Dominique Lecomte 
email: dominique.lecomte@upmc.fr
  
Miroslav Zeleny 
email: zeleny@karlin.mff.cuni.cz
  
  
  
  
Descriptive complexity of countable unions of Borel rectangles

Keywords: 2010 Mathematics Subject Classification. Primary: 03E15, Secondary: 54H05 Borel chromatic number, Borel class, coloring, product, rectangle

We give, for each countable ordinal ξ ≥ 1, an example of a ∆ 0 2 countable union of Borel rectangles that cannot be decomposed into countably many Π 0 ξ rectangles. In fact, we provide a graph of a partial injection with disjoint domain and range, which is a difference of two closed sets, and which has no ∆ 0 ξ -measurable countable coloring.

Introduction

In this paper, we work in products of two Polish spaces. One of our goals is to give an answer to the following simple question. Assume that a countable union of Borel rectangles has low Borel rank. Is there a decomposition of this union into countably many rectangles of low Borel rank? In other words, is there a map r : ω 1 \{0} → ω 1 \{0} such that Π 0 ξ ∩ (∆ 1 1 ×∆ 1 1 ) σ ⊆ (Π 0 r(ξ) ×Π 0 r(ξ) ) σ for each ξ ∈ ω 1 \{0}? By Theorem 3.6 in [Lo], a Borel set with open vertical sections is of the form (∆ 1 1 ×Σ 0 1 ) σ . This leads to a similar problem: is there a map s : ω 1 \ {0} → ω 1 \ {0} such that, for each ξ ∈ ω 1 \ {0}, Π 0 ξ ∩ (∆ 1 1 ×Σ 0 1 ) σ ⊆ (Π 0 s(ξ) ×Σ 0 1 ) σ ?

The answer to these questions is negative:

Theorem 1.1 Let 1 ≤ ξ < ω 1 .
Then there exists a partial map f : ω ω → ω ω such that the complement ¬Gr(f ) of the graph of f is Π 0 2 but not (Σ 0 ξ ×∆ 1 1 ) σ .

In fact, we prove a result related to ∆ 0 ξ -measurable countable colorings. A study of such colorings is made in [L-Z]. It was motivated by the G 0 -dichotomy (see Theorem 6.3 in [K-S-T]). More precisely, let B be a Borel binary relation having a Borel countable coloring (i.e., a Borel map c : X → ω such that c(x) = c(y) if (x, y) ∈ B). Is there a relation between the Borel class of B and that of the coloring? In other words, is there a map k : ω 1 \{0} → ω 1 \{0} such that any Π 0 ξ binary relation having a Borel countable coloring has in fact a ∆ 0 k(ξ) -measurable countable coloring, for each ξ ∈ ω 1 \{0}? Here again, the answer is negative: Theorem 1.2 Let 1 ≤ ξ < ω 1 . Then there exists a partial injection with disjoint domain and range i : ω ω → ω ω whose graph is the difference of two closed sets, and has no ∆ 0 ξ -measurable countable coloring.

These two results are consequences of Theorem 4 in [Má] and its proof. This latter can also be used positively, to produce examples of graphs of fixed point free partial injections having reasonable chances to characterize the analytic binary relations without ∆ 0 ξ -measurable countable coloring. We will see in Section 4 that such a characterization indeed holds when ξ = 3, and give an example much simpler than the one in [L-Z]. In Section 2, we give a proof of Theorem 4 in [Má], in ω ω instead of 2 ω , and also prove some additional properties needed for the construction of our partial maps. In Section 3, we prove Theorems 1.1 and 1.2. At the end of Section 4, we show that Theorem 1.2 is optimal in terms of descriptive complexity of the graph, and also give a positive result concerning the first two problems in the case of finite unions of rectangles.

Lemma 2.1 Let (X i ) i∈ω , (Y i ) i∈ω be sequences of metrizable spaces, and, for each i ∈ ω, f i : X i → Y i be a partial map whose graph is a closed subset of X i × Y i . Then the graph of the partial map f := Π i∈ω f i : Π i∈ω X i → Π i∈ω Y i is closed.

Proof. Let (x j ) j∈ω be a sequence of elements of Π i∈ω X i converging to x := (x i ) i∈ω such that f (x j ) j∈ω converges to y := (y i ) i∈ω ∈ Π i∈ω Y i . Then y i = f i (x i ), since Gr(f i ) is closed, for each i ∈ ω. This implies that y = f (x) and the proof is finished.

Notation. Let X be a set and F be a family of subsets of X. Then the symbol F denotes the smallest topology on X containing F.

The next two lemmas can be found in [K] (see Lemmas 13.2 and 13.3).

Lemma 2.2 Let (X, σ) be a Polish space and F be a σ-closed subset of X. Then the topology

σ F := σ ∪ {F } is Polish and F is σ F -clopen.
Lemma 2.3 Let (σ n ) n∈ω be a sequence of Polish topologies on X. Then the topology n∈ω σ n is Polish.

Lemma 2.4 Let (H n ) n∈ω be a disjoint family of sets in a zero-dimensional Polish space (X, σ) and (σ n ) n∈ω be a sequence of topologies on X such that

σ 0 = σ, H 0 is σ 0 -closed, σ n+1 = σ n ∪ {H n } , H n+1 is σ n+1 -closed for every n ∈ ω.
Then the topology σ ∞ = n∈ω σ n satisfies the following properties:

(a) σ ∞ is zero-dimensional Polish, (b) σ ∞|X\ n∈ω Hn = σ |X\ n∈ω Hn , and, for every n ∈ ω, (c) σ ∞|H n = σ |Hn , (d) H n is σ ∞ -clopen.
Proof. Using Lemma 2.2 we see that each topology σ n is Polish. Then the topology σ ∞ is Polish by Lemma 2.3. Now observe that the following claim holds.

Claim. A set G ⊆ X is σ ∞ -open if and only if G can be written as G = G ′ ∪ ( n∈ω G n ∩ H n ), where G ′ , G n are σ-open. Note that H n ∈ Σ 0 1 (σ n+1 ) ⊆ Σ 0 1 (σ ∞ ) and H n ∈ Π 0 1 (σ n ) ⊆ Π 0 1 (σ ∞ ), thus H n is σ ∞ -clopen. Thus (d) is satisfied. Let B be a basis for σ made of σ-clopen sets. Then the family B ∪ {G ∩ H n | G ∈ B ∧ n ∈ ω} is made of σ ∞ -clopen
sets and form a basis for σ ∞ by the claim. This gives (a).

Let G ∈ Σ 0 1 (σ ∞ ). By the claim, we find σ-open sets G ′ , G n such that G = G ′ ∪ ( n∈ω G n ∩ H n ). Then G ∩ (X \ n∈ω H n ) = G ′ ∩ (X \ n∈ω H n ). This implies (b). Moreover, G ∩ H n = G n ∩ H n , and (c) holds.
Notation. The symbol τ denotes the product topology on ω ω . Definition 2.5 We say that a partial map f :

ω ω → ω ω is nice if Gr(f ) is a (τ ×τ )-closed subset of ω ω ×ω ω .
The construction of P ξ and τ ξ , and the verification of the properties (1) ξ -(3) ξ from the next lemma, can be found in [Má], up to minor modifications.

Lemma 2.6 Let 1 ≤ ξ < ω 1 . Then there are P ξ ⊆ ω ω , and a topology τ ξ on ω ω such that

(1)

ξ τ ξ is zero-dimensional perfect Polish and τ ⊆ τ ξ ⊆ Σ 0 ξ (τ ), (2) ξ P ξ is a nonempty τ ξ -closed nowhere dense set, (3) ξ if S ∈ Σ 0 ξ (ω ω , τ ) is τ ξ -nonmeager in P ξ , then S is τ ξ -nonmeager in ω ω , (4) ξ if U is a nonempty τ ξ |P ξ -open subset of P ξ , then we can find a τ ξ -dense G δ subset G of U , and a nice (τ ξ , τ )-homeomorphism ϕ ξ,G from G onto ω ω , (5) ξ if V is a nonempty τ ξ -open subset of ω ω , then we can find a τ ξ -dense G δ subset H of V , and a nice (τ ξ , τ )-homeomorphism ψ ξ,H from H onto ω ω , (6) ξ if U is a nonempty τ ξ |P ξ -open subset of P ξ and W is a nonempty open subset of ω ω , then we can find a τ ξ -dense G δ subset G of U , a τ ξ -dense G δ subset K of W \ P ξ , and a nice (τ ξ , τ ξ )- homeomorphism ϕ ξ,G,K from G onto K, (7) ξ if V, W are nonempty τ ξ -open subsets of ω ω , then we can find a τ ξ -dense G δ subset H of V \P ξ , a τ ξ -dense G δ subset L of W \P ξ , and a nice (τ ξ , τ ξ )-homeomorphism ψ ξ,H,L from H onto L.
Proof. We proceed by induction on ξ.

The case ξ = 1

We set P 1 := {α ∈ ω ω | ∀n ∈ ω α(2n) = 0} and τ 1 := τ . The properties (1) 1 -(3) 1 are clearly satisfied.

(4) 1 Note that (P 1 , τ 1 ) is homeomorphic to (ω ω , τ ). As any nonempty open subset of (ω ω , τ ) is homeomorphic to (ω ω , τ ), (U, τ 1 ) is homeomorphic to (ω ω , τ ). This gives ϕ ξ,U , which is nice since ω ω is closed in itself. This shows that we can take G := U .

(5) 1 As in (4) 1 we see that (V, τ 1 ) is homeomorphic to (ω ω , τ ), and we can take H := V .

(6) 1 Note that U is the disjoint union of a sequence (C n ) n∈ω of nonempty clopen subsets of (P 1 , τ 1 ). Let (U 1,n ) n∈ω be a partition of W \P 1 into clopen subsets of (ω ω , τ 1 ). As any nonempty open subset of (P 1 , τ 1 ) or (ω ω , τ 1 ) is homeomorphic to (ω ω , τ ), we can find homeomorphisms

ϕ 0 : (C 0 , τ 1 ) → ( n>0 U 1,n , τ 1 )
and ϕ 1 : ( n>0 C n , τ 1 ) → (U 1,0 , τ 1 ). As C 0 and U 1,0 are τ -closed, ϕ 0 and ϕ 1 are nice. This shows that the gluing of ϕ 0 and ϕ 1 is a nice homeomorphism from (U, τ 1 ) onto (W \P 1 , τ 1 ). Thus we can take G := U and K := W \P 1 .

(7) 1 As in (6) 1 we write V as the disjoint union of a sequence (D n ) n∈ω of nonempty clopen subsets of (ω ω , τ 1 ). As the (D n , τ 1 )'s are homeomorphic to (ω ω , τ 1 ), we can take H := V \P 1 and L := W\P 1 .

The induction step

We assume that 1 < ξ < ω 1 and that the assertion holds for each ordinal θ < ξ. We fix a sequence of ordinals (ξ n ) n∈ω containing each ordinal in ξ \{0} infinitely many times. We set

P ξ = ω ω ×(Π i∈ω ¬P ξ i ), τ < ξ = τ ×(Π i∈ω τ ξ i ), U ξ,n = ω ω ×(Π i<n ¬P ξ i )×P ξn ×(ω ω ) ω (n ∈ ω).
The family {U ξ,n | n ∈ ω} is disjoint. We set σ 0 = τ < ξ and σ n+1 = σ n ∪ {U ξ,n } . It is easy to check that U ξ,n ∈ Π 0 1 (σ n ). Applying Lemma 2.4 we get a topology

τ ξ := σ ∞ such that (a) τ ξ is zero-dimensional Polish, (b) τ ξ |P ξ = τ < ξ |P ξ ,
and, for every n ∈ ω, (c)

τ ξ |U ξ,n = τ < ξ |U ξ,n , (d) U ξ,n is τ ξ -clopen.
We defined the topology τ ξ on (ω ω ) ω instead of ω ω . However, since the spaces (ω ω ) ω , τ ω ) and (ω ω , τ ) are homeomorphic we can replace the latter space by the former one in the proof. Since there is no danger of confusion we will write τ instead of τ ω to simplify the notation.

(

) ξ Clearly, τ ⊆ τ ξ . Note that U ξ,n ∈ Σ 0 ξ (τ ) for every n ∈ ω and τ < ξ ⊆ Σ 0 ξ (τ ), so that τ ξ ⊆ Σ 0 ξ (τ ). Moreover, (ω ω , τ ξ ) is clearly perfect. (2) ξ As U ξ,n is τ ξ -clopen, P ξ is τ ξ -closed. Note that τ ξ |P ξ = τ < ξ |P ξ and P ξ contains no nonempty basic τ < 1 
ξ -open set. This implies that P ξ is τ ξ -nowhere dense.

(3) ξ Let S ∈ Σ 0 ξ (τ ) be τ ξ -nonmeager in P ξ . We may assume that S ∈ Π 0 θ (τ ) for some θ < ξ. As

τ ξ |P ξ = τ < ξ |P ξ
and S has the Baire property with respect to the topology τ < ξ there exists a τ < ξ -open set V such that S is τ < ξ -comeager in P ξ ∩ V . Moreover, we may assume that V has the following form:

V = Ṽ ×(Π i≤k V i )×(ω ω ) ω , where Ṽ ∈ τ , V i ∈ τ ξ i and V i ⊆ ¬P ξ i for each i ≤ k. The set V * = Ṽ ×(Π i≤k V i )×(Π i>k ¬P ξ i ) is τ < ξ - comeager in V since ¬P ξ i is τ ξ i -comeager in ω ω for every i ∈ ω. As P ξ ∩ V = V * , S is τ < ξ -comeager in V * . Let p ∈ ω be such that p > k and ξ p ≥ θ. Define τ * = τ ×(Π i =p τ ξ i ), Z = Ṽ ×V 0 ו • •×V k ׬P ξ k+1 ו • •×¬P ξ p-1 ×(ω ω ) ω , τ ♯ = τ ×(Π i<p τ ξ i )×τ ×(Π i>p τ ξ i ). For α ∈ ω ω define a set (¬S) α by (¬S) α := {(ỹ, y 0 , y 1 , . . . , y p-1 , y p+1 , . . . ) ∈ ω ω | (ỹ, y 0 , y 1 , . . . , y p-1 , α, y p+1 , . . . ) ∈ ¬S}. Denote S * := {α ∈ ω ω | (¬S) α is τ * -nonmeager in Z}. Note that ¬S ∈ Σ 0 θ (τ ) ⊆ Σ 0 θ (τ ♯ ). By the Montgomery theorem (see 22.D in [K]), S * ∈ Σ 0 θ (τ ) ⊆ Σ 0 ξp (τ )
. By the Kuratowski-Ulam theorem, S * is τ ξp -meager in ¬P ξp . Using the induction hypothesis, Condition (3) ξp implies that S * is τ ξp -meager in P ξp . Using the Kuratowski-Ulam theorem again, we see that

S is τ < ξ -comeager in the τ ξ -open set W = Ṽ ×V 0 ו • •×V k ׬P ξ k+1 ו • •×¬P ξ p-1 ×P ξp ×(ω ω ) ω . As W ⊆ U ξ,p , τ ξ |W = τ < ξ |W by (c), and consequently S is τ ξ -comeager in W . Thus S is τ ξ -nonmeager in (ω ω ) ω since W is τ ξ -open.
(4) ξ We first construct a τ ξ -dense open subset of U , which is the disjoint union of sets of the form

U n := W n ×(Π i<kn W n i )×(ω ω ) ω ∩ P ξ = W n ×(Π i<kn W n i \P ξ i )×(Π i≥kn ¬P ξ i ),
where W n is a nonempty τ -clopen set and W n i is a nonempty τ ξ i -clopen set. In order to do this, we fix an injective τ ξ -dense sequence (x n ) n∈ω of U , which is possible since (P ξ , τ ξ ) is nonempty and perfect. We first choose W 0 and the

W 0 i 's in such a way that U 0 is a proper τ ξ -clopen neighborhood of x 0 in U , which is possible since τ ξ |P ξ = τ < ξ |P ξ
. For the induction step, we choose p n minimal such that x pn / ∈ q≤n U q . Then we choose W n+1 and the

W n+1 i 's in such a way that U n+1 is a proper τ ξ -clopen neighborhood of x pn in U \( q≤n U q ).
There is a nice homeomorphism

ψ n from W n onto N n := {α ∈ ω ω | α(0) = n}. The induction assumption gives, -for i < k n , a τ ξ i -dense G δ subset G n i of W n i \P ξ i , and a nice (τ ξ i , τ )-homeomorphism ψ ξ i ,G n i of G n i onto ω ω , -for i ≥ k n , a τ ξ i -dense G δ subset G n i of ¬P ξ i , and a nice (τ ξ i , τ )-homeomorphism ψ ξ i ,G n i of G n i onto ω ω . By Lemma 2.1, the map ψ n ×(Π i∈ω ψ ξ i ,G n i ) is a nice (τ < ξ , τ )-homeomorphism from W n ×(Π i∈ω G n i ) onto N n ×(ω ω ) ω . If we set G := n∈ω W n ×(Π i∈ω G n i ) , then we get a nice (τ < ξ , τ )-homeomorphism from G onto ω ω . We are done since τ ξ |P ξ = τ < ξ |P ξ .
(5) ξ We essentially argue as in (4) ξ . As P ξ is τ ξ -closed nowhere dense, we may assume that

V ⊆ ¬P ξ = n∈ω U ξ,n . We first construct a τ ξ -dense open subset of V ∩ U ξ,n , which is the disjoint union of sets of the form V n,p := W n,p ×(Π i<n W n,p i \P ξ i )×(W n,p n ∩P ξn )×(Π n<i<k p n W n,p i )×(ω ω ) ω , where W n,p is a nonempty τ -clopen set and W n,p i is a nonempty τ ξ i -clopen set. This is possible since τ ξ |U ξ,n = τ < ξ |U ξ,n
. We are done since U ξ,n is τ ξ -clopen.

(6) ξ As in (4) ξ we construct a τ ξ -dense open subset of U , which is the disjoint union of sets of the form

U n := W n ×(Π i<kn W n i )×(ω ω ) ω ∩ P ξ = W n ×(Π i<kn W n i \P ξ i )×(Π i≥kn ¬P ξ i )
, where W n is a nonempty τ -clopen set and W n i is a nonempty τ ξ i -clopen set. Recall also that

U ξ,n = ω ω ×(Π i<n ¬P ξ i )×P ξn ×(ω ω ) ω .
We also construct a τ ξ -dense open subset of W , which is the disjoint union of sets of the form

π n := Z n ×(Π i<ln Z n i \P ξ i )×(Z n ln ∩ P ξ ln )×(Π ln<i<mn Z n i )×(ω ω ) ω ⊆ U ξ,ln ,
where Z n is a nonempty τ -clopen set and Z n i is a nonempty τ ξ i -clopen set. Let (W 0,p ) p∈ω (respectively, (Z 0,p ) p∈ω ) be a partition of W 0 (respectively, Z 0 ) into nonempty τ -clopen sets. Using the facts that

τ ξ |P ξ = τ < ξ |P ξ and τ ξ |U ξ,n = τ < ξ |U ξ,n , we will build -a nice (τ ξ , τ ξ )-homeomorphism from a dense G δ subset G 0,p of U 0,p := W 0,p ×(Π i<k 0 W 0 i \P ξ i )×(Π i≥k 0 ¬P ξ i )
onto a dense G δ subset K 0,p of π p+1 . Then, using the fact that the W 0,p 's are τ -clopen, the gluing of these homeomorphisms will be a nice

(τ ξ , τ ξ )-homeomorphism ϕ 0 from G 0 := p∈ω G 0,p ⊆ U 0 onto K 0 := p∈ω K 0,p ⊆ p>0 π p .
-a nice homeomorphism from a dense

G δ subset G 1,p of U p+1 onto a dense G δ subset K 1,p of Z 0,p × (Π i<l 0 Z 0 i \ P ξ i ) × (Z 0 l 0 ∩ P ξ l 0 ) × (Π l 0 <i<m 0 Z 0 i ) × (ω ω ) ω .
Then the gluing of these homeomorphisms will be a nice

(τ ξ , τ ξ )-homeomorphism ϕ 1 from G 1 := p∈ω G 1,p ⊆ p>0 U p onto K 1 := p∈ω K 1,p ⊆ π 0 .
The gluing of these two homeomorphisms will be a nice homeomorphism from G := G 0 ∪G 1 onto K := K 0 ∪ K 1 . The set G 0,p (respectively, K 0,p ) will be of the form W 0,p ×(Π i∈ω G p i ) (respectively, Z p+1 × (Π i∈ω K p i )). Note first that there is a homeomorphism ψ p from W 0,p onto Z p+1 . Then we build a permutation i → j i of the coordinates (with inverse q → J q ). This permutation is constructed in such a way that ξ j i = ξ i , which will be possible since (ξ n ) n∈ω contains each ordinal in ξ \ {0} infinitely many times. If i < m p+1 (respectively, q < k 0 ), then we choose j i ≥ k 0 (respectively, J q ≥ m p+1 ), ensuring injectivity. For a remaining coordinate q / ∈ {0, ..., k 0 -1} ∪ {j l | l < m p+1 }, we choose J q / ∈ {0, ..., m p+1 -1} ∪ {J l | l < k 0 }, ensuring that the map q → J q is a bijection from ¬({0, ..., k 0 -1} ∪ {j l | l < m p+1 }) onto ¬ {0, ..., m p+1 -1} ∪ {J l | l < k 0 } . Then, using the induction assumption, we build our homeomorphism coordinate by coordinate, which means that G p j i will be homeomorphic to K p i . The induction assumption gives

-for i < l p+1 , a τ ξ j i -dense G δ subset G p j i of ¬P ξ j i , a τ ξ i -dense G δ subset K p i of Z p+1 i \P ξ i , and a nice (τ ξ i , τ ξ i )-homeomorphism ψ ξ i ,G p j i ,K p i from G p j i onto K p i . -a τ ξ j l p+1 -dense G δ subset G p j l p+1
of ¬P ξ j l p+1 , a τ ξ l p+1 -dense G δ subset K p l p+1 of P ξ l p+1 , and a nice (τ ξ l p+1 , τ ξ l p+1 )-homeomorphism ϕ -1

ξ l p+1 ,K p l p+1 ,G p j l p+1 from G p j l p+1 onto K p l p+1 . -for l p+1 < i < m p+1 , a τ ξ j i -dense G δ subset G p j i of ¬P ξ j i , a τ ξ i -dense G δ subset K p i of Z p+1 i \P ξ i , and a nice (τ ξ i , τ ξ i )-homeomorphism ψ ξ i ,G p j i ,K p i from G p j i onto K p i . -for q < k 0 , a τ ξq -dense G δ subset G p q of W 0 q \P ξq , a τ ξ Jq -dense G δ subset K p Jq of ¬P ξ Jq , and a nice (τ ξq , τ ξq )-homeomorphism ψ ξq,G p q ,K p Jq from G p q onto K p Jq . -for a remaining coordinate q / ∈ {0, ..., k 0 -1} ∪ {j l | l < m p+1 }, a τ ξq -dense G δ subset G p q of ¬P ξq , a τ ξ Jq -dense G δ subset K p
Jq of ¬P ξ Jq , and a nice (τ ξq , τ ξq )-homeomorphism ψ ξq,G p q ,K p Jq from G p q onto K p Jq .

By Lemma 2.1, the product ϕ 0 p of ψ p with these nice homeomorphisms is a nice

(τ < ξ , τ < ξ )- homeomorphism from G 0,p := W 0,p × (Π i∈ω G p i ) onto K 0,p := Z p+1 × (Π i∈ω K p i ), as well as a (τ ξ , τ ξ )-homeomorphism since τ ξ |P ξ = τ < ξ |P ξ and τ ξ |U ξ,l p+1 = τ < ξ |U ξ,l p+1
. As G 0 is the sum of the

G 0,p 's, G is a τ ξ -dense G δ subset of U 0 . Similarly, K 0 is a τ ξ -dense G δ subset of p>0 π p . More- over, the gluing ϕ 0 of the ϕ 0 p 's is a (τ ξ , τ ξ )-homeomorphism from G 0 onto K 0 .
The construction of ϕ 1 is similar.

(7) ξ We argue as in (6) ξ .

Lemma 2.7 Let 1 ≤ ξ < ω 1 . Then there are disjoint families F ξ , G ξ of subsets of ω ω and a topology

T ξ on ω ω such that (a) ξ T ξ is zero-dimensional perfect Polish and τ ⊆ T ξ ⊆ Σ 0 ξ (τ ), (b) ξ F ξ is T ξ -dense, i.e., for any nonempty T ξ -open set V , there is F ∈ F ξ with F ⊆ V , and, for every F ∈ F ξ , (c) ξ F is nonempty, T ξ -nowhere dense, and in Π 0 2 (T ξ ), (d) ξ if S ∈ Σ 0 ξ (τ ) is T ξ -nonmeager in F , then S is T ξ -nonmeager in ω ω , (e) ξ there is a nice (T ξ , τ )-homeomorphism ϕ F from F onto ω ω , (f) ξ for any nonempty T ξ -open sets V, V ′ , there are disjoint G, G ′ ∈ G ξ with G ⊆ V , G ′ ⊆ V ′ , and there is a nice (T ξ , T ξ )-homeomorphism ϕ G,G ′ from G onto G ′ ,
and, for every G ∈ G ξ , (g) ξ G is nonempty, T ξ -nowhere dense, and in

Π 0 2 (T ξ ), (h) ξ if S ∈ Σ 0 ξ (τ ) is T ξ -nonmeager in G, then S is T ξ -nonmeager in ω ω .
Proof. Let P ξ and τ ξ be as in Lemma 2.6. We set T ξ = (τ ξ ) ω . Let (U n ) n∈ω be a basis for the topology T ξ made of nonempty sets. For each n ∈ ω, there is a finite sequence

(V n i ) i<kn of nonempty τ ξ -open sets such that (Π i<kn V n i )× (ω ω ) ω ⊆ U n .
Moreover, the sequence (k n ) n∈ω is chosen to be strictly increasing. Lemma 2.6 provides

-for i < k n , a τ ξ -dense G δ subset H n i of V n i \P ξ and a nice (τ ξ , τ )-homeomorphism ψ ξ,H n i , -a τ ξ -dense G δ subset G n kn of P ξ and a nice (τ ξ , τ )-homeomorphism ϕ ξ,G n kn , -for i > k n , a τ ξ -dense G δ subset H n i of ω ω and a nice (τ ξ , τ )-homeomorphism ψ ξ,H n i .
We then put

F n := (Π i<kn H n i )×G n kn ×(Π i>kn H n i ), so that F n ⊆ U n . We set F ξ = {F n | n ∈ ω}.
Then F ξ is clearly a disjoint family and the properties (a) ξ and (b) ξ are obviously satisfied.

(c) ξ As P ξ is τ ξ -nowhere dense, each F n is T ξ -nowhere dense. Each F n is obviously also in Π 0 2 (T ξ ).

(d) ξ Let n ∈ ω and S ∈ Σ 0 ξ (τ ) be T ξ -nonmeager in F n . We define

Z = Π i =kn H n i , T * ξ = Π i =kn τ ξ |H n i , Tξ = (Π i<kn τ ξ |H n i )×τ ×(Π i>kn τ ξ |H n i ).
If α ∈ ω ω , then we denote S α := {(y 0 , . . . , y kn-1 , y kn+1 , . . . ) ∈ ω ω | (y 0 , . . . , y kn-1 , α, y kn+1 , . . . ) ∈ S}.

We set S * = {α ∈ ω ω | S α is T * ξ -nonmeager}. By the Montgomery theorem, S * ∈ Σ 0 ξ (τ ) since S ∈ Σ 0 ξ ( Tξ ).
The set S * is τ ξ -nonmeager in G n kn by the Kuratowski-Ulam theorem, in P ξ also, and thus S * is τ ξ -nonmeager in ω ω . Using the Kuratowski-Ulam theorem again, we see that S is

T ξ -nonmeager in (Π i<kn H n i )×ω ω ×(Π i>kn H n i ), and thus in (ω ω ) ω . (e) ξ We set ϕ F = (Π i<kn ψ ξ,H n i )×ϕ ξ,G n kn ×(Π i>kn ψ ξ,H n i ). The map ϕ F is clearly a (T ξ , τ )-homeo- morphism from F onto (ω ω ) ω . It is nice by Lemma 2.1.
We now construct G ξ . For each m ∈ ω, there are finite sequences

(V m i ) i<km , (W m i ) i<lm of nonempty τ ξ -open sets such that (Π i<km V m i )×(ω ω ) ω ⊆ U (m) 0 and (Π i<lm W m i )×(ω ω ) ω ⊆ U (m) 1 .
Moreover, the sequences (k m ) m∈ω and (l m ) m∈ω are chosen to be strictly increasing and disjoint. Assume for example that k m < l m . Lemma 2.6 provides

-for i < k m , a τ ξ -dense G δ subset H m i of V m i \P ξ , a τ ξ -dense G δ subset L m i of W m i \P ξ , and a nice (τ ξ , τ ξ )-homeomorphism ψ ξ,H m i ,L m i , -a τ ξ -dense G δ subset G m km of P ξ , a τ ξ -dense G δ subset K m km of W m i \ P ξ , and a nice (τ ξ , τ ξ )- homeomorphism ϕ ξ,G m km ,K m km , -for k m < i < l m , a τ ξ -dense G δ subset H m i of ¬P ξ , a τ ξ -dense G δ subset L m i of W m i \P ξ , and a nice (τ ξ , τ ξ )-homeomorphism ψ ξ,H m i ,L m i , -a τ ξ -dense G δ subset K m lm of ¬P ξ , a τ ξ -dense G δ subset G m lm of P ξ , and a nice (τ ξ , τ ξ )- homeomorphism ϕ -1 ξ,G m lm ,K m lm , -for i > l m , a τ ξ -dense G δ subset H m i of ¬P ξ , a τ ξ -dense G δ subset L m i of ¬P ξ , and a nice (τ ξ , τ ξ )-homeomorphism ψ ξ,H m i ,L m i .
We then put

F ′ m := (Π i<km H m i )×G m km ×(Π km<i<ln H m i )×K m lm ×(Π i>lm H m i ), G m := (Π i<km L m i )×K m km ×(Π km<i<lm L m i )×G m lm ×(Π i>lm L m i ), so that F ′ m ×G m ⊆ U (m) 0 ×U (m) 1 . We set G ξ = {F ′ m | m ∈ ω} ∪ {G m | m ∈ ω}. Then G ξ is clearly a disjoint family. (f) ξ The map ϕ F ′ m ,Gm is by definition (Π i<km ψ ξ,H m i ,L m i )×ϕ ξ,G m km ,K m km ×(Π km<i<lm ψ ξ,H m i ,L m i )×ϕ -1 ξ,G m lm ,K m lm ×(Π i>lm ψ ξ,H m i ,L m i ). Note that ϕ F ′ m ,Gm is clearly a (T ξ , T ξ )-homeomorphism from F ′ m onto G m .
It is nice by Lemma 2.1.

(g) ξ We argue as in (c) ξ .

(h) ξ We argue as in (d) ξ .

Negative results

Proof of Theorem 1.1. We apply Lemma 2.7 to the ordinal ξ +1, which gives a family F ξ+1 and a topology T ξ+1 satisfying (a) ξ+1 -(e) ξ+1 . Let (U n ×V n ) n∈ω be a sequence of nonempty sets such that

-U n ∈ T ξ+1 , V n is τ -clopen, -{U n ×V n | n ∈ ω} is a basis for the topology T ξ+1 ×τ .
For each n ∈ ω we find F n ∈ F ξ+1 \{F q | q < n} with F n ⊆ U n . By the property (e) ξ+1 of F ξ+1 we find, for each n ∈ ω, a nice (T ξ+1 , τ )-homeomorphism

f n from F n onto V n . We define f : n∈ω F n → ω ω by f (x) := f n (x) if x ∈ F n . As F ξ+1 is a disjoint family, f is well-defined. The graph of f is Σ 0 2 (τ×τ ) since each Gr(f n ) is (τ ×τ )-closed.
Suppose, towards a contradiction, that there exist, for n ∈ ω, C n ∈ Σ 0 ξ (τ ) and

D n ∈ ∆ 1 1 (τ ) such that ¬Gr(f ) = n∈ω C n ×D n . By the Baire category theorem there is n 0 ∈ ω such that C n 0 is T ξ+1 - nonmeager and D n 0 is τ -nonmeager. As C n 0 has the Baire property, we find a nonempty T ξ+1 -open set O 1 such that C n 0 is T ξ+1 -comeager in O 1 . Similarly, we find a τ -open set O 2 such that D n 0 is τ -comeager in O 2 . Let n ∈ ω and F n ⊆ O 1 . Suppose that C n 0 is not T ξ+1 -comeager in F n . Then O 1 \C n 0 is T ξ+1 - nonmeager in F n . Note that O 1 ∈ Σ 0 ξ+1 (τ ) and C n 0 ∈ Σ 0 ξ (τ ). Therefore O 1 \C n 0 ∈ Σ 0 ξ+1 (τ ). Thus O 1 \C n 0 is T ξ+1 -nonmeager in ω ω by (d) ξ+1 . Consequently, O 1 \C n 0 is T ξ+1 -nonmeager in O 1 , a contradiction. Thus C n 0 is T ξ+1 -comeager in F n for any n ∈ ω with F n ⊆ O 1 . Find n ∈ ω such that Gr(f n ) ⊆ O 1 ×O 2 . Then C n 0 is T ξ+1 -comeager in F n and D n 0 is τ -comeager in V n . As f n is a homeomorphism, f -1 n (V n ∩ D n 0 ) is T ξ+1 -comeager in F n . As F n ∈ Π 0 2 (T ξ+1 ) there exists α ∈ f -1 n (V n ∩ D n 0 ) ∩ F n ∩ C n 0 . This implies that α, f n (α) ∈ C n 0 ×D n 0 , a contradiction.
Proof of Theorem 1.2. Apply Lemma 2.7 to the ordinal ξ + 1, which gives a family G ξ+1 and a topology T ξ+1 satisfying (a) ξ+1 -(h) ξ+1 . Let U = {U n | n ∈ ω} be a basis for the space (ω ω , T ξ+1 ) made of nonempty sets. For each n ∈ ω we find

T ξ+1 -open sets V n , W n such that V n ×W n ⊆ B τ ×τ ∆(ω ω ), 2 -n ∩ (U n × U n )\∆(ω ω )
(we use the standard metric on (ω ω , τ )).

By the properties (f) ξ+1 and (g) ξ+1 of G ξ+1 we find, for each n ∈ ω, sets F n and

H n from G ξ+1 such that ( * ) F n ⊆ V n \( j<n F j ∪ H j ) ∧ H n ⊆ W n \ F n ∪ ( j<n F j ∪ H j ) .
Moreover, there is a nice (T ξ+1 , T ξ+1 )-homeomorphism f n from F n onto H n . We set

G = {Gr(f n ) | n ∈ ω}.
Now we check the desired properties.

As τ ⊆ T ξ+1 , G τ ×τ = G ∪∆(ω ω ), by construction. Thus G is a difference of two (τ×τ )-closed sets.

As each f n is a homeomorphism, the property ( * ) implies that f is a partial injection with disjoint domain and range. In order to see that G has no ∆ 0 ξ -measurable countable coloring, we proceed by contradiction. Suppose that there are G-discrete sets

C n ∈ ∆ 0 ξ (τ ) (a set C is G-discrete if C 2 ∩ G = ∅), for n ∈ ω, such that ∆(ω ω ) ⊆ n∈ω C 2 n .
By the Baire theorem there exists n 0 ∈ ω such that C n 0 is T ξ+1 -nonmeager. As C n 0 has the Baire property, we find a nonempty

T ξ+1 -open set O such that C n 0 ∩ O is T ξ+1 -comeager in O. Let F ∈ G ξ+1 with F ⊆ O. Suppose that C n 0 is not T ξ+1 -comeager in F . Then O \ C n 0 is T ξ+1 -nonmeager in F . Note that O ∈ Σ 0 ξ+1 (τ ) and C n 0 ∈ ∆ 0 ξ (τ ). Therefore O \ C n 0 ∈ Σ 0 ξ+1 (τ ). Thus O\C n 0 is T ξ+1 -nonmeager in ω ω by (h) ξ+1 . Consequently, O\C n 0 is T ξ+1 -nonmeager in O, a contradiction. Thus C n 0 is T ξ+1 -comeager in F for any F ∈ G ξ+1 with F ⊆ O. Find n ∈ ω such that Gr(f n ) ⊆ O 2 . Then C n 0 is T ξ+1 -comeager in F n and in H n . As f n is a homeomorphism, f -1 n (H n ∩ C n 0 ) is T ξ+1 -comeager in F n ∈ Π 0 2 (T ξ+1 ). Thus there exists α ∈ f -1 n (H n ∩ C n 0 ) ∩ F n ∩ C n 0 .
This implies that α, f n (α) ∈ C 2 n 0 , a contradiction.

Positive results

(A) ∆ 0 ξ -measurable countable colorings

In [L-Z], the following conjecture is made.

Conjecture Let 1 ≤ ξ < ω 1 . Then there are -a 0-dimensional Polish space X ξ , -an analytic relation A ξ on X ξ such that for any (0-dimensional if ξ = 1) Polish space X, and for any analytic relation A on X, exactly one of the following holds:

(a) there is a

∆ 0 ξ -measurable countable coloring of A (i.e., a ∆ 0 ξ -measurable map c : X → ω such that A ⊆ (c×c) -1 ( =)), (b) there is a continuous map f : X ξ → X such that A ξ ⊆ (f ×f ) -1 (A).
This would be a ∆ 0 ξ -measurable version of the G 0 -dichotomy in [K-S-T]. This conjecture is proved for ξ ≤ 3 in [L-Z]. Our goals here are the following. We want to give -a reasonable candidate for A ξ in the general case, -an example for ξ = 3 that is much simpler than the one in [L-Z].

We set Π 0 0 := ∆ 0 1 . The following result is proved in [Má] (see Theorem 4 and Lemma 13.(i)).

Theorem 4.1 (Mátrai) Let 1 ≤ ξ < ω 1 . There are a true Π 0 ξ subset P ξ of 2 ω , and a Polish topology τ ξ on 2 ω such that (1) ξ τ ξ is finer than the usual topology τ ′ on 2 ω , (2) ξ P ξ is τ ξ -closed and τ ξ -nowhere dense,

(3) ξ if G is a basic τ ξ -open set meeting P ξ , and D ∈ Π 0 <ξ (2 ω , τ ′ ) is such that D ∩ P ξ ∩ G is comeager in (P ξ ∩ G, τ ξ |P ξ ∩G ), then there is a τ ξ -open set G ′ such that P ξ ∩ G ′ = P ξ ∩ G and D ∩ G ′ is comeager in (G ′ , τ ξ |G ′ ).
Notation. In the sequel 1 ≤ ξ < ω 1 . Fix, for each ξ, an increasing sequence

(η n ) n∈ω of elements of ξ (different from 0 if ξ ≥ 2) such that sup n∈ω (η n +1) = ξ.
• Let < ., . >: ω 2 → ω be a bijection, defined for example by < n, p >:= (Σ k≤n+p k) + p, whose inverse bijection is q → (q) 0 , (q) 1 .

• If u ∈ 2 ≤ω and n ∈ ω, then we define (u) n ∈ 2 ≤ω by (u) n (p) := u(< n, p >) if < n, p >< |u|.
• Let (t n ) n∈ω be a dense sequence in ω <ω with |t n | = n. For example, let (p n ) n∈ω be the sequence of prime numbers, and I : ω <ω → ω defined by I(∅) := 1, and I(s

) := p s(0)+1 0 ...p s(|s|-1)+1 |s|-1 if s = ∅.
Note that I is one-to-one, so that there is an increasing bijection i :

I[ω <ω ] → ω. Set ψ := (i•I) -1 : ω → ω <ω , so that ψ is a bijection. Note that |ψ(n)| ≤ n if n ∈ ω. Indeed, I ψ(n)|0 < I ψ(n)|1 < ... < I ψ(n) , so that (b • I) ψ(n)|0 < (b • I) ψ(n)|1 < ... < (b • I) ψ(n) = n. As |ψ(n)| ≤ n, we can define t n := ψ(n)0 n-|ψ(n)|
, and (t n ) n∈ω is suitable.

• Theorem 4.1 gives P ξ and τ ξ . Let Q ξ := 2×P ξ , T ξ := discrete×τ ξ , and

T < ξ := Π i∈ω T η i if ξ ≥ 2. • (W ξ,n ) n∈ω is a sequence of nonempty T ξ -open sets. • S i := Q η i ∪ n∈ω W η i ,n (for i ∈ ω)
, and S := Π i∈ω S i , so that S ∈ Π 0 2 (T < ξ ) is a Polish space.

• If ξ ≥ 2, then we set

K ξ := n∈ω (α, β) ∈ 2 ω ×2 ω | ∀i < n (α) i = (β) i ∈ W η i ,tn(i) ∧ ∃γ ∈ P ηn (α) n , (β) n = (0γ, 1γ) ∧ ∀i > n (α) i = (β) i , Lemma 4.2 Let 2 ≤ ξ ≤ ω 1 . We assume that Q η i ⊆ n∈ω W η i ,n Tη i for each i ∈ ω. Then any K ξ -discrete Σ 0 ξ subset C of (S, τ ′ ) is T < ξ -meager in S.
Proof. We may assume that C is Π 0 <ξ . We argue by contradiction. This gives n ∈ ω with C ∈ Π 0 ηn , a basic

T < ξ -open set O such that C ∩ O is T < ξ -comeager in O ∩ S = ∅, l ≥ n, and a sequence (O i ) i<l with O i ∈ T η i and O = {α ∈ 2 ω | ∀i < l (α) i ∈ O i }.
The assumption gives, for each i < l, n i ∈ ω such that O i ∩ W η i ,n i = ∅. Let m ≥ l such that t m (i) = n i for each i < l, and

U := α ∈ S | ∀i < l (α) i ∈ O i ∧ ∀i < m (α) i ∈ W η i ,tm(i) ,
which is a nonempty T < ξ -open subset of S. In particular, C ∩ U is T < ξ -comeager in U . We set

V := (α i ) i =m ∈ π i =m S i | ∀i < l α i ∈ O i ∧ ∀i < m α i ∈ W η i ,tm(i) ,
so that, up to a permutation of coordinates, U ≡ S m ×V . We also set

C ′ := α ∈ S m | C ∩ (S m ×V ) α is π i =m T η i -comeager in V .
By the Kuratowski-Ulam theorem, C ′ is T ηm -comeager in S m (see 8.41 in [K]). Write C = D ∩ S,

where D ∈ Π 0 ηn (2 ω ). Note that C ′ := S m ∩ α ∈ 2 ω | D ∩ (2 ω ×V ) α is π i =m T η i -comeager in V . As m ≥ n and π i =m T η i is finer than the usual topology, D ∩ (2 ω ×V ) ∈ Π 0 ηm (2 ω , τ ′ ×(π i =m T η i ) |V ). By the Montgomery theorem, C ′ is Π 0 ηm (S m , τ ′ ) (see 22.
22 in [K]).

The set C ′ cannot be T ηm -comeager in Q ηm ∩N 0 and Q ηm ∩N 1 . Indeed, we argue by contradiction to see that. We set h 0 (α) :=< 1-α(0), α(1), α(2), ... >.

As h 0|Q ηm ∩N 0 is a T ηm -homeomorphism, C ′ ∩ h 0 -1 |Qη m ∩N 0 (C ′ ∩ Q ηm ∩ N 1 ) is T ηm -comeager in Q ηm ∩ N 0 , and if 0γ is in it, then 1γ ∈ C ′ , which gives δ ∈ (C ∩ U ) 0γ ∩ (C ∩ U ) 1γ and contradicts the K ξ -discreteness of C. Assume for example that C ′ is not T ηm -comeager in Q ηm ∩ N 0 . Then ¬C ′ is T ηm -non meager in Q ηm . As C ′ is Π 0 ηm (S m , τ ′ ), there is a sequence (C j ) j∈ω of Π 0 <ηm (2 ω ) sets such that S m \C ′ = j∈ω C j ∩ S m .
This gives j ∈ ω such that C j ∩ Q ηm is T ηm -non meager in Q ηm , and a basic

T ηm -open set O such that C j ∩ Q ηm ∩ O is T ηm -comeager in Q ηm ∩ O = ∅.
The set O is of the form {ε}× G, where ε ∈ 2 and G is a basic τ ηm -open set. Let S : N ε → 2 ω be the map defined by S(εα) := α. Note that S is a τ ′ -τ ′ and T ξ -τ ξ homeomorphism. In particular,

E := {α ∈ 2 ω | εα ∈ C j } is τ ′ -Π 0 <ηm and E ∩ P ηm ∩ G is comeager in (P ηm ∩ G, τ ηm |Pη m ∩G ). Theorem 4.1.(3) gives a τ ηm -open set G ′ such that P ηm ∩ G ′ = P ηm ∩ G and E ∩ G ′ is comeager in (G ′ , τ ηm |G ′ ). Now O ′ := {ε}×G ′ is a T ηm -open set such that Q ηm ∩O ′ = Q ηm ∩O and C j ∩O ′ is T ηm - comeager in O ′ . The assumption gives n ∈ ω such that W ηm,n ∩ O ′ = ∅. Note that C j ∩ W ηm,n ∩ O ′ is T ηm -comeager in W ηm,n ∩ O ′ , so that ¬C ′ is T ηm -non meager in S m , which is absurd.
The case ξ = 3

Example. Let (s n ) n∈ω be a dense sequence in 2 <ω with |s n | = n. For example, let φ : ω → 2 <ω be a natural bijection. More specifically, φ(0) := ∅ is the sequence of length 0, φ(1) := 0, φ(2) := 1 are the sequences of length 1, and so on. Note that |φ

(n)| ≤ n if n ∈ ω. Let n ∈ ω. As |φ(n)| ≤ n, we can define s n := φ(n)0 n-|ψ(n)| . We set P 2 := {α ∈ 2 ω | ∀p ∈ ω ∃q ≥ p α(q) = 1}, and 
A 3 := n∈ω (α, β) ∈ 2 ω ×2 ω | ∀i < n (α) i = (β) i = s tn(i) 10 ∞ ∧ ∃γ ∈ P 2 (α) n , (β) n = (0γ, 1γ) ∧ ∀i > n (α) i = (β) i .
We will see that A 3 , together with a suitable Π 0 2 subset X 3 of 2 ω , satisfies the conjecture. The topology τ 2 makes the countably many singletons of ¬P 2 open. Then P 2 is a true Π 0 2 subset of 2 ω (see 23.A in [K]), τ 2 is Polish finer than τ ′ , P 2 is closed nowhere dense for τ 2 since τ 2 coincides with τ ′ on P 2 and ¬P 2 is τ ′ -dense, and 4.1.( 3) is satisfied since a basic τ 2 -open set meeting P 2 is a basic τ ′ -clopen set and P 2 is τ ′ -comeager. Thus P 2 and τ 2 satisfy the properties of Theorem 4.1. We set 

W 2,n := {s n 10 ∞ }. Then Q 2 ⊆ n∈ω W 2,n T 2 since (s n ) n∈ω is
(i) 10 ∞ | n ∈ ω ∧ i < n} → ω, defined by M (α) := max{p ∈ ω | α(p) = 1}, is one-to-one.
Proof. (a) Recall the map ψ defined after Theorem 4.1. It is enough to prove that ψ(n)(i) < ni if i < |ψ(n)|. We argue by induction on n, and the result is clear for n = 0. We may assume that ψ(n)(i) = q +1 for some natural number q. We define t ∈ ω <ω by t(i) := q, and t(j) := ψ(n)(j) if j = i. Let p ∈ ω with ψ(p) = t. Note that I ψ(p) < I ψ(n) , so that p < n. The induction assumption implies that q = ψ(p)(i) < p-i, so that ψ(n

)(i) = q+1 ≤ p-i < n-i. (b) Assume that M (α) = M (α ′ ). Let n, n ′ , i, i ′ with α = s tn(i) 10 ∞ and α ′ = s t n ′ (i ′ ) 10 ∞ . Then t n (i) = |s tn(i) | = M (α) = M (α ′ ) = t n ′ (i ′ ), so that α = α ′ . Notation. If ∅ = u ∈ 2 <ω , then u m := u|(|u|-1).
The following notion is technical but crucial. (c) Assume first that u -is (< l)-placed. Then (|u m |) 1 = 0, by the claim, (ii). Now the claim, (i), gives the result. If (u l ) -is (< l)-placed, then we apply this to u l , using the facts that u l is l-placed and (u l ) l = u.

(d) Assume first that u -is (> l)-placed. The claim, (i), implies that (|u m |) 1 > 0, and the claim, (ii), gives j 1 with u -l = u|(< l, j 1 > +1). Note that u -l u -, (u -) l ⊆ s t l(u -) (l) 10 ∞ and M (s t l(u -) (l) 10 ∞ ) < l(u -)-l, by Lemma 4.5.(a). Thus < l, M (s t l(u -) (l) 10 ∞ ) >≤< l(u -), 0 >≤< l(u -), (|u -|-1) 1 >= |u -|-1 and (u -) l M (s t l(u -) (l) 10 ∞ ) is defined. This shows that j 1 = M (s t l(u -) (l) 10 ∞ ).

Note that u l |(< l, j 1 > +1) ⊆ (u l ) -. The claim, (ii), shows that (u l ) -l = u l |(< l, j 1 > +1). We argue by contradiction to see that (u l ) -is not (> l)-placed. The proof of the previous point shows that j 1 = M (s t l((u l ) -) (l) 10 ∞ ). Lemma 4.5.(b) shows that s t l(u -) (l) 10 ∞ = s t l((u l ) -) (l) 10 ∞ . Thus (u -) l (0) = (s t l(u -) (l) 10 ∞ )(0) = (s t l((u l ) -) (l) 10 ∞ )(0) = (u l ) - l (0), ε(u) = u(< l, 0 >) = (u) l (0) = (u -) l (0) = (u l ) - l (0) = ε(u l ), which is absurd. This shows that (u l ) -= u l |(< l, j 1 > +1) = (u -l ) l is l-placed, by Lemma 4.8, so that u -l = (u l ) -l . Moreover, ε(u -l ) = (u -l )(< l, 0 >) = u(< l, 0 >) = ε(u).

Assume now that (u l ) -is (> l)-placed. As u l is l-placed and (u l ) l = u, the previous arguments show that u -is l-placed. In particular, u -l = u -. Theorem 4.11 (X 3 , A 3 ) satisfies the conjecture.

Proof. We already noticed that it is enough to see that (a) or (b) holds. In Condition (5) in the proof of Theorem 5.1 in [L-Z], u -l should be replaced with u -l(u) . We need to check that the map f defined there satisfies A 3 ⊆ (f × f ) -1 (A). So let (α, β) ∈ A 3 , which defines n. Let (p j ) j∈ω be the infinite strictly increasing sequence of natural numbers p j ≥ 1 such that (p j -1) 0 = n, (p j -1) 1 > 0 and α(p j -1) = 1. In particular, α|p j is n-placed and ε(α|p j ) = 0. Note that (p j ) j∈ω is also the infinite strictly increasing sequence of natural numbers p j ≥ 1 such that (p j -1) 0 = n, (p j -1) 1 > 0 and β(p j -1) = 1 on one side, and a subsequence of both (p α k ) k∈ω and (p β k ) k∈ω on the other side.

If moreover p ≥ p 0 and α|p is placed, then l(α|p) ≥ n, by Lemma 4.8. In particular, if p ≥ p 0 and α|p is (≤ n)-placed, then α|p is n-placed. This proves that (p j ) j∈ω is the infinite strictly increasing sequence of integers p j ≥ p 0 such that α|p j is (≤ n)-placed. Therefore (α|p j+1 ) -n = α|p j .

By Condition (3), (U α|p j ) j∈ω is a non-increasing sequence of nonempty clopen subsets of A∩Ω X 2 whose GH-diameter tend to 0. So we can define F (α, β) ∈ A by {F (α, β)} := j∈ω U α|p j . Note that F (α, β) = lim j→∞ (x α|p j , x β|p j ) = f (α), f (β) ∈ A, so that A 3 ⊆ (f ×f ) -1 (A).

It remains, when k ≥ 2 (second case), to replace l-1 with l(u -).

  dense. This shows that A 3 = K 3 satisfies the conclusions of Corollary 4.3. In particular, (a) and (b) cannot hold simultaneously. In order to prove that (a) or (b) holds, we simply indicate the modifications to make to Section 5 in [L-Z]. We just need to prove the right lemmas since the final construction is the same. Lemma 4.5 (a) Let n ∈ ω and i < n. Then t n (i) < n-i. (b) The map M : {s tn

Definition 4. 6

 6 We say that u ∈ 2 <ω is placed if (a) u = ∅, (b) ∀i < (|u m |) 0 (u) i ⊆ s t (|u m |) 0 (i) 10 ∞ , (c) u(|u m |) = 1 if (|u m |) 1 > 0.
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Corollary 4.3 Let 2 ≤ ξ ≤ ω 1 . We assume that Q η i ⊆ n∈ω W η i ,n

Tη i for each i ∈ ω. Then (a) there is no ∆ 0 ξ -measurable map c : 2 ω → ω such that K ξ ⊆ (c×c) -1 ( =), (b) if X ξ ∈ Π 0 2 (2 ω ) and K ξ ⊆ X 2 ξ , then there is no ∆ 0 ξ -measurable map c : X ξ → ω such that K ξ ⊆ (c×c) -1 ( =).

Proof. (a) We just have to apply Lemma 4.2.

(b) We argue by contradiction. This gives a partition (C k ) k∈ω of X ξ into K ξ -discrete ∆ 0 ξ (X ξ ) sets. We set D 0 := 2 ω \X ξ , and choose D k+1 ∈ Σ 0 ξ (2 ω ) such that C k = D k+1 ∩ X ξ . Then (D k ) k∈ω is a covering of 2 ω into K ξ -discrete Σ 0 ξ sets. It remains to apply the reduction property of the class Σ 0 ξ to contradict (a).

The case ξ = 2

Example. Let α → α * be the shift map on 2 ω : α * (j) := α(j +1). Then we set

Theorem 4.4 (2 ω , A 2 ) satisfies the conjecture.

Proof. We set P 1 := {0 ∞ } and τ 1 := τ ′ , so that P 1 and τ 1 satisfy the properties of Theorem 4.1. We also set W 1,n := N 0 n+1 1 ∪N 10 n 1 , so that (W 1,n ) n∈ω is a sequence of nonempty T 1 -open sets satisfying the assumption of Corollary 4.3, so that A 2 = K 2 satisfies its conclusions. In particular, (a) and (b) cannot hold simultaneously.

We define, for

We set, for each p, q ∈ ω,

It remains to apply Proposition 4.6 in [L-Z] to see that (a) or (b) holds.

We are now ready to define

Note that X 3 is a Π 0 2 subset of 2 ω . In particular, X 3 is a 0-dimensional Polish space.

Lemma 4.7 (a) The set A 3 is a Σ 0 3 (and thus analytic) relation on

By Lemma 4.5.(a), we get (p-1) 1 < n-(p-1) 0 , which is absurd. Definition 4.9 Let u ∈ 2 <ω and l ∈ ω.

(a) If u is placed, then we will consider

(b) We say that u is l-placed if u is placed and l(u) = l. We say that u is (≤ l)-placed (resp., (< l)-placed, (> l)-placed) if there is l ′ ≤ l (resp., l ′ < l, l ′ > l) such that u is l ′ -placed.

When we consider the finite approximations of an element of A 3 , we have to guess the natural number n. We usually make some mistakes. In this case, we have to be able to come back to an earlier position. This is the role of the following predecessors.

and, for l ∈ ω,

The following key lemma explains the relation between these predecessors and the placed sequences.

Lemma 4.10 Let l ∈ ω and u ∈ 2 <ω be l-placed with |u| ≥ 2.

(a) Assume that u -is l-placed. Then ε(u -) = ε(u). If moreover (u l ) -is l-placed, then the equality (u l ) -= (u -) l holds.

(b) u -l is l-placed if and only if (u l ) -l is l-placed. In this case, ε(u -l ) = ε(u) and the equality (u l ) -l = (u -l ) l holds.

(c) Assume that u -or (u l ) -is (< l)-placed. Then u -= u -l = (u l ) -= (u l ) -l .

(d) Assume that u -or (u l ) -is (> l)-placed. Then exactly one of those two sequences is (> l)placed, and the other one is l-placed.

Proof. We first prove the following claim:

(ii) The last assertion about j 0 and j 1 comes from the first one. It is enough to see that u -is (≥ l)placed since the proof for u -l is similar. We argue by contradiction. Then u|(< l, 0 > +1) is l-placed and u|(< l, 

Assume now that (u l ) -is l-placed. As u|(< l, 0 > +1) ⊆ u -u, we get

(b) Assume that u -l is l-placed. By the claim, we get (|u m |) 1 > 0 and j 1 with

Thus (u l ) -l = u l |(< l, j 1 > +1) = (u -l ) l is l-placed, by Lemma 4.8. The equivalence comes from the fact that (u l ) l = u. We argue as in (a) to see that ε(u -l ) = ε(u) if u -l is l-placed.

The general case

Here we just give, for each i ∈ ω, a sequence

Tη i . This will imply that K ξ has no ∆ 0 ξ -measurable countable coloring, by Corollary 4.3. We assume that ξ ≥ 4, so that we may assume that η

Mátrai's construction ensures that V η,n is τ η -open, and that W η,n is a nonempty

Our motivation to introduce these examples is that they induce a set K 3 satisfying the conjecture. This is the reason why we think that they are reasonable candidates for the general case.

(B) The small classes

In Section 3, we met D 2 (Π 0 1 ) graphs of fixed point free partial injections with a Borel countable (2-)coloring, but without ∆ 0 ξ -measurable countable coloring. Their complement are Ď2 (Π 0 1 ) sets in

However, a positive result holds for the simpler classes, which shows some optimality in our results.

Proposition 4.12 Let Γ ⊆ D 2 (Π 0 1 ) be a Wadge class (in zero-dimensional spaces), and A be a set in Γ ∩ (∆ 1 1 ×Σ 0 1 ) σ (resp., (∆ 1 1 ×∆ 1 1 ) σ ). Then A ∈ (Γ×Σ 0 1 ) σ (resp., (Γ×Γ) σ ). Proof. Let us do it for (∆ 1 1 ×Σ 0 1 ) σ , the other case being similar. The result is clear for {∅}, {∅}, ∆ 0 1 , Σ 0 1 . If Γ = Π 0 1 , then we can write A = n∈ω C n ×D n , with C n ∈ ∆ 1 1 and D n ∈ Σ 0 1 . We just have to note that

(C) The finite case Proposition 4.13 Assume that Γ is closed under finite intersections and continuous pre-images, X, Y are topological spaces, κ is finite, and A ∈ Γ(X×Y ) is the union of κ rectangles. Then A is the union of at most 2 2 κ rectangles whose sides are in Γ.

Proof. Assume that

So let (x, y) ∈ A, and let

, where the formula f (y) := (x, y) defines f : Y → X ×Y continuous. This shows that n∈I B n is in Γ. So we proved the following:

A is the union of at most 2 κ rectangles A ′ n ×B ′ n , where A ′ n is a finite intersection of some of the A n 's, and B ′ n is a finite union of some of the B n 's which is in Γ.

Applying this again, we see that A is the union of at most 2 2 κ rectangles A ′′ n ×B ′′ n , where A ′′ n is a finite union of some of the A ′ n 's which is in Γ, and B ′′ n is a finite intersection of some of the B ′ n 's. We are done since Γ is closed under finite intersections. This proof also shows the following result: Proposition 4.14 Assume that Γ is closed under continuous pre-images, X, Y are topological spaces, κ is finite, and A ∈ Γ(X ×Y ) is the union of κ rectangles of the form 2 X ×Σ 0 1 (Y ). Then A is the union of at most 2 2 κ rectangles of the form Γ(X)×Σ 0 1 (Y ).

Remarks.

(1) For colorings, Theorem 1.2 gives, for each ξ, a D 2 (Π 0 1 ) binary relation with a Borel finite (2-)coloring, but with no ∆ 0 ξ -measurable finite coloring.

(2) ∅ has a 1-coloring. An open binary relation having a finite coloring c has also a D 2 (Π 0 1 )measurable finite coloring (consider the differences of the c -1 ({n})'s, for n in the range of the coloring). This leads to the following question:

Question. Can we build, for each ξ, a closed binary relation with a Borel finite coloring but no ∆ 0 ξmeasurable finite coloring?