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Static Grounds for Inequalities
in Finite Strain of Elastic Materials

C.TRUESDELL & R.ToUPIN
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1. Nature and origin of the problem

The two elasticities, A and g, occurring in the classical linearized theory
of isotropic elastic materials are not entirely arbitrary constants or functions
of temperature. In order that the equations describe a response that is physi-
cally reasonable, the inequalities

u>0,  3A+2u>0, (1.1)

are usually imposed. These restrictions may be called the C-inequalities, where
“C” is a mnemonic for ‘‘classical”’. The problem of finding corresponding re-
strictions for finitely elastic materials was proposed in a lecture by TRUESDELL?
in 1955, who summarized what was then known concerning it. As he remarked,
the C-inequalities arise in connection with several different kinds of argument:

A. Plausibility in statics.

A 1. In special strains. The condition (1.1), is necessary and sufficient that
in simple shear, the shearing stress be directed in the same sense as the shear
effected. The condition (1.1), is necessary and sufficient that tension be required
to produce a uniform dilation, while pressure be required to produce a uniform
condensation. )

A 2. In general strains. In any strain whatever, the condition (1.1); is neces-
sary and sufficient that the shearing stress on any plane shall have the same direc-

171956, 2]. A survey of work done since 1955 on the group of problems related
to the ‘“Hauptproblem” was given by Tourin in a lecture to the British Theoretical
Mechanics Colloquium at Newcastle-upon-Tyne in 1961.



tion as the shear of that plane. The condition (1.1), is necessary and sufficient
that the mean tension have the same sign as the increment in volume.

B. Work theorem. The C-inequalities are necessary and sufficient that the
work done in any non-rigid deformation be positive.

C. Stability. The C-inequalities are sufficient but not necessary in order
that the displacement satisfying the conditions of equilibrium shall correspond
to a lesser total stored energy than does any other displacement having the
same boundary values. Necessary and sufficient conditions are given by the
weaker inequalities?

u>0, A+2u>0. (1.2)

(It is important to distinguish between this condition and the preceding. In
essence, the work theorem imposes the local requirement that the energy stored
in every finite portion of the deformed material be positive, while the stability
theorem is global, referring only to the total energy stored by a (necessarily
non-equilibrated if non-vanishing) deformation within a fixed boundary.)

D. Uniqueness theovems. The C-inequalities are sufficient in order that the
mixed boundary-value problem of equilibrium, for smooth enough boundaries
and boundary data, have a solution that is unique, at least to within a rigid
motion. Moreover, the C-inequalities or their opposites-are also necessary in
order that, for a general region, both the displacement boundary-value problem
and the stress boundary-value problem have unique solutions, although they
are not necessary for uniqueness of solution to either of these problems by itself3.

“.ﬁ;KELVIN [i888].

3 In terms of the Poisson modulus,
S (&)
2(A4p)

0=

the inequalities
—1<o<},  p>o0, (B)

are equivalent to (1.1). The inequality (B), alone implies the validity of either the
C-inequalities or their opposites, viz 4<0, 3A+2x<0. The solution of the displace-
ment boundary-value problem is unique, within arbitrary smooth regions, if and
only if

g<<i, or o>1, (C)

as shown by ERicksenN [1957,2]. (That (C) is sufficient for both existence and
uniqueness had been proved by Bogaro [1907]; Misicu [1953, 2, §16] remarked that
these conditions suffice to render the equations of equilibrium strongly elliptic,
. whence existence and uniqueness of solution follows by application of a known
theorem cn differential systems; a far more general result of this kind is given as
our Theorem III in §8, below. Cf. also the discussion by HILL [1961, 4].) Uniqueness
for the exterior problem, subject to the same inequalities, was established by FicHERA
{1950, Cap. I] and by GURTIN & STERNBERG [1960, 2]. The range of ¢ consonant
with (C) is that in which g and A+2u have the same sign; i.e., either (1.2) or their
opposites hold.

BraMBLE & PAYNE [1962, 2] have shown that a sufficient condition for the
stress boundary-value problem, for arbitrary smooth regions inside or outside of a
star-shaped surface, to have a solution unique to within an arbitrary rigid motion is

—1<o<t. (D)
After some partial results had been established by BraMBLE & PAYNE [1961, 1],



They are sufficient but not necessary for the uniqueness of solution to the
equations of motion corresponding to assigned initial displacements and velocities
upon the bounding surface?.

E. Wave speeds. The C-inequalities are sufficient but not necessary in order
that the squared speeds of all possible weak waves® be positive. Necessary
and sufficient conditions, again®, are the less restrictive inequalities (1.2), pro-
vided p>0.

In the finite theory, arguments of all these types have been tried. HADAMARD?
gave a definition of stability, from which he derived as a consequence inequalities
that are necessary and sufficient for the squared speeds of all kinds of waves
to be real. DUuHEM® proposed a somewhat different definition of stability, which
he showed to imply the same conclusion in regard to waves. TRUESDELL? used
an energy argument to derive an inequality for incompressible isotropic materials;
EricksEN' found an alternative interpretation for TRUESDELL’s inequality in
terms of waves; BAKER & ERICKSEN!! were the first to introduce a fairly general
statical condition, to which we shall refer more specifically in §3; ERICKSEN &
TouPIN?2 found some connections between uniqueness, stability in HADAMARD's
sense, and the propagation of waves; BARTA proposed and explored some static
inequalities; a minimum principle for the strain-energy function was proposed

{1962, 3], MinpLIN [unpublished] has proved that the inequalities (D) are also
necessary for uniqueness of solution to the stress boundary-value problem, within
a general region.

The range of common validity of (D) and (C) is given by (B);. Thus follows
the result stated in the text above.

A fortiori, the classical inequality (B); cannot be weakened if the general mixed
boundary-value problem, for arbitrary smooth domains, is to have a solution unique
to within a rigid motion (or, if the displacement is prescribed at as many as three
non-collinear points, unique).

A general existence theory, subject to the inequalities (C) for the displacement
boundary-value problem and to the inequality (B), for the others, is constructed,
for the exterior as well as for the interior problem, in a remarkable but apparently
little-known memoir of FiCHERA [1950].

4 GURTIN & STERNBERG [1961, 2] show that for uniqueness it suffices that the
two squared wave-speeds be positive. That is, u/e>0 and (Ai42u)/e>0. If ¢>0,
this condition reduces to (1.2); if 30, it is equivalent to (C) in the preceding footnote.

& I.e., singular surfaces of second or higher order, or plane infinitesimal oscillations.

¢ The connection between wave propagation and stability as defined under C was
seen by KeLvIN [1888]: ‘‘Surely, then, if there is a real finite propagational velocity
for each of the two kinds of wave-motion, the equilibrium must be stable!” The
matter is not really so simple as this. In the finite theory, there are various plausible
but different definitions of stability, and there are many kinds of waves.

7 (1903, 11 269—271].

& [1905].

? [1952, §41]. We state his result below in §3, footnote 4.

While nearly every Italian paper on finite elasticity mentions inequalities, those
proposed seem to refer only to the natural state or to special hyperelastic materials.
For a specimen, see SiGNORINI [1949, Cap. I, §1, 14 and Cap. I1, §1, 75, 7].

10 [1953].

1111954, 1].

12 [1956, 1].

13 1957, 1]. In the last footnote to §4 we state his proposal and give reasons
for considering it unsatisfactory.

1%



by CoLEMAN & NoLL and was shown by them to imply not only the classical
equations but also a definite criterion of convexity for the stored-energy function
and to lead naturally to a definition of stability different from HADAMARD'S;
CoLEMAN?S Jater showed this minimum principle to be equivalent to a work
theorem; and TRUESDELL!®, after constructing a general theory of wave pro-
pagation, was able to interpret BAKER & ERICKSEN’s conditions as well as some
of CoLEMAN & NoLL's results directly in terms of wave speeds.

It is our purpose here to follow more deeply the first and simplest kind of
argument, beginning from qualitative expectations of static response. Our first
goal is to find a static motivation for the inequalities of COLEMAN & NoLL. While
most previous work has concerned only hyperelastic materials, defined as those
for which the stress-strain relation is derivable from a stored-energy function??,
here we extend the argument so far as possible to include general elastic materials,
defined as those for which the stress is a function of the strain and rotation
from a fixed reference configuration. We presume the reader to be already
familiar with the elements of these two theories!®. Our second goal is to formulate
for elasticity inequalities that emsure physically natural vesponse, to an extent
corresponding to the consequences of the CoLEMAN-NoLL condition in hyper-
elasticity.

Some of the general conclusions of our study are collected and repeated at
the end of the paper. Readers not already expert in the general theory of
elasticity may be well advised to turn directly to that summary before entering
the necessarily somewhat intricate formal work.

2. List of formulae from the theory of elasticity
An elastic material is defined by the constitutive equation

T =4 ,1*%(C), (2.1)

where T7** is the first Piola-Kirchhoff stress temsor, #*, is the deformation
gradient, t#*—1*# and is formally symmetrized in the components C, 5= &m 2 2" g
of the symmetric deformation tensor C, so that

o8 ofaB
o (2.2)

Only general elastic materials, not subject to any internal constraint such as
incompressibility, are considered in this paper.

14 11959, §8]. It should be remarked that their principles cover also changes
of entropy and temperature, which are not considered in the present study. The
special case of their principle for isothermal or isentropic deformations is stated
below as our equation (5.1).

15 11962, 4].

18 (1961, 6, §10]. This work was influenced by an unpublished lecture of ToUPIN
(1961).

17 However, BAKER & ERICKSEN [1954, 1] made no essential use of a stored-
energy function, and TRUESDELL’S analysis [1961, 6] of wave motions expressly
avoids it. )

18 A simple account, sufficient for the purposes of the present paper, is given
Jin [1960, 3, §303].



An elastic material is hyperelastic if and only if the functions t*#( ) satisfy
the integrability conditions

otf ¢ (2.3)

3676 - 9Cap’ '
in which case there exists a stored-energy function X'(C) such that

of__ Z(C)

b= 22(C) Sy (2.4)

We avoid using the relations (2.3) and (2.4) whenever possible, and when we
do use them, we remark explicitly that the results so obtained refer to hyper-
elastic rather than to more general elastic materials.

The Cauchy stress tensor & is related as follows to T':
=gy T, (2.5)

where e
= ™ = Vdet ||C§||

For an isotropic elastic material, t is an isotropic function of C, so that
th =30 Om -+ 31 Bh -+ 3, B} BS, (2.6)
where B is the reciprocal deformation tensor, given as follows:
km=gaﬂ xk,axm'ﬁ,

and where the scalar coefficients 4, are functions of the principal invariants
I, II, and III of B. Equivalently,

-1

tw =10 0% + 21 By -+ 31 Bh. (2.7)
In a principal co-ordinate system, (2.6) and (2.7) assume the forms
t, =%+ %03 + 52 Va,
=2+ %+ 2.9

where v, is the principal stretch in the direction along which #, is the principal
stress.

(2.8)

For any elastic material, set

aT”
A=, B =t g A, (29)

and for an isotropic elastic material set?!

km atkm _ k. __Tkm
T Mzm_rﬂ q—T [§4

= 2 n(8 07+ 85 8f) + £ 9e(&} BY + 0} By + 84 By + 07 BY) +

o3 o o
+ g [alo et oiv (18— By + 120 B, J+ (2.10)
m| 93 a4 2
+ B* [ L8y + 8Ii (Igpq — Bpg) + 111 -a_nl,r qu] +
rm| 0 P
4 B'B [ 22 Gpa 22 (I gy, — Byg) + 111 220 B, ]

! The expressions (2.10), and (2.11) were given by TRUESDELL [1961, 6, Eqq. (7.5)
and (12.5E)]



In a principal co-ordinate system

11 94 11 . o4 12 ... h—bh
my, 0t T, = g 12, = T R (2.11)
while all components T* ",¢ Dot obtainable from one of these three by permu-
tation of indices are zero. In any co-ordinate system

Bkmpq — pm 6qp ke 6;‘ +2 Tkmps BIS. (2.12)

In an isotropic material subject to homogeneous deformation from its natural
state, consider a block with faces perpendicular to the principal axes of strain
and stress. The forces acting upon these faces are tensions of magnitude ¢, per
unit area. If the block before deformation was a unit cube, the total forces
acting upon its faces in the deformed state are given by the formulae

T, =vyuty, Ty=uvsuyty, Ty =y 0,1y, (2.13)
or
T, =2 "% (2.14)
Q Ya

In a pure strain, it is possible to select a common Cartesian co-ordinate system
such that the matrix of deformation gradients x™ 5 is a diagonal matrix; in
such a system, the matrix of the Piola-Kirchhoff stress tensor T;* is also diagonal,
and its entries are the quantities 7,. In a general deformation of an isotropic
elastic material it is possible to choose co-ordinates such that | T = [diag(T,
T,, T;)]R, where R is a rotation matrix2. Accordingly, we shall call the T,
the principal forces.

In isotropic materials the principal stresses, hence also the principal forces,
are functions of the principal stretches:

ty=t, (v1, Vg, V3),

TazTa(vl» Vs, '”3)-

(2.15)

More specifically, isotropy of the elastic material implies that a single function
f(vy, vy, v3) serves to define all three functions 7,( ) in (2.15):

Ti=f(v, v, v3), To=(vs, v3, 1), Ty=f(v3, v1, ), (2-16)
where
Hx o 2)=1(x,2,9). (2.17)

For an isotropic hyperelastic material the stored energy may be taken as

a symmetric function of the principal stretches: z (v1, vs, 9} =2'(C), and (2.4)
is equivalent to the statement that

~

0 (v, vs, Ug)

f{v1, v, v3) = 30, ) (2-18)
also, the Jacobian matrix of (2.15),, having the components
_ 07,
]ab—‘ a'Ub ’ (2~19)

2 The proof follows easily by use of (2.5) and of the dual of [1960, 3, (37.9)].



is a symmetric matrix for all values of the stretches. From {2.16) and (2.17)
it follows that even for elastic materials that are not hyperelastic, | J,,[ is sym-
metric whenever v,=v,=v,. More generally, J,,= J,, whenever v,=v,. (This
particular symmetry, which follows from isotropy alone, accounts for the well
known but curious fact that in the linearized theory of elasticity, every isotropic
material is hyperelastic, or in other words, that isotropy in the linearized theory
implies the existence of a stored-energy function.) If we adopt the usual assump-
tion that the functions T,( ) are continuously differentiable, we see that an
elastic material is hyperelastic if and only if

]ub:]bu (220)

for all values of the stretches v,. (Even in a hyperelastic material, 8¢,/0v, 4 04,/0v,
in general, but the condition v,=v, is sufficient that 9¢,/0v,= 0%,/¢v, even when
there is no stored-energy function.)

A configuration in which the stress vanishes is called a natural state of the
elastic material. If such a state exists, we may choose it as the reference con-
figuration, and, having done so, we conclude from (2.1) and (2.15) that

t()=o0, (1,1, 1)=T,(1,1,1)=0. (2.21)

Some elastic materials do not have a natural state. For example, an elastic
flurd, defined by the condition

t,=—p(vy V5 v5), a=1,2,3, (2.22)

is an isotropic hyperelastic material in which the stress never vanishes, provided
the function p( ) be subject to the condition p(£)>0 if 0<<&<Cco. The general
considerations in this study do not presume the existence of a natural state,
and special notice will be called to such particular results as do require one.
Among such special results are the C-inequalities.

3. Some plausible static inequalities for isotropic materials

In the theory of finite elastic strain it is clearly of no use to consider special
deformations such as simple tension, simple shear, and uniform dilation, since
special relations hold among the stretches occurring in those deformations, so
no restriction upon general functions of those stretches can possibly result by
laying down conditions for these cases. The approach numbered A1 in the
discussion just following (1.1) is effective in the classical linearized theory only
because the response of the material is specified in terms of constants, viz A
and u, instead of functions of the stretches. Thus approach A1 would be fruit-
less for us.

Not so for A2. We lay down some simple conditions that we may expect
intuitively to be just for any isotropic material. At the beginning we limit
our study to isotropic materials because when more general material symmetries
are present the intuitive picture is no longer clear.

«. The P-C inegquality. The condition that the volume of a compressible
isotropic material should be decreased by pressure but increased by tension
is expressed by requiring the hydrostatic tension ¢ to be a strictly increasing



function of the stretch, v:

E—H@—v)>0, Vv, (31)
where {=¢{v). In particular, if the material has a natural state, so that (1) =0,
(3.1) implies that #(v—1)>0 if v3=1. For a general deformation, there are
many inequalities that are invariant and that reduce to this latter one in the
special case of hydrostatic stress. An example is the set of three inequalities
t,(v,—1)>0, a=1, 2, 3, stating that each principal stress is a pressure or a
tension according as the corresponding principal stretch is a contraction or an
elongation, but these inequalities are too strong. It should be possible in general,
as it is in the linearized theory of elasticity, that a severe pull in one direction
may result in transverse contraction even when some transverse tension is applied.
It is reasonable, however, to demand an inequality of this type in mean, and
we are led to consider either or both of the following:

itu(va-1)>0’ iTa(va—1)>O' (32)

a=1 a=1
if not all v,=1." We shall see later that (3.2), is implied by certain more general
and plausible conditions that do not always lead to (3.2);. In terms of principal
stresses, (3.2), can be written

3
Vs
2 b
a=1

1

—~ >0 ifnotall y,=1. (3-3)
a

Thus our intuition does not suggest, in this instance, which of the following
two strain measures to select as a basis for inequalities:

0 — ] — change in length
4 initial length ’ (3.4)
v,—1 __ change in length '
v final length

Using the letters P-C to recall ‘‘pressure-compression’, we shall refer to (3.2),
as the P-C inequality. An invariant form of it, valid in any co-ordinate system, is

. tr[t(1—B—¥]>0. ) 5

Another form is sr[ ( 8)] G-5)
Do >0 3T, (3.6)
a=1 e a=1

Note that only for materials having a natural state is the P-C inequality to be
expected. E.g. for an elastic fluid, while (3.1) ought to be satisfied, the P-C
inequality (3.2), certainly is not. Neither is the inequality (3.2),, in general

B.- The T-E inequalities. It is natural to expect that when a cube of isotropic
material is lengthened along one principal direction while its faces parallel to
that direction are kept fixed, the tensile force must be increased, but to shorten
it, the tensile force must be reduced. This condition may be expressed in either
of the following equivalent forms:

T T) @) >0, (b)) @ —12)>0, 69

provided 9,=v, if bd=a. Here we are using the notations T, =T, (5, g, Us), etc.
From these conditions it follows,-when T, ( ) is assumed continuously differenti-



able, that

oT, [

70, >0, B, >0, (3.8)
except upon a nowhere dense set. Conversely, if we require (3.8) to hold every-
where, then (3.7) follows. Using the letters T-E to recall ‘‘tension-extension”,
we shall refer to (3.7) as the T-E inequalities, while the stronger conditions (3.8)
will be called the T-E* inequalities’.

y. The IFS condition. It may be reasonable to expect that if given pairs of
opposing normal forces of magnitudes 7, are applied to the faces of a unit cube
of isotropic elastic material, one and only one pure homogeneous deformation will
result. This condition asserts that the equations T,=7T,(v,, v,, v5) be uniquely
invertible. Using “IFS” to recall “invertibility of force-stretch’, we may name
this requirement the IFS condition. Under the usual assumption that the stress-
strain relations are continuously differentiable, J,,( ) is a continuous function,
and the IFS condition implies that

" det | [, 30 (3-9)

except upon a nowhere dense set?. Conversely, if (3.9) holds everywhere, the
IFS condition holds in virtue of a classical theorem of analysis. We shall refer
to (3.9) as the IFS* condition.

The stress-stretch relations (2.15), are not necessarily invertible when (3.9) holds,
nor is it generally reasonable to expect them to be so. For example, when the elastic
material is a fluid, so that {,=—p(v,v,v,), it is obviously impossible to solve for the
v, as functions of the principal séresses, yet the relations for principal forces may
be invertible. To choose a case, consider the perfect gas law, p{v;v,0;) = K/(v,v,0,),
which leads to the unique inverse relations v,= K/T,, a=1, 2, 3. Here again we see
evidence in favor of requiring regular or simple behavior of the principal forces rather
than of the principal stresses.

8. The E-T inequalities. Granted that we may solve for the principal stretches
as functions of the principal forces T,, it is reasonable to expect that if one
pair of opposing normal forces on a homogeneously strained block with faces
perpendicular to the principal axes are increased in magnitude, while the re-
maining pairs are kept fixed, the block will lengthen in the corresponding direc-
tion. This condition may be expressed in the form

(T,—T,) @,— ) >0 (3.10)

provided T,=7T, if b==a. This is a condition on the three functions v, (T, T,, T,)

when T, and T, are held constant, while the formally similar condition (3.7);

restricts the three functions T, (v,, v,, v,) when v, and v, are held constant. Thus,

clearly, neither condition implies the other in general. From (3.10) we infer, if
v,( ) is assumed continuously differentiable, that

v,

0T,

1 It has been shown by TRUESDELL [1961, 6, §§7, 10] that the T-E* inequalities
are necessary and sufficient conditions that the squared speeds of all principal lon-
gitudinal waves be positive. If only the T-E inequalities are required, material
longitudinal disturbances become possible, i.e., non-propagating surfaces across which

the density gradient is discontinuous.
2 BERNSTEIN & ToupPIN [1962, 1, Theorem VI].

>0 (3.41)



except on a nowhere dense set. Conversely, if we require (3.11) to hold every-
where, (3.10) follows. Using the letters E-T to recall ‘‘extension-tension’’, we
refer to (3.10) as the E-T tnequalities, while the stronger conditions (3.11) will
be called the E-T* inequalitics.

e. The O-F inequalities. Consider again a block of isotropic material supposed
to be in equilibrium subject to pairs of equal and oppositely directed nermal
forces acting upon its faces. It may be reasonable to expect that the greater stretch
will occur in the direction of the greater force. Thus we are led to require that

(T— T ) >0 i v+, (3.42)

For hyperelastic materials this inequality was first proposed by Coreman &
NoL1?, who derived it as a consequence of the general inequality we shall discuss
below in §5. Using the letters O-F to recall ““ordered forces’’, we shall refer to
{(3.12) as the O-F inequalities. From (2.16) and (2.17) we see that if y,=u,, it
necessarily follows that 7,=17,. Thus no particular assumption is needed in
order to generalize the O-F inequalities so as to hold if the principal stretches
coalesce. The assumption that (T, —7;}{v, —v,) =0, where equality holds if
and only if v,=v,, is equivalent to (3.12).

{. The B-E inequalities. Inequalities similar to (3.12), but referring to prin-
cipal stresses rather than to principal forces, were first suggested by BAKER &
ErickseN%. Specifically, they proposed that the greater principal stress occur
always in the direction of the greater principal stretch:

(ta—1) (Va— ) >0 it v, 2, (3-13)

We shall refer to these as the B-E tnequalities®. Equivalently, by (2.10), (2.17),
and (2.13), we may write (3.13) in the form (¢, —4,) (v, — v,) =0, where equality
holds if and only if v,=v,.

Each of the foregoing inequalities may be expressed as a restriction on the
response coefficients 3 or 5, occurring in (2.6)— (2.8). Since

2 1
o=ty = (3= ) (31— sar ). (314)

* (1959, §12}.

4 11954, 1].

® BAKER & ERICKSEN [1954, 1] showed that, for incompressible hyperelastic
materials, (3.13) implies that the stored-energy function satisfies the inequalities

2 02
a éTI'
These conditions had been proposed by TRUESDELL [1952, §41], who showed them
to be necessary and sufficient that positive work be required in order to increase
one principal extension while holding another one fixed. It was then shown by
ERICKSEN [1953, 1] that TRUESDELL’s inequalities are in turn necessary and sufficient
for the squared speeds of all weak principal waves (necessarily transverse) in an
incompressible isotropic hyperelastic material to be positive. It has been shown
recently by TRUESDELL [1961, 6, §§7, 10] that, in a compressible isotropic elastic
material, whether or not it be hyperelastic, the B-E inequalities are necessary and
sufficient conditions that the squared speeds of all transverse principal waves-be
positive.

—%—f——kv >0, a=1,2,3.



the B-E inequalities are equivalent to*
- b"Jii;g m.; >0 if the v, are distinct, (3.15)
a

while the O-F inequalities are equivalent to

va +vav +v
= ey 0T BT T3>0 (3-10)
if the v, are distinct. Accordingly, a simple set of inequalities implying both
the B-E inequalities and the O-F inequalities is

2,50,  2,>0, 2,0, (3-17)

To the limited extent that experimental data are available, they seem to support
these inequalities, which shall therefore be called the E-inequalities, where E
is a mnemonic for ‘‘empirical”’. No theoretical motivation has been found for
them, however, beyond their logical relation to the B-E and O-F inequalities,
which may be abbreviated as follows:

E = B-E & O-F. (3.18)
In the next section we shall establish some less obvious connections between

the various inequalities stated.

4. Some logical connections among the static inequalities

In the linearized theory the several inequalities developed in §3 reduce to
the following forms?:

P-C: n>0, 3A+2u>0

T-E, T-E*, E-T, E-T*: A+2u4>0

IFS, IFS*: w3 A+ 2u) %0 (41)
O-F, B-E: H>0.

¢ BAKER & ERICKSEN [1954, 1].

! In the lincarized theory the E-inequalities have no precise expression, but they
arc sufficient that u>0. Note that the T-E and E-T inequalities in the linearized
theory are not the same as the requirement that the modulus of cxtension be positive:

u(344+2p)
VATAH 0. (G
itp ©

In simplc extension along the direction of v, the transverse stretches v, and vy are
adjusted so that ¢,=1£;==0. Therefore

Ug—1=U;—1=— 2(;_;_)‘) (vy—1)=—0a(v,—1), (H)
so that v, and v, cannot be held constant when »; is varied. In the finite theory
we cannot even formulatc definitely an analoguc of ((3) because a formula such as
(H), giving the transverse-contraction ratio ¢ explicitly in terms of material constants
or functions, cannot be found. Cf. the discussion of simple extension by TRUESDELL
{1952, §42D].



From these forms we may read off several non-implications:

O-FE5P-C ‘'or T-E or E-T,

(4.2)
B-EZ»P-C or T-E or E-T.
The example A= —u, u>0 shows that
(T-E or E-T) & (O-F or B-E)=> P-C. (4.3)

Either from the table (4.1) or directly from (3.1) we see that in the linearized
theory the P-C inequality is equivalent to the requirement that the work done
in effecting any non-rigid deformation be positive. Hence the P-C inequality
implies all the requirements customarily imposed in the linearized theory?, as
may be verified also from the table (4.1): P-C = C. In a general deformation,
however, the P-C inequality does not have any evident energetic meaning, nor
does it imply any of the others considered here. Neither do the E-inequalities
imply the P-C inequalities.

The inequalities listed in §3 fall into three types: those that relate a single
stress or force to the corresponding stretch, those that relate pairs of stresses
to pairs of stretches, and those that relate all three of each. We shall discuss
now the three types separately, beginning with the second, consisting only in
the O-F and B-E inequalities.

While the O-F and B-E inequalities are equivalent in the linearized theory,

in general
O-F=»B-E and B-E=20-F. (4.4)

For example, if T<0 the triples (7,27,37) and (v, 3v, 1v) satisfy the O-F
inequalities, but the principal stresses are (8 T/v?, 8 T/v%, 6 T/v?), which do not
satisfy the B-E inequalities. There is, however, an intimate connection between
the two inequalities. To see it, we consider the function

r*+3

fo) =r 252 (45)
and observe that since f' (r) =3 (2 — 1)%/(1 4 37?)?, f is monotone increasing; hence,
since also f(0)=0 and f(1) =1, it follows that 0<f(r)<<1 when 0<<r<C1, while
f(ry>1 when r>1. Let the principal stretches be distinct and ordered by number,
so that v;>v,>v;. Assume that the O-F inequalities hold. Set r=v,/v,, and
multiply the inequality f(r)>>1 by the inequality 7;>7T,. If we assume further
that 7, =0, it{ follows that

v (vi+308)
vy (v +303) Li>T,. (4.0)
Hence
vy (v3+308) Ty — v, (vB4-303) T, >0 (4.7)
v2—v3 ' ’
Equivalently, by (2.13),
Lt Uty
v — U, > (tl + t2) 1)2+1)2 ’. (48)

2 By “the lmearlzed theory” we mean that of Cauchy, in which there may be
as many as 36 distinct elasticities. Of course the P-C inequality does not imply that
there is a stored-energy function.



subject to our assumptions, namely, that the O-F inequalities hold and that
4 =0. Similarly, if £,=0, the O-F inequalities imply that

ATE > L (1) b (49)

Up—Ug 2 8 vi+ud’

The right-hand sides of (4.8) and (4.9) are non-negative if £, -+ ¢, 0 and £, 4,2 0.
In order to derive (4.8) and (4.9) we have assumed that #, =0 and #,=0, although
¢, may be negative. Thus we may summarize the foregoing analysis as follows:
In a state of stress such that v,>v,>v, and £,=0, £,=0, ty+£,=0,

O-F=B-E. (4.10)

States of pure tension are included as a special case®. The cases when two or
three principal stretches coalesce need no special mention, since the correspond-
ing principal stresses and principal forces coalesce also, irrespective of any in-
equalities.

* Again let the principal stretches be ordered by number, so that v,>v,>v,,
but assume that the B-E inequalities hold; thus —#,> —#,> —#. Assume that
£,<0. Setting r—=v,/v, and multiplying the 1nequa11ty fr )>1 by the inequality
—tg> —1,, we infer that

vz(vﬁ—f—3v§)t3<v3(v§+3v§)tz. T (4411)
Hence

T, _T VoH-0,°

D> - L (L T P (4.12)

If 4,<0, then 7,4+ T,=0, and (4.12) yields T,>7,. In a similar manner we
infer that 7,>T, if T,-+ T,=<0. Accordingly, we have proved that in a state
of stress such that v;>v,>v, and £,<0, 1, <0, % + %2— =0,

1 2

B-E = O-F, (4.13)

States of pure pressure are included as a special case.

Further analysis may reveal other connections between the B-E and O-F.
inequalities, but it is clear that they express, in general, distinct requirements.

Turning now to the inequalities that relate principal forces or principal
stresses to the corresponding stretches, we discuss them in terms of the Jacobian
matrix |J,,|, where J,, is defined by (2.19). The C-inequalities, as remarked
in §1, are sufficient that det || J,;(1, 1, 1)] >0. Continuing to adopt the assump-
tion that f,,( ) is a continuous function of the v,, from (3.9) we see that

IFS* & C & det || J,,| >0. (4.14)

Let us now consider conditions under which the matrix || J,,, or, equivalently,
the symmetrized matrix | ]|, is positive-definite. To begin with, restrict
attention to hyperelastic materials, which are characterized by the symmetry
conditions [,,=J,. If we assume the invertibility of the relations (2.15),,

3 That.O-F = B-E for states of pure tension was remarked by CoLEMAN & NoLL
[1959, §12].



the principal minors of |],,| are

8T, Ou,

ov, ' BT, det ||, det /- (4.15)
By (3.8);, (3.11), and (4.14) we infer that
C &
S >0 (4.16)
T-E* & '
E-T+

for all v,, where we use the notation “|4|>0" to denote the statement that
|A4] is positive-definite. None of the four conditions listed on the left-hand
side of the implication is redundant; if we leave off C, there remains the possibility
that det ||/, || <0, while if we leave off IFS*, it becomes possible that det | J,,| =0,
etc. Thus we have found a full and minimal set of simple, plausible, purely
static conditions equivalent to the statement that ||J,,| >0, for hyperelastic
materials.

This is not the end, however. If J,,=J,,, as we are assuming, there exists
a stored-energy function X(v,v,, v,) satisfying (2.18), and if }J,,]>0, that
function is convex for all stretches. Therefore,

~

- 3
2(51’1—)2'1_)3) _2(7’177)2'7}3) - ZlTa(aa— va) >0, (417)

provided only that ¥, 3=, for some a. Interchanging the ¥, with the correspond-
ing v, and adding the resulting inequality to (4.17), we infer that
3

2 (L, —T) @, ~v)>0, (4.18)
For a reason that will be made clear in §5, we shall call (4.18) the GCN, in-
equality. Looking back at (3.1), (3.2)s, (3.7), (3.10), and (3.12), we see that the
GCN, inequality is a similar but more general statement. Indeed, it includes
them all. If we assume that a natural state exists, by setting 7,==1 we obtain
T,=0 and so reduce (4.18) to (3.2),. If we choose the 7, as a permutation of
the v,, because of (2.16) and (2.17) the i are the corresponding permutation
of the T, so that (4.18) yields

3
Zl(Tn(a) - Ta) (vn(a) - va) > 0’ (419)

provided only that 7 (a) is not the identity permutation and that v,5=v, if a==0.
Permuting any two of the v, but leaving the other unchanged reduces (4.19)
to (3.12). Thus it has been shown that (4.18), here obtained as a consequence
of assuming that |[J;,| >0, implies the P-C and O-F inequalities®. Thus, in
addition to (4.16) we may now record the following implications, still for hyper-

4 It was shown by CorLEmAN & Norr {1959, §12] that (4.17) implies the O-I
inequalities. The argument leading from (4.17) to (4.18), (4.19), and their consequences
derived above was.shown to us by NoLL in 1960.



elastic materials:

PLC &
IFS* &

IJusl >0 {T-E* & (4.20)
E-T* &
O-F,

cC &

S+

IFS"& | pc&O-F. (4.21)

T-E* &

E-T*

(In order to include the P-C inequality in (4.20) and (4.21), one must assume
the existence of a natural state, which is not necessary for the other implications.)
In other words, if we are willing to accept principal forces rather than principal
stresses as the proper variables in terms of which static inequalities are to hold,
the following inequalities, all in the strengthened form denoted by a -, suffice:

Classical inequalities (C),

Invertibility of Force-Stretch relations (IFSY),
Tension-Extension inequalities (T-E*),
Extension-Tension inequalities (E-T+),

since all the other plausible requirements we have suggested follow from them
as consequences, by (4.16) and (4.21).

How much of all this can be salvaged for more general elastic materials?
First, the GCNg-inequality (4.18) can be stated, and the consequences drawn
from it above made no use of a stored-energy function. Moreover, setting ,=1,,
T,=v,, from (4.18) we derive (3.7). Further, from (4.18) we see that T,=T,,
a =1, 2, 3, isimpossible if v, 4= v, for some a. That is, the relations 7, =T, (v,,v,,v;)
must be uniquely invertible. Consequently we may regard the v, as functions
of the 7, in (4.18) and thus infer (3.10). In summary, then, we have shown that

P-C &
IFS &
GCN, = { T-E & (4.22)
E-T &
O-F,

so that the GCN, inequality implies all the simple statical conditions laid down
as plausible in §3, irrespective of whether or not there is a stored-energy function.
(Again it is necessary to presume the existence of a natural state in order to
infer the P-C inequality, but the other implications in (4.22) hold also for materials
without a natural state.) We have been unable to show that this implication
can be reversed.

|

Finally we turn to consider properties of the non-symmetric matrix |/,
“‘which is positive-definite if and only if its symmetric part, || Jiy, is positive-




definite. By writing out the principal minors of || J,5| we infer that

T-E* &
aT, Ty \2 oI, oT,
al>0e (G + 22 <452 52 & (4.23)

det "](ab) " >0.

This is not a satisfactory result, because there is no general connection between
the signs of det | ;5| and det || /5|, while invertibility of the force-stretch relations
requires that det |J,,[=4=0, so that from (4.23) we have no information as to
whether or not the IFS-condition holds. However, a little more can be learned
from (4.23). Since a2+ f2z=2a f, we see from (4.23) that

I

This is a reciprocal inequality, asserting that the product of transverse tangent
moduli can never be as great as the product of the corresponding tangent moduli
of extension. In particular, the lesser transverse modulus can never be so large
as the greater modulus of extension.

More can be inferred by considering certain identities relating any 3 X3
matrix A to its symmetric part, 8. Since

0T, 0Ty 0T, T,
ovp 07, dvg ovp

a$b. (4.24)

Apm= Skmli" Chmp Bp;

4.25
S,m = A(km)! BP = %e”q'A[q,] N ( )
writing 4 =det [|4,,,|, S=det|S,,,], we see that?
- Akk = Skk ’
AAY* =SS+ (B2, (4.26)

A=S+S,,B*B"

A matrix A is positive-definite if and only if its symmetric part, 8, is positive-
definite. If S is positive-definite, the right-hand sides of (4.26) are positive.
Thus if a 33 matrix A4 is positive-definite, its principal minors of orders 1,
2, and 3 are positive, although the converse does not hold, in general, unless
A is symmetric. Applying to |J,,| this simple but apparently not hitherto
noticed theorem on 3 X3 matrices, we infer at once that

IJus] >0 = C & T-E* & IFS* & E-T*. (4.27)

(Again existence of a natural state is necessary for C to be included on the right-
hand side, but not for the other conclusions.) However, from (4.26) we see that
unless J,,=J,,, it is not generally possible to reverse the implication, nor have
‘we been able to show that O-F and P-C follow from || Jas]>0. Results as com-
plete as (4.16) and (4.20) seem not to hold unless there is a stored-energy function.

With this much information about isotropic materials at our disposal, we
are now in a position to consider elastic materials in the broadest sense.

& More generally,
CAAYEm=S(S- 1)""‘+ ehmp S,q B+ B* B™.



We have given evidence favoring inequalities to be imposed upon principal
forces T, rather than on principal stresses ¢,. Of course, mathematically, one could
set up and study in the same way inequalities restricting the stress-stretch relations
(2.15), rather than the force-stretch relations (2.15),. Let us denote by ISS the
condition that the stress-stretch relations (2.15),, rather than the force-stretch rela-
tions (2.15),, be invertible. Then by simple proofs analogous to those given above
in connection with (4.18) we see that
IISS &

(t—u — ) (Ts— 1) > 0= l E:? g (428)
1

8
i Dee

B-E.

If a natural state is assumed to exist, we may add (3.2}, to the list on the right-
hand side, and of course the C-inequalities are included as a special case. If we set

at,

"m , (4.29)
we may seek conditions that |jj,,1>0, but the results are not satisfying, since even
for hyperelastic materials the matrix |ij,;}i is generally not symmetric, so that its
definiteness does not give such full information about its entries as does the defini-
teness of ||J,,I. Of course we can derive analogues of (4.23), (4.24), and (4.27), viz

fap=

T-E* &

. ot oty \2 ot ol

1 a Y a b

"]"b">0®. (31),, + 31)“) < v, oup
det |japy | >0.
C &
T-E* &

. 1SSt &

liasl >0 =>4 E-T+ & (4.30)
o oy _ ot oty o

dvy 0v, dv, Ovp’

where ISS* stands for the condition det Ilj,,ll+0. These difficulties account, in our
opinion, for the failure of BARTA® to obtain a satisfactory set of static inequalities.
Barta assumed as plausible the following conditions:

1. ISS

2. E-T*
01, .

3. <0 if a<%b (4.31)
8l

a
4. -E (‘1}1021}3)>0.

This last inequality, which asserts that increase of any principal stress always results
in.increase of volume, he replaced by its infinitesimal approximation?:

: 9
(v, 4+ v +vg) >0. (4.32)
oty

From (4.31); 5,4 and {4.32) he inferred that |Ijz311> 0, and hence ||j,;>0. From (4.30)
we see that the converse need not be true. In evidence favoring principal forces,

° [1957, 1].

7 It is unnedessary to use this approximation, as Barta does, in order to infer
from his original assumptions that any surface element parallel to an axis of increased
tension is also increased in area, since

dlog (v, vg) _ dlog(vyvyvy)  dlogu, >0
at, o oY at, ’
directly from his assumptions 3 and 4.




rather than principal stresses, as natural variables for simple requirements of inequality
in the finite theory, to the fragmentary nature of these results and the inappropriate-
ness of any approximation such as (4.32) in the finite theory may be added the fact
that neither ISS nor B-E holds for elastic fluids. Against BarTA’s specific assump-
tions 3 and 4 may be brought also the charge that they lack any evident use in other
contexts such as uniqueness and wave propagation.

5. The Coleman-Noll and GCN conditions

For hyperelastic materials of arbitrary symmetry CoLEmaN & NoLL! pro-
posed the following condition of restricted convexity:

2@ —Et) — (@2 >0 (5-1)
for each #* , and for every #* , of the form '

’?k,u=Gf»xm,a: (5.2)
where G is a symmetric, positive-definite tensor other than 1. This condition
will be called the C-N condition. Here X'(x* ,)=Z(C), the stored-energy function
of the hyperelastic material. .

Reversing the roles of :?"’a and x",a in (5.1), and then subtracting the result
from (5.1), we find that . _
(& —# ) (O —TF >0 (5-3)
for all pairs #* ,, #* ,, such that (5.2) holds and G==1. Here we have used the
stress-strain relation (2.4) in the equivalent form

_aX(xm p) =a_ 05(F™ p)
To=ge =" 5.4)
Inequality (5.3) is equivalent to inequality (5.1) if the domain of z (x”'a)
is convex. This can be seen as follows. First note that
g

Zﬂ;(ik,a) —’E(xk,a) =fa§fﬁ df""p, (55)

EL
where the path of integration in the 9-dimensional space of ™ 4 is any curve

joining #* , to Z* ., within the domain of definition of X. If that domain is
convex, we may choose as the path of integration the straight line

Eh.azx),a'i_}'(ik,a—xk,u), 0 A1, (56)

2 (* ,—#* ;) from each side of (5.5) and using the path (5.6),

-3

Subtracting
we see that

ax . da 25 -

‘x_—(xk,a_xk,u)—'"" P (xk,z_xk,a)l
3 N3
' 2z az di
~k _ ar

= f( a;k'a - axk,a)(x ,% xk,a) R

‘o o~ di
= [@e-To @~ 240

[1]

1 (1959, §8].



Since P o[- o+ ACK] 2™, (58)
the tensor in brackets being symmetric and positive-definite when 0<A<1,
the inequality (5.3) holds at every point on the path of integration, so that
the integrand is positive, and (5.1) follows.

It has been shown, then, that (5.1) and (5.3) are equivalent, locally, for
hyperelastic materials. For more general elastic materials, however, (5.3) is a
meaningful condition, which we may justly call the generalized Coleman-Noll
condition, or GCN condition.

Let us apply the GCN condition to the classical linearized theory. Choosing

=g, so that T,*=0 (assuming, as usual in the classical theory, that there
is’ a natural state), while x" «~ gt+ E*,, where E*, represents an infinitesimal
strain, from (5.3) we infer that #*™E,, >0 if not all the E,,,=0. That is, the
work done in any non-rigid infinitesimal deformation is positive. Therefore, for
materials of arbitrary symmetry,

GCN = all conditions customarily imposed in the linearized theory?.  (5.9)

In other words, the GCN condition implies that the beginning of any process
of deformation from the natural state will require work to be done, although
in finite strain there remains the possibility of certain workless deformations.
Thus the GCN condition may not rule out a certain kind of energetic instability
in large strain.

The proof of uniqueness given in connection with the GCN, condjtion can
now be generalized. Assume that two deformation gradients, x* .o and LA
related by a non-identical pure stretch, can lead to the same Piola-Kirchhoff
stress tensor, so that T,.*=T,*. From (5.3) a contradiction follows. That is,
if we write (2.1) in the form T=}(F), where F stands for s™ ;, then, for any

fixed F, §(GF) 4 (F) (5.10)

for any positive-definite, symmetric G other than 1. In particular, by choosing
F=1 we infer that a unique value of T corresponds to an assigned pure strain
from the reference configuration. More generally,

GCN = invertibility of the stress-strain relations in pure strain,  (5.11)

as indicated above, although it certainly does not suffice for a unique Cauchy
stress t to be determined by a given strain and rotation?3.

2 By ‘“‘the linearized theory” we mean here the theory of Caucny, in which there
need be no stored-energy function. Contrary to widespread misconception, the
requirement that work must be dome in every infinitesimal deformation does not
imply that there is a stored-energy functiorn. The condition of positive work demands
that fmP9E, E, > 0 for every symmetric, non-vanishing E. This requirement restricts
the symmetric part of the tensor of linear elasticities, namely, %(lFm?? +If’q’“")
leaving the skew-symmetric part, namely L (kmp9_1pakm) entirely unrestricted since
it contributes nothing to the work done in any deformation. For there to be a stored-
energy function, it is necessary and sufficient that Fmi2=[pqkm

3 If it did, we should infer that GCN, =det ||j,;lI> 0 for isotropic materials, and
we know this is not always true. For example, in an elastic fluid det |ij,;,lI==0, but
the GCN, condition may be satisfied. More generally, (5.10) does not imply, ingeneral,
that the equation T=§(GF) is invertible for G when T and F are given.



For the special case of isotropic materials, in a principal co-ordinate system
T=diag(T;, T,, T;) R and x™ ;=diag(v,, v;, v;) R, where R is a rotation matrix.
To apply (5.3), we take ™ ;=Gdiag(v;, vy, v3) R. In the special case when G
has the same principal axes as does the original strain, ¥” ;=diag (v, 7,, 73) R,
and in this special case (5.3) reduces to (4.18). That is, for isotropic materials,

GCN = GCN,. (5.12)

Therefore, by (4.23), the GCN condition implies all the static inequalities laid
down as plausible for isotropic materials.

~ Can the implication be reversed? That is, is GCN, equivalent to GCN for
isotropic materials? In a narrower sense the question was raised by COLEMAN
& Norr4, who showed that for isotropic hyperelastic materials

C-N=> f( ) is convex, (5.13)

and they asked if, conversely, conveéxity of 3 () implies the C-N condition.
Bracc & CoLEMAN® constructed a counter-example showing that the answer
is no. It follows a fortiori that

GCN,=> GCN. (5.14)

6. The C-N* and GCN* conditions
We now recall the connection between the convexity of a function and the
definiteness of its Hessian form. If a twice continuously differentiable function
F(x, #2, ..., P ) of N variables xf, I'=1, 2, ..., N, satisfies the inequality

oF (x)
oxT

F(x) — F(x) — i (%" — #")

r=1

>0 (6.1)

for all T other than @ itself, .e., if the surface F(2)=0 is (strictly) convex at @,
then the Hessian matrix is positive-semidefinite at a:

otF
=
Il oxl ox4|| — 0, (6.2)
while a sufficient condition for (6.1) to hold is
0B
o) (6.3)

in the notation already used to denote a positive-definite matrix. Moreover, it
has been shown! that.if F( ) is convex at every point & in an open set, then the
condition (6.3) can fail at most on a nowhere dense set. At a point where (6.3)
holds, we may say that F is strongly convex.

Similar results hold for the more general inequality
N
rgl(zf — ") (Fr (&) — Fr () >0 (6.4)
for all T other than @. Here it is N functions Fp, not necessarily the derivatives
of a single function, that are restricted. We can see easily that a sufficient
4 [1959, §12].

8 [1963].
1 BERNSTEIN & ToupIiN [1962, 1, Théorem VI].



condition for (6.4) to hold is that the Jacobian matrix be positive-definite:

OFr(x)
oxd

|| >0, (6.5)

or, equivalently, its symmetric part shall be positive-definite, while a necessary
condition is that the Jacobian matrix be positive semi-definite. If a trans-
formation & ->F(x) satisfies (6.4), we shall call it a convex transformation, and
if it satisfies the stronger condition (6.5), we shall call it a strongly convex trans-
formation. 1f 8F./0x"=0F,/0x", then there exists a function F( ) such that

=0F/8x", and if the transformation @ —F is convex, then F( ) is a convex
function, and vice versa, efc. For example, the GCN, inequality (4.18) asserts
that the transformation from principal stretches to principal forces is a convex
transformation; in consequence the stored-energy function, if it exists, is a
convex function of the principal stretches.

Returning to the C-N and GCN conditions, we see that the essential restric-
tion* , =Gk »™ , where G is symmetric and positive-definite, prevents immediate
application of the foregoing results concerning Jacobian and Hessian matrices.
Rather, we define F* as a function of the two tensor variables G}’ and ¥ s as

ollows: F2(GY, & 5) =02 (GT &7 p), (6.6)
so that, in particular, E*(8}, 27 ;) =T,%, by (5.9). Then the GCN-condition (5.3
s | P pr X 8 g » D)

is equivalent to (an . 6?,,) xm,a(ﬁa (GZ" xq‘ﬂ) — E*(8], x‘i,p)) >0, 6.7)

for each fixed #* ,, and for all G other than the identity. Comparison with
(6.4) shows that for each fixed ™ ,, the transformation G5 —x™ , E* is a convex
transformation in every neighborhood of the point G =1 in the 6-dimensional
space of symmetric tensors. The corresponding Jacobian matrix is

il ”m o D r A a[)ka (G; xs.ﬂ)
26 B G A )|, = -aT\a=u

5
%Gy - (6.8)
:xmua'k 6’6‘1 sﬁ:go_Bkmpq,
by (5.9) and (2.9). Accordingly, B*"#?G,,G,,=0 for all symmetric G, or,
equivalently, BUkm (pq) B hp, >0 6.9)

for every h. Let us call the corresponding condition of strong convexity, viz

Bt @D h,,>0 for every non-vanishing h, (6.10)

the GCN*condition®, or, when there is a stored-energy function, simply the
C-N* condition. Conversely, if (6.10) holds for each x”'a in a region, from (6.8)
it follows that, a fortiori, the Jacobian matrix calculated for an arbitrary G
sufficiently near to 1 is positive-definite for each fixed xk . Hence the trans-
formation G°—>x’” « B is convex in a neighborhood of G = 1 It has been shown,

then, that GCN* = GCN, and C-N*=C-N. (6.11)

These implications cannot be reversed.

2 For hyperelastic materials (6.9) was derived from the C-N condition by ToupIN
& BERNSTEIN [1961, 5, §3]. They determined some consequences of the stronger
condition (6.10), which was then set up for general elastic materials by TRUESDELL
[1961, 6, Eq. (10.4)], who found its implications upon wave propagation.



For isotropic materials we can put the GCN*-condition into an immediately
plausible static form. The condition (6.10) asserts that a certain 6 X6 matrix M,
having as components the 36 possibly distinct components of B#™ 9 is positive-
definite. For an isotropic material, in a principal co-ordinate system we may
calculate this matrix M explicitly by aid of (2.11) and (2.12), finding that

9%, Ao LY
Va0 00 vy du, vy, Oy 0 0 0
a1, v oen, 1o
vy 9y, v, v, By, v, 80y 0 0 0
| L % 19 v 9
M= vy 01 v, O, v v, O 0 o 0 6.12)
0 0 0 Ay 0
0 0 0 4,
0 0 0 0 4,
where
. (t—t)(vited) t 6.1
Al_ ’2(02__”%) 4 (t2+ 3)’ ( ) 3)

etc. The 3 x3 matrix in the upper left-hand corner is proportional to v,, [,
and hence is positive-definite if and only if |[J ;]| >0. Thus

GCN* & (|[[as] >0) & (Ar>0). (6.14)

In §4 we have analysed the condition |J,,|>0. It is natural to ask if the
condition A>0 follows from it. L. BRAGG has shown us a proof that such is
not the case. Thus a full understanding of the GCN* condition would require
statical interpretation of the inequalities 4,>0. While we are not able to
construct such an interpretation in general, we can go some way toward it. Let
the principal stretches be ordered by number: v,>v,>v;. If f(r) is the function
defined by (4.5), and if g(r) =f(r)jr= (r2+ 3)/(1+ 37?), then directly from (6.13)
and (2.13) we see that

A3>0(:)f( ‘)T1>T (:)g( )t > 1y,
A, >o<:>f( )T2>T©g( )t >, (6.15)
A >0@T>/( )T®t1>g( )b

In §4 we showed that f(r)>1 if »>>1 and that 0<f(r)<<1 if 0<r<1. Accord-
ingly, if the O-F inequalities hold and if 7,20, T,=20, we infer from (6.15)
that 4,>0, I"'=1,2,3. Since 0<g(r)<1 if r>1 but g(r)>1 if 0<<r<1, from
(6.15) we infer3 also that if the B-E inequalities hold, and if £, =<0, £,<0, then
Ap >0, I'=1,2,%. Therefore, if v,>v,>v,,

O-F&(t, = 0) & (t, = 0)

or - - >:> Ap>0. (6.16)
B-E&(l,<0)& (= 0)

3 In detall we multiply the inequality g(v,fv)>1 by the ineguality —#> —4,
recalling;that —#,20. By (6.15),, then, A4,>0. Next we multiply the mequallty
1> g (vy/v) DY the inequality —f#> —t,. Since —7#, =0, by (6.15), it follows that
A;>0. A parallel argument, using the assumptlon that —t, 20, shows that 4,>0.



If we now assume that botk the O-F and B-E inequalities hold, we see that no
states of stress are excluded by the further assumptions listed in (6.16). Indeed,
if 4,<<0, by the B-E inequalities it follows that ¢;<<0. Likewise, if #,>0, by
the O-F inequalities it follows that #,>0. Thus we have shown that

O-F&B-E=A4,>0. (6.17)
The implication cannot be reversed. From (6.14) and (6.17) it follows that
(/s> 0) & O-F & B-E = GCN*, (6.18)

where again the inequality cannot be reversed.

Returning to the complete result (6.14}, we remark that the formal conditions
I/25] >0 and 4;>0 deserve notice, since they afford an immediate and simple
test for finding whether or not any given stress-strain relation for isotropic
materials satisfies the GCN* condition. The two parts of the test refer to different
aspects of the stress-strain relations. The condition |J,,| >0, asserting that the
transformation from principal stretches to primcipal forces is strongly convex, ex-
presses a comparison of the forms of the stress-strain relations at pairs of points,
while the independent conditions 4 ,>0 restrict those forms at a single point.
To make this latter fact particularly clear, observe from (3.18) and (6.17) that

E= A4, >0, (6.19)
and hence by (6.18) that
(Vas]>0) & E = GCN*. (6.20)

It has alrcady been mentioned that what empirical evidence there is seems to
favor the E-inequalities (3.17), which are no more than statements of sign for
the coefficients in a particular representation of the stress. In a case where
these simple and immediate inequalities are satisfied, one has only to test the
Jacobian matrix |J,,] in order to see if the GCN* condition is satisfied.

A different chain of implication may be formed from (6.11), (5.10), and (4.22):

P-C &
IFS &
T-E & (6.21)
ET &
O-F.
By use of (6.14) and {4.28) we may strengthen- (6.21) a little4:
P-C &
IFSt &
GCN*={ T-E* & (6.22)
E-Tr &
O-F.

In view of the remark following (6.14), this implication cannot be reversed.

GCN* = GCN = GCNy =

¢ The implication C-N* =T-E* is equivalent to a theorem on wave speeds asserted
by TourIN in his Newcastle lecture of 1961; the more general result GCN+ = T-E*
was proved by TruksprrL [1961, 6, §10], again in the context of wave speeds.



The results in this section up to now, including the major theorems schematized
by (6.14), (6.18), (6.21), and (6.22), are valid for all isotropic elastic media,
whether or not there be a stored-energy function. (As usual, existence of a natural
state is presumed so as to include the P-C inequality but is unnecessary for the
others, in each case.)

For hyperelastic materials, some stronger results follow, since the condition
|7.5] >0 is equivalent to simple static inequalities. Thus (6.14) may now be
replaced by

C

IFS*
T-E+
E-T+
Ar>

& C-N+ (6.23)

O RRRR

This result cannot be weakened, since Brars & CoLEMAN® have constructed
a strongly convex stored-energy function that does not satisfy the C-N* condition;
that is, a function such that ||J [ >0 but 4;< 0 for some strains, despite the
fact that the O-F inequalities hold. Since, by (4.20), ||/,s] >0 = O-F for hyper-
elastic materials, the one-way implications (6.18) and (6.20) may be simplified

a little: E& } {B-E &
~ =¢ ~

C-N+, 6.2
2 () convex }:> (6.24)

2 () convex

affording simple and immediate tests sufficient to ensure that tlre C-N* con-
dition holds.

The implications revealed in this section are the main results of our study.
To us it seems particularly enlightening to have replaced the C-N* condition
by an equivalent requirement of five independent, simple, static inequalities,
all but the last of which (4,>0) are immediately plausible. For the more
general theory, (6.22) shows that the GCN* condition covers by its implications
a full set of plausible static inequalities. That is, the static response of an isotropic
elastic material satisfying the GCN* condition will not exhibit any phenomena
contradicting the principles we have laid down as physically natural for static
deformation. Those principles, however, do not compel us to adopt the GCN*
condition: other generalizations of the C-N* condition may serve just as well.

7. The condition of strong ellipticity

A simple invariant condition, meaningful for all elastic materials, is the
requirement that the differential equations of equilibrium be strongly elliptic.
This S-E condition may be expressed in the form®

Bl L, L, >0 (7.1)

for arbitrary non-vanishing vectors I and L. While the main mechanical signi-
ficance of this condition is undulatory, since for hyperelastic materials it is
necessary and sufficient that corresponding to each direction of propagation

5 [1963].
1 Derived by TouriN & BERNSTEIN [1961, 5, §3] for hyperelastic materials and
more generally by TRUESDELL [1961, 6, Eq. (10.3)].



there exist at least t' = real amplitudes with positive speeds of propagation,
it is worthwhile to determine its consequences for statics. For the linearized
theory of isotropic materials, (7.1) reduces to (1.2), weaker than (1.1) and hence
too weak to ensure physically reasonable response in statics. On the other hand,
although (1.1), and hence also the C-N condition, implies the S-E condition in
the linearized theory, TourIN & BERNSTEINZ have constructed an example in
which, for a certain range of strains, the C-N condition is satisfied but the S-E
condition is not. Thus, generally,

CN=pS-E, S-E=HCN, (7.2)

and in these statements of non-implication we may replace C-N by C-N+, GCN,
CGN,, or GCN*, if we please. Although the results following from a condition
of CoLEMAN & NoLL's type must therefore be different in general from those
following from the condition of strong ellipticity, nevertheless the two conditions
do have certain consequences in common. For example, in hyperelastic materials
the C-N condition is sufficient that for any given direction of propagation there
be at least one squared wave-speed that is positive, and for principal waves in
isotropic materials this speed corresponds to the longitudinal waves?®. We shall
now see this latter fact and some others of a like kind in the present, purely
static, context.
For isotropic elastic materials, substitution of (2.12) into (7.1) yields the
inequality
" BELIPL, L >0 (7.3)

for arbitrary non-vanishing vectors I and L. Let L be a unit proper vector
of B, so that B?* L ,.=12L7, say. Then (7.3) becomes '

T P L, L' >0 (7.4)

for all non-vanishing vectors /. In a principal co-ordinate system, this condition
assumes the form
T“uli‘*'T121213+T1313l§>0;. (7.5)
equivalently,
my,>o, m%,>o0, 13%,>0. (7.0)

From (2.11) we see that (7.6) is equivalent' to the T-E* and B-E inequalities.
That is, for isotropic materials*

S-E=ST-E* & B-E. (7.7)

While T-E* & B-E imply (7.4), they do not imply the S-E condition, since (7.4)
is the special case arising when L is a proper vector of B. As S-E = C, it follows
that

S-Eg= P-C or IFS, (7.8)

2 [1961, 5, §3]. Alternatively, we may note that the C-N condition may be
satisfied by an elastic fluid, but the S-E condition never ¢an be.

3 TRUESDELL [1961, 6, §§10, 12].

4 The implication S-E =>B-E was first derived, apparently, by Haves & RivLiN
[1961, 3]. They considered only hyperelastic materials. TRUESDELL [1956, 2] re-
marked that Ericksen & Tourin had shown him a proof that S-E =T-E for hyper-
clastic materials.




since the C-inequalities are necessary in order that either of the inequalities on
the right-hand side of (7.8) may hold.

While the difference in nature between the S-E and C-N conditions is suf-
ficiently revealed by comparing (7.7) and (7.8) with (6.23), it would be worth-
while to find a complete statical interpretation for the S-E condition in isotropic
materials. Although it is easy to write out the form assumed by the S-E con-
dition in a principal co-ordinate system, we have been unable to interpret the
result®.

It is interesting to contrast the two main conditions when they are expressed
in terms of a common quadratic form:

B py by >0, (7.9)

where it is only the domain of non-vanishing tensors h that differs in the two
cases, namely,
GCN*: all symmetric b

. (7.10)
S-E: all h of rank 1.

The presence or absence of a stored-energy function seems not to affect
these comparisons in any way.

8. Three uniqueness theorems

As was pointed out by HiLLY, the formal steps used to derive KIRCHHOFF'S
classical uniqueness theorem may be followed also in the [inite theory. Since
the equations of equilibrium may be written in the form?

]‘ka;a—}—()olk‘:or (81)

f, being the field of body force and g, the density in the reference configuration,
use of the divergence theorem leads at once to an identity of KIRCHHOFF'S type:

JTE =T @ o — 2h,p) dVy
#, - _ 8.2)
:wf oo(fy — 1) (#* — u*) dVy *f'g @ — o) (T, — T, 4S,,

where %, is a region in the reference configuration and where #* is the displace-
ment vector. In this identity a bar distinguishes quantities associated with a
second deformation-gradient field ¥* ,. Suppose now that there arc two solution-
pairs, (#*,,, T,F) and (z*,,, T,?), to the samc mixed boundary-value problem.
Then f,=f, in 4%,, and on 84, either #*=u* or T,2dS,=T>dS,. From (8.2)

5 Likewise ZORSKI [1962, 6, §2] gives up his attempt to interpret the S-E con-
dition directly, resting content with consequences and spccial cases. An interpretation
in terms of steady velocity ficlds has been constructed by Hir [1962, 5, §4(i)].

1 11957, 3, §2). HiLL, presuming the material to be hyperelastic, observed from
the corresponding special case of (8.3) that convexity of 2( ) in the 9-dimensional
space of the #%,, would suffice to yield unqualified uniqueness of solution to the
general mixed boundary-value problem and hence is too strong a restriction to be
imposed on all hyperelastic materials for all states of strain. Below we cunsider
his result in generalized form.

2 Apparatus sufficient to derive (8.1) and (8.2) is given [1960, 3, §§19, 210,
App. 20].



it follows that

gf(Tk“—Tk“) (F o — 7 o) AV =0. (8-3)
This condition may be satisfied in several ways: (1) the two solutions are identical,
(2) the stress relations may be such as to allow more than one deformation to
correspond to identical stress fields, so that %* , = x",a but T*=T2, (3) the two
solutions are distinct in such a way as to give the-integrand both positive and
negative values and zero mean value.

From (8.3) and (5.3) we see that the GCN condition contradicts (8.3) if
% ,=Gha™ , where G is positive-definite and symmetric. In order for such
a condition to hold over a region, it is necessary and sufficient, since Ek'a and
%™, are both deformation gradients, that G also be a deformation gradient.
Since G is symmetric, the displacement that gives rise to it must be derivable
from a potential: ,=® ,, where @ is a scalar. Such deformations are called
potential deformations [1960, 3, §§36, 38]). We have thus established Uniqueness
Theorem I: In an elastic material such that the GCN condition holds for all strains,
a given mixed boundary-value problem cannot have two distinct solutions that differ
from each other at each point by a pure potential deformation. This type of uni-
queness is consistent with the general view of buckling, since the common and
familiar buckled states certainly differ from the corresponding ground states
by large and non-uniform local rotations. As a trivial corollary of the above
theorem, or directly from the fact that GCN = IFS, we may infer that, for an
elastic material as specified in the theorem, a given mixed boundary-value problem
cannot be satisfied by more than one homogeneous strain.

To apply the above theorem we must be sure that the GCN condition is
satisfied by all strains. We can weaken this requirement if we agree to consider
only small strain superimposed upon a given, possibly large, strain, and if we
replace GCN by GCN*. For if 2™ ; — 2" 4 is small, by (2.9), we see that

Tk“ T~ Akmaﬁ (7"‘,5 - xm,ﬁ) , (8.4)

and if also #* ,=G},x™ , where G is a symmetric tensor very nearly equal to 1,
then
g X® (B, — & ) =8, (G — &) ~ ey, (8.5)

where e is an infinitesimal symmetric tensor. Thus by use of (2.9) we see that
(T —T9) (@, — 2 ) ~ —%‘-’- B 6y g (8-6)

The foregoing calculation is formal and approximate. When we look back over
it, we see that in fact any possible consequence of it may be obtained better
from the rigorous analysis in §6. In particular, from (8.6) we might think that
the GCN condition implies the inequality (6.10), but we know already that
such is not the case, for only (6.9) can be proved rigorously. We have included
the calculation leading to (8.6) only so as to make contact with the type of
formal argument favored by many who cultivate mechanics today. Going back
to the rigorous results in §6 and applying them directly to (8.3), we infer the
following Uniqueness Theorem H: Let an elastic material bs subject to a partic-
ulay strain such that the GCN* condition is satisfied everywhere in a certain region;



then the mixed boundary-value problem for that region has at most one solution
such that the difference between the resulting strain and the given strain is an in-
finttesimal pure strain. Note that this theorem does not yield a condition of
stability. It remains possible that there may exist, corresponding to the same
boundary conditions, other infinitesimal additional strains that are not pure.
Thus, even for infinitesimal deformations (provided they be from a state of
equilibrium subject to non-vanishing stress®), the GCN* condition is not so
restrictive as to disallow infinitesimal rotation as a possible mechanism for
instability.

Despite a formal similarity, the foregoing considerations are not to be confused
with the result of HiLL*, who remarked that, as follows from (8.3) and (8.4), the
condition

Akmaﬂ Fka m13> 0 (87)

for arbitrary F is sufficient for unqualified uniqueness of solution in the problem
of small deformation superimposed upon an arbitrary deformation. HiLL put for-
ward the inequality (8.7) as a possible criterion for stability. Unfortunately, it is
self-contradictory. Indeed, if (8.7) holds, then the transformation from F to T=¥§ (F)
is strongly convex:

trace {{§ (F)—h (F)] [FT—FT]}>0, (8.8)

for the fixed F corresponding to the given deformation and for arbitrary F differing
sufficiently little from F. The inequality (8.8), however, is inconsistent with the
principle of material indifference, which requires that®

H(Q F)=Q h(F) (8.9)

for any F and any orthogonal Q. To show that (8.8) and (8.9) are inconsistent, con-
sider an infinitesimal rotation Q of a material having a natural state. Set F=1,
so that h(F)=h(1)=0, and take F=Q. Then by (8.9) we have

b (F)—9(F)] [FT—FT]=H(Q) (QT—1),
=QH(1)(QT-1), (8.10)
=0.

Hence (8.8) can never be satisfied by all pairs F, F, or even by all pairs F, 1 as
appropriate to the classical linearized theory. Congequently, Hiri's sufficient con-
dition for uniqueness is empty.

3 This qualification is explained as follows. To derive (8.6) we have assumed
that %* , =Gk #™ ,, where G is symmetric. This restriction, however, is sufficient,
not necessary, for the truth of (8.6). From formulae given by TRUESDELL [1961, 6,
Eq. (6.10)] it is clear that while (8.6) does not hold in general for arbitrary z* ., it
does so hold in the case when 7,2=0, 7.e., for infinitesimal strain from.the natural
state. Thus, as follows more directly from (5.9), the GCN condition suffices to insure
uniqueness of solution in the mixed boundary-value problem of the linearized theory,
without qualification.

41957, 2, §§2, 3]. The more eclaborate analysis of GREEN & ADKINS [1960, 1,
§9.3] seems to fall back to the same observation. The remarks of these three authors
might give the unwary reader the notion, wholly false, that the uniqueness theorem
of ERiICKSEN & ToupiN [1956, 1, §7] amounts to no more than this, although a
later paper of HiLL [1962, 5, §4] clears the point. HiLL's remark that there is no
reason. to expect uniqueness to fail when his condition (8.7) fails is borne out by
our, proof that his condition can never hold.

5 NoLL (1955, Eq. (15.2)]. Those who prefer a more formal argument may derive
(8.9) from (2.1).



The reader may ask, when KircHHOFF’'s argument goes through perfectly in
the linearized theory, why does HiLL's, so closely modelled upon it, fail for the
finite theory? The answer is that KIRcHHOFF began with an identity from which
the rotation had already been eliminated; hence his result satisfies, trivially, the
invariance requirements of the linearized theory. In HirLL’s starting point (8.2), or
(8.3), the rotation is very much in evidence, and the condition (8.8) disregards the
invariance of elastic response under rigid-body motion. Despite a formal similarity,
Hirr’s argument and KIRCHHOFF’s are not conceptually parallel. A true extension
of KIRCHROFF’s theorem is given by our Uniqueness Theorem II.

It should be remarked that most of HiLL’s work refers to the weaker inequality

[ A, 2Bk um, g d Vy>0 (8.10A)

for all not identically vanishing vectors u that vanish on 24,. The condition (8.104)
is indeed sufficient for uniqueness, since the difference u of any two solutions to the
same displacement boundary-value problem for infinitesimal strain superimposed
upon a given strain must satisfy the condition

J AP, g g V=0, (8.10B)

as follows from (8.4) and (§.3). Between (8.10A) and (8.10B) there is a plain contra-
diction. As remarked by HirL in a later paper®, a uniqueness theorem in the usual
sense of the term can be inferred by making further assumptions:

1. The given strain is homogeneous.

2. The S-E condition holds at each point of %,.
It can then be proved that (8.10A) does hold. The resulting assertion of uniqueness
is included as a special case in our Uniqueness Theorem III, below.

Uniqueness Theorem II is not to be confused with the uniqueness theorem
that results from imposing the S-E condition. From (2.9) it is easy to show
that (7.1) is equivalent to

AP P, 25> 0. (8.11)

Now the differential equations satisfied by #*, the small additional displacement
from the given deformed state, are of the form

(Akmaﬁitm,ﬂ);a+gobk:0; (8'12)

where the coefficients 4,,*# are known functions of position, and where the
body force g, b, is likewise prescribed. From a known property of strongly
elliptic differential systems we may read off” Uniqueness Theovem III: Let

8 [1962, 5, §4(ii)).
7 For hyperelastic materials, ERICKSEN & ToupIN [1956, 1, Th. 1] obtained this
result by direct proof. An elastic material is hyperclastic if and only if

Ak maﬂzAmkﬁa'

This condition renders the operator A4,,*# self-adjoint and hence has numerous
important consequences, but it is not needed for the general theorems of existence
and uniqueness proved by BRowDER [1954, 2], MorREY 71954, 3], and others.
Perhaps we should remark that these theorems cannot be applied in any obvious
way to the general displacement boundary-value problem of elasticity, since they

do not allow A4,,*f to depend upon 19,,. Researches on the theory of partial dif-



an elastic material be subject to a particulay strain such that the S-E condition is
satisfied everywhere in a certain region; then the displacement boundary-value
problem for that region has at most ome solution such that the difference between
the resulting Strain and the givem strain 1is. imfinitesimal. Unlike Uniqueness
Theorem II, this theorem is connected with criteria of stability, as shown by
the researches of HADAMARD and DUHEM, to which we referred at the beginning
of this paper, and by the various known results concerning wave motions®.
It cannot be extended to the stress boundary-value problem, as shown by
results summarized in Footnote 3 to §1.

Be it noted that existence of a stored-energy function is not presumed for
any of the three uniqueness theorems just stated and proved.

9. General conclusions

In case the logical threads tracked in the foregoing pages may seem in-
tricate, Here we select for repetition a few of the conclusions we deem most
important,

Two classes of conditions have been studied. One consists in the condition

" of strong éllipticity (S-E); the other, in various closely related but not equivalent

forms of the condition of Coleman & Noll (C-N).” Neither class includes the
‘other, though they have a domain of common validity. In particular, for the
classical linearized theory all the conditions considered in this paper follow as
consequences of the classical inequalitiés (1). Our study concerns mainly the
second class.

As the most general form of condition (GCN) of the type first suggested by
CoLEMAN & NoLL, we propose the statement that the transformation from the
deformation gradient xj‘ to the Piola-Kirchhoff stress T,* be a convex trans-
formation if the local rotatlon is kept fixed. It follows that certain combinations
of elasticities must yield a quadratic form in six variables that is positive-definite
.except on a nowhere dense set.. The stfonger requirement obtained by disallow-
ing altogether such an exceptional set we call the GCN* condition. For an
isotropic material, whether or not it have a stored-energy function, the GCN*
condition suffices to insure that:

b

ferential equations do not seem yet to approach the level of generality necessary
for study of classical finite elasticity as a branch of analysis. Likewise the specific
‘work of STOPPELLI [1954, 4] does not cast any light on our problem since, referring
only to a sequence of applied loads approaching zero, it finds that a sufficient con-
dition for existence and uniqueness of solutions to a corresponding sequence of stress
boundary-value problems is the existence and uniqueness of solution to the resulting
linearized problem.

According to ZORSKI [1 962, 6, Introd.] “... the condition of strong ellipticity
‘ensures both the uniqueness and existence of the first boundary value problem
(displacements described on the houndary); these results can easily be extended
to include the second and the third (mixed) boundary value problem.” However,
this assertion cannot be true, since, as was mentioned in footnote 3 to §1, strong
ellipticity does not suffice for uniqueness of solution to the stress boundary-value
problem even in the linearized theory.

8 TourIN & BERNSTEIN [1961, 5], HAvEs & RivrLIN [1961, 3], but note especially
the conjecture of TRUESDELL [1961, 6, end of §5].



1. If there is a natural state, then, in mean, pressure is needed to effect
compression and tension to effect expansion from that state (P-C).

2. The force-stretch relations are uniquely invertible and in fact have a
positive Jacobian (C & IFS*).

3. The curve of principal force T, against the corresponding principal stretch
v,, when the other principal stretches are kept constant, slopes upward (T-E*).

4. The curve of principal stretch v, against the corresponding principal force
T,, when the other prinicpal forces are kept constant, slopes upward (E-T*).

5. The greater principal force corresponds always to the greater principal
stretch (O-F).

6. If, starting from a given state of strain, possibly severe, two different
small deformations corresponding to the same mixed boundary values are possible,
then they cannot differ by a pure strain (Uniqueness Theorem II).

The converse proposition is of two parts. In order for the GCN* condition
to hold, it suffices that 4,>0 and that the Jacobian matrix of the trans-
formation from principal stretches to principal forces be positive-definite. The
former condition, while indeed purely statical, we have been unable to interpret
in general, although we have found simple inequalities sufficient to ensure it.
The latter, in the case when a stored-energy function exists, we have shown
to be equivalent to the assertions numbered 2, 3, and 4.

The results we have presented seem to us to add weight in favor of condltlons
of CoLEmaN & NoLL’s type as a material requirement, a requirement, that is,
to be imposed on the form of the stress-strain relations, for all strains of all elastic
materials, or at least, let us say, as a hypothesis to be used when normal behavior
is to be described by the mathematical model. The general theory of waves,
supplemented by Uniqueness Theorem III, seems to us to show, on the other
hand, that the condition of strong ellipticity is not a material condition but
is rather a criterion of stability for a particular strain of a particular material.

We are grateful to Messrs. NoLL and BRrAaGG for detecting errors in an earlier
version of this paper and for informing us of various complementary results. The
work of TRUESDELL was supported by a grant from the U.S. National Science Foun-
dation.
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