner An\(Npgr An)#0  nel nel

Solet (z,y) €A, andlet I:={n<r [z € Ap}. Then z € ((,c; 4n)\(MNngs An), and (z,y) is in
(Mner An)x(Uper Bn) since (z,y) € A, x By, for some n < . The other inclusion is clear.

A, X B,. Let us prove that
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Assume now that @ € ((V,c; An)\(Nngs An)- Then U,e; B = Az = f71(A), where the
formula f(y) :=(x,y) defines f:Y — X xY continuous. This shows that | J _, B, isin I'. So we
proved the following:

nel

A is the union of at most 2* rectangles A/, x B}, where A/, is a finite intersection of some of the
A,’s, and B, is a finite union of some of the B,,’s which is in T

Applying this again, we see that A is the union of at most 22" rectangles A” x B!, where A” is
a finite union of some of the A/,’s which is in I, and B/ is a finite intersection of some of the B},’s.
We are done since I' is closed under finite intersections. O

This proof also shows the following result:

Proposition 4.14 Assume that T is closed under continuous pre-images, X,Y are topological spa-
ces, k is finite, and A€ T'(X xY') is the union of k rectangles of the form 2X x Z(Y). Then A is the
union of at most 22" rectangles of the form T'(X)x Z{(Y).

Remarks. (1) For colorings, Theorem 1.2 gives, for each &, a Do(T19) binary relation with a Borel
finite (2-)coloring, but with no Ag—measurable finite coloring.

(2) 0 has a l-coloring. An open binary relation having a finite coloring ¢ has also a Do(T19)-
measurable finite coloring (consider the differences of the ¢=1({n})’s, for n in the range of the
coloring). This leads to the following question:

Question. Can we build, for each ¢, a closed binary relation with a Borel finite coloring but no Ag—
measurable finite coloring?
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