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Abstract

This paper presents a measurement-based availability
study of networked Unix systems, based on data collected
during 11 months from 298 workstations and servers
interconnected through a local area computing network.
The data corresponds to event logs recorded by the Unix
operating system via the Syslogd daemon. Our study
focuses on the identification of machine reboots and the
evaluation of statistical measures characterizing: a) the
distribution of reboots (per machine, time), b) the
distribution of uptimes and downtimes associated to
these reboots, c) the availability of machines including
workstations and servers, and d) error dependencies
between clients and servers.

1. Introduction

Today, computing environments are mainly based on
distributed and interconnected systems and networks.
These computing environments are designed to support
different sorts of traffic, from interactive terminal and mail
service, to printing and file service. The analysis of
failures occurring in such environments is needed to
ensure that the availability and quality of service provided
to the users fulfils their expectations.

There is no better way to understand the dependability
characteristics of an operational computing system than by
direct measurement, analysis and assessment. Measuring a
real system means monitoring and recording naturally
occurring errors and failures in the system while it is
running under user workloads. The data collected from
such measurements provides valuable information on
actual error/failure behavior, and can be used to quantify
dependability measures and identify system bottlenecks.

Error logs maintained by the operating systems
(sometimes called event logs) have been widely used to
characterize the behavior of computing systems in the
presence of faults and failures. Event logs are notoriously
difficult to analyze. They include a large set of
information about the occurrence of different types of

events in the corresponding environment. Some of these
events result from the normal activity of the target
systems, whereas others are recorded when errors and
failures affect local or distributed resources. The latter
events are particularly useful for the availability analysis.

Although several studies have been published on
dependability analysis based on error logs, there is still a
lack of papers addressing networked systems. In this
paper, we present a measurement-based availability study
of networked Unix systems, based on data collected
during 11 months from 298 Unix workstations and
servers in a local area computing network. The target
systems run different SunOS and Solaris versions. The
data corresponds to event logs recorded by the Unix
operating system via the Syslogd daemon.

Identifying trends from large event logs is a long
process that requires thorough manual analyses. In the
current stage of our study, we have focused on the identi-
fication of machine reboots and the evaluation of statisti-
cal measures characterizing: a) the distribution of reboots
(per machine, time), b) the distribution of uptimes and
downtimes associated to these reboots, c) the availability
of machines including workstations and servers, and d)
error dependencies between clients and servers.

The paper is organized as follows. Section 2 discusses
related work. Section 3 presents the target system
architecture. Section 4 presents the strategy that we
developed to collect the data. Section 5 focuses on data
processing and presents several results obtained from the
data. Finally, Section 6 concludes the paper and presents
future work.

2. Related work

Measurement-based dependability analysis of computer
systems, using data collected from the field, or event logs
maintained by the operating system, have given rise to a
wide variety of research. Various types of systems have
been studied, including mainframes and largely deployed
commercial systems [3, 4, 6, 9, 11, 13, 15, 18]. Also,
several techniques have been proposed to support the
processing and analysis of large event logs [5, 7, 17]. A



comparative analysis of some of these techniques is

reported in [2].

The main issues addressed in these studies include:

» Investigation of the classes of errors/failures reported
in the field, their relative importance, and the
correlation among errors;

* Analysis of error/failure inter-arrival times and
recovery times distributions;

* Correlation between failures and system workload;

* Analysis and modelling of software and hardware error
detection & recovery mechanisms and their efficiency.

An extensive survey detailing these issues is presented
in [1].

Distributed and network-based computing systems are
notoriously difficult environments in which to detect and
diagnose faults. The research reported in [10] provided an
elaborate discussion on the problems related to the
diagnosis and analysis of network anomalies and proposed
a methodology based on the monitoring of performance
degradation or deviations from expected behaviour as a
means for characterising dependability related problems in
networked environments. Dependability analysis of
networked applications in distributed environments
requires the definition of representative fault models and
meaningful dependability measures that characterise the
system behaviour as perceived by the users. An example
is provided in [19] where a framework for analysing and
measuring availability as perceived by the users in client-
server distributed environments is defined and illustrated
with data collected from different sources (customers,
network component providers, university studies, etc.).
The lack of real data collected from networked distributed
systems is one of the reasons for the lack of published
results on dependability analysis and modelling of
interconnected systems. Examples of such data are
reported in [16], where event logs collected from a
network of 69 Sun workstations monitored over a period
of 32 weeks are analysed, and in [8], where availability
analyses are carried out based on event logs collected from
70 Windows NT mail servers.

Clearly, additional measurement-based results are
needed to understand the dependability characteristics of
networked distributed systems and to give better insights
into the problems that one can face when processing and
analysing event logs. Such issues are discussed in this
paper based on event logs collected from a network of 298
SunOS and Solaris workstations and servers over a period
of 11 months.

3. Target system architecture

The LAAS computing network is composed of a large
set of heterogenecous workstations and  servers
interconnected through an Ethernet-based LAN. These
systems are organized into subnets, according to their
physical location and the research group they belong to.
The subnets are interconnected through dedicated

communication switches to a central switch. The latter
provides connectivity to the servers shared by the whole
network (SMTP, NIS+, Backup, HTTP, FTP, etc.) as
well as to the Internet. Some of these servers are replicated
on several machines (e.g. NIS+), and some machines host
more than one server. In addition, each research group has
a set of servers dedicated to its users (NFS, POP,
Application, Printing, etc.).

Most of the network and group servers are
implemented on SunOS and Solaris machines. The clients
are a heterogencous mix of Unix workstations from
vendors such as Sun, HP, IBM, as well as PCs and
Macintoshes.

In this study, we collected data from all SunOS and
Solaris workstations and servers. We monitored 298
machines running different versions of the Unix operating
system: 4.1.2, 4.1.3, 4.1.4, 54, 5.5, 5.5.1, 5.6 and 5.7.

4. Data collection

4.1. Event logging in Unix

The Unix operating system offers capabilities for event
logging by means of the syslogd daemon. This
background process records events generated by different
local sources: kernel, system components (disk, network
interfaces, memory), daemons and application processes
that are configured to communicate with syslogd
Different types of events of various severity levels are
generally recorded. Some of them result from the normal
activity of the system whereas others provide information
about hardware, software and configuration errors as well
as system events such as reboots and shutdowns.

The configuration file /etc/syslog.conf specifies the
destination of each event received by syslogd , depending
on its severity level and its origin. The destination could
be one or several log files, the administration console or
the operator (notified by email).

The events that are relevant to our study are generally
stored in the log file /varfadm/messages . Each event
stored in this log file is formatted as follows:

* Date and time of the event

* Machine on which the event is logged
» Description of the message

Example:

Dec 15 16:39:29 napoli unix: server butch not
responding still trying

The Unix operating system provides the possibility to
automatically control the size of the log files. This is
done by executing, on a weekly basis, the script
lusr/lib/newsyslog , via the cron mechanism. The
latter ensures that only the current log file
Ivarladm/messages ~ and those recorded during the last
four weeks (named as messages.0 , messages.l ,
messages.2 and messages.3 ) remain in the system.
Therefore, data is lost if not archived within five weeks.



4.2. Data collection strategy

We have set up a data collection strategy to
automatically collect the data stored in the
Ivarfadm/messages log file of each SunOS and Solaris
machine connected to the network. This strategy has been
defined to take into account the dynamic evolution of the
network configuration that is related, for instance to the
frequent addition or removal of machines, the
modification of machine names, etc.

The data collection strategy is decomposed into two
main steps:
1) Identification of the list of Unix machines to be
included in the data collection process.
2) Collection of data from these machines.

We implemented these steps using Shell and Per
scripts. They are executed on a weekly basis in accordance
with the mechanism provided by the operating system to
control log files size.

The identification of Unix machines from which data
is collected is based on the analysis of the
hosts.org_dir master table maintained by the NIS+
server. All IP devices connected to the network, including
Unix machines, are declared in this table. However, this
table generally contains redundant information that
corresponds, for instance, to machines that are declared
under different IP addresses or with different names. The
script that we developed automatically detects and elimi-
nates such redundant information to avoid collecting mul-
tiple copies of the same log files from the corresponding
machines. The script also eliminates from the list of Unix
machines those that are not relevant to our study; for
example, those used to support offline maintenance
activities, or those in specific experimental testbeds.

In the second step of the data collection strategy, the
log files are remotely copied from the selected machines
to a dedicated machine, collated into a single file that is
sorted chronologically and compressed. A verification of
the format of the collected data is also done at this step,
and an additional field specifying the year is added to the
date of each message. This enables easier analyses of data
collected over several years.

The data collection script is executed automatically via
cron each week. However, manual verification is needed
when problems affecting some target machines occur
during the execution of this script, e.g., these targets may
not be alive, or they are alive but due to some local
problems the script hangs. If the manual verification is
not done, we might lose some data, or the same data may
be copied more than once. (See [14] for more detail).

5. Data processing

Data processing consists of: 1) extracting from the log
files the information that is relevant to the dependability
analysis of the target systems and 2) evaluating statistical
measures to identify significant trends. The log files

contain a large amount of information that is not always
easy to categorize. The identification of events
corresponding to errors and the definition of error
classification criteria according to the origin of the error or
its severity requires a thorough manual analysis of log
files. Some examples of classification criteria are
presented in [16]. In this paper, we focus on the
identification of machine reboots from the event logs and
the evaluation of statistics characterizing: a) the
distribution of reboots (per machine, time), b) the
distribution of uptimes and downtimes associated to these
reboots, c) the availability of machines including
workstations and servers, and d) error dependencies
between clients and servers.

5.1. Identification of reboots

Three methods can be distinguished to identify when
Unix machines are rebooted:
1) Use of “last reboot” command
2) Analysis of /varfadm/wtmp  log files
3) Analysis of /varfadm/messages log files

With the first and second methods, only the start
timestamp of machine reboots can be identified. However,
in our study, we are interested in identifying the start and
end timestamps of machine reboots as well as the service
interruption  duration associated to these reboots.
Moreover, the analysis of the causes of reboots can be
done based on the analysis of the messages logged by the
system before the machine is rebooted. Therefore, we have
developed an algorithm providing such information based
on the analysis of the /var/adm/messages log files
collected from the target systems included in our data
collection environment.

A manual analysis of collected data revealed that not
all reboots can be easily identified from the corresponding
log files. Indeed, whereas some reboots are explicitly
identified by a “reboot” or a “shutdown” event, many
others can be detected only by identifying the sequence of
initialization events generated by the system when it is
restarted.

Generally, an initialization sequence of the system is
composed of about 70 messages, starting with “unix:
SunOS Release...” or “unix: Copyright... »! messages,
and ending with clock synchronization messages generated
by the ntpdate and xntpd daemons. An example of such

a sequence is presented in Figure 1.

' Note that these messages may appear several times in the sequence.



2000 Jan 31 08:16: 03 ripolin

uni x: Copyright © 1983-1996, Sun Microsystems, Inc.

2000 Jan 31 08:16: 03 ripolin uni x: SunOS Rel ease 5.5.1 Version Generic_103640-29 [UNIX® System V

Release 4.0]

2000 Jan 31 08:16:03 ripolin unix: root nexus = SUNW,SPARCstation-4

2000 Jan 31 08:16:03 ripolin unix: Ethernet address = 8:0:20:82:23:f

2000 Jan 31 08:16:03 ripolin unix: avail mem = 61521920

2000 Jan 31 08:16:04 ripolin uni x: SunOS Rel ease 5.5.1 Version Generic_103640-29 [UNIX®

System V Release 4.0]
2000 Jan 31 08:16:04 ripolin
2000 Jan 31 08:16:13 ripolin unix: volO is /pseudo/vol@0
2000 Jan 31 08:16:13 ripolin unix: pseudo-device: vol0
2000 Jan 31 08:16: 18 ripolin
2000 Jan 31 08:16: 23 ripolin
2000 Jan 31 08:16:24 ripolin
2000 Jan 31 08:16:25 ripolin

uni x: Copyright © 1983-1996, Sun Microsystems, Inc.

nt pdate[ 228]: step tinme server 140.93.0.15 offset 0.676382 sec

xnt pd[ 231] :  xnt pd 3-5.93 Tue Jul 6 18:01:08 MET DST 1999 (1)

xnt pd[ 231]: sched_setschedul er(): Operation not applicable
xnt pd[ 231] : tickadj =5, tick = 10000, tvu_maxslew = 495, est. hz=100

Figure 1. Initialization sequence

2000 Jan 16 18:23: 02 demeter
Release 4.0]
2000 Jan 16 18:23: 02 demeter

2000 Jan 16 18:23:05 demeter unix: volO is /pseudo/vol@0
2000 Jan 16 18:22:56 demeter
2000 Jan 16 18:23: 01 demeter
2000 Jan 16 18:23:02 demeter xntpd[273]: kvm_open failed

nt pdate[ 269]: step tinme server 140.93.0.15 offset
xnt pd[ 273] : xnt pd 3-5.93 Tue Jul 6 18:01:08 MET DST 1999 (1)

uni x: SunGCS Rel ease 5.7 Version Generic 64-bit [UNIX® System V

uni x:  Copyright © 1983-1998, Sun Microsystems, Inc.
2000 Jan 16 18:23:02 demeter unix: mem = 655360K (0x28000000)

-15.890010 sec

Figure 2. ntpdate message with negative offset at the end of a reboot

Nevertheless, we have identified several scenarios that
do not fit the initialization sequence presented in Figure
1. Such scenarios occur for example: a) when multiple
reboots are needed before the machine can restore its
normal functioning state, or b) when the time
synchronization messages do not appear in the
corresponding sequence, or their timestamp precedes the
timestamp of the messages identifying the start of the
sequence. Typically the latter case corresponds to
synchronization events with a negative offset value. An
example of such scenario is presented in Figure 2. It can
be seen that the timestamp of the ntpdate message (Jan
16 18:22:56) precedes the timestamp of the “unix:
SunOS Release...” message because the negative value of
the offset (-15.89).

To identify reboots from the log files, we have
developed an algorithm, implemented in Perl, that is
based on the sequential parsing and matching of each
message in the collected log files to specific patterns or
sequence of patterns characterizing the occurrence of
reboots. These patterns correspond to explicit reboot
messages or to sequence of events generated during the
initialization of the system, as explained above. The
algorithm is complex; it is detailed in [14]. This
algorithm gives, for each reboot detected in the log file
and for each machine, the timestamp of the start and of
the end of reboot.

5.2 Results
The data collection strategy described in §4.2 allowed

us to collect the event log files from 298 Unix
workstations and servers running various SunOS and

Solaris versions. Data collection started in October 1999
and it is still going on. In this paper, we present the
results obtained from the analysis made on the first 11
months of data (about 368MBytes). It is noteworthy that
data collection concerned only 34 Unix machines during
the first two months, then it has been extended to all
Unix machines connected to the network (i.e., 298).

The execution of the reboot identification algorithm on
the collected data detected 2613 reboots for the whole
network. To validate our algorithm we have compared, for
each machine and each reboot recorded, the timestamp
corresponding to the start of the reboot with the
information contained in the wtmp log file of the
corresponding machine. This comparison revealed that
both results match in 99.7% of cases. This result increases
our confidence in the validity of our algorithm. The
advantage of our algorithm is that it gives an estimation
of reboot duration. In the following we present various
analyses of the 2613 reboots detected.

5.2.1 Distribution of reboots

The distribution of reboots among the machines that
we monitored during the data collection period is
presented in Figure 3. About 74% of the Unix machines
included in our data collection environment had less than
10 reboots; among these only one machine has not been
rebooted during the corresponding period. Moreover, as
illustrated in Figure 4, it can be seen that about 50% of
the reboots were caused by 80% of the machines. This
shows that the detected reboots are not uniformly
distributed among the machines considered in our data
collection environment.



1.01%—
1.35%—
1.01%—
5.06%—

17.56%

73.98%
|01[0;10] ©1(10;20] [ (20;30] £1(30;40] B (40;50] M> 50

Figure 3. Distribution of number of reboots per
machine

100%

90%

80%

00 - = e

L s EHHHGHEAd A A S L

L - il i Bttt D L

% Reboots

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% Machines

Figure 4. Percentage of reboots observed on
percentage of machines

The Unix machines included in our data collection
environment can be partitioned into 14 groups, each one
corresponding to a particular group of users. The analysis
of the distribution of reboots for each group gives an
insight into the behavior of the corresponding machines as
perceived by their users. Table 1 gives the distribution of
machine reboots considering the group they belong to,
together with the number of machines in each group and
the average number of reboots per machine observed for
the group. Whereas the average number of reboots per
machine is around 8.77, there is a great degree of variation
among the groups. This is mainly related to the fact that
the user operational profiles corresponding to each group
are different. They are mainly related to the types of
software used and the user workloads.

The impact of the user workload on the distribution of
reboots can be also observed when analyzing the
distribution of reboots as a function of the hour of the day
when the reboots occur. This is illustrated in Figure 5.
This figure shows that the reboot rate follows the
utilization rate of machines, the majority of the reboots
occur during the “normal” working hours (8AM to 6PM).
A similar result was observed in [12] for the case of four
categories of VAX machines. Between 8AM and 6PM we
have a uniform distribution, after 6PM the distribution
has an exponential shape, but the corresponding number is
not negligible compared with the number of reboots
observed during normal working hours.

Group ID Number of Number of NR/ NM
machines (NM) | Reboots (NR)
G1 12 99 8.25
G2 3 21 7.0
G3 17 113 6.64
G4 26 186 7.15
G5 7 46 6.57
G6 28 198 7.07
G7 20 202 10.1
G8 12 67 5.58
G9 28 337 12.0
G10 32 354 11.0
G11 5 34 6.8
G12 66 431 6.53
G13 15 305 20.34
G14 27 220 8.14
[ Total | 298 [ 2613 [ 877 |
Table 1. Number of machines and reboots per
group
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Figure 5. Number of reboots vs hour of day
5.2.2 Availability

In this section, we present various statistics
characterizing the uptimes, downtimes and the availability
of individual Unix machines, the groups of machines and
the overall computing network. Similarly to the approach
used in [8], machine uptimes and downtimes estimates are
obtained as follows:

* For each reboot, the timestamps of the end of the
reboot and of the event immediately preceding the
reboot are recorded (this would be the last event
logged by the machine before it goes down);

* Each downtime estimate is obtained by the time
difference between the timestamp of the end of reboot
and the timestamp of the event preceding the reboot;

» Each uptime estimate corresponds to the time interval
between two successive downtimes.

Using uptime and downtime estimates, we can
evaluate availability measures for each machine, for a



group of machines, or for the whole network. The
availability and unavailability measures for machine i are
computed with the following formula:

A =3 uptimeg /Y (uptimg + downtime )
A=1-A
For a group (named GR) of N machines, the mean
availability and unavailability measures are computed

from the availability measures of the machines belonging
to the group:

N _
AGR:%A' N and Agr =1-Acr

Usually, availability is expressed as a percentage value
and unavailability is represented as an amount of
downtime per year (e.g., in number of days per year).

Table 2 presents the statistics characterizing machines
uptime and downtime estimates, considering all the
systems included in our data collection environment. The
corresponding distributions (in a logarithmic scale) are
plotted in Figure 6. The results show a large variation of
uptime and downtime values. Considering the median
values, 50% of uptime values lasted 2.8 days or more and
50% of downtime values lasted 38.5 minutes or less. It is
worth noting that about ~24% of uptime durations are
lower than 16.6 minutes. These correspond to situations
where successive reboots are needed before the
corresponding machines restore their functional normal
state. It is more realistic in this case to consider that all
successive reboots corresponding to uptime values that are
lower than 20 minutes correspond to machines that are
still in a degraded operation mode. Therefore, these
reboots could be represented by a single event, and the
downtime value associated to this event should be
updated by including the time between the first reboot and
the last reboot of the sequence.
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Figure 6. Uptime & downtime distributions

The average availability and unavailability measures
for the entire network, computed from the uptime and
downtime estimates presented in Table 2, are:

A = 89.03% and A = 40.02 days/ year

Additionally, Table 3 presents the availability and
unavailability statistics characterizing the groups of
machines as defined in Section 5.2.1. It should be noted
that in these availability estimations no distinction was
made between critical machines (e.g.; SMTP, POP, NFS
shared servers) and user workstations. This explains the
relatively low availability measures presented above.

Min Max Average | Median | Std Dev.

74.25%| 97.71% | 89.08% | 89.19% | 5.34%

A
A | 8.33dly | 93.97d/y | 39.83d/y | 39.42d/y | 19.50dly

Uptime Downtime
Minimum 0 sec 0 sec
Maximum 7.6 months 3.2 months
Average 17.7 days 1.7 days
Median 2.8 days 38.5 minutes
Standard deviation 30.9 days 5.7 days

Table 2. Uptime & downtime statistics

In Figure 6, we also observe ~20% of downtime values
between 1.15 days and more than 3 months. Some of
these values correspond to systems that were not used
during a long period of time or that were temporarily
disconnected from the network. Such high downtime
values might also correspond to machines that were hung
for a long period of time due to severe problems, but such
problems were not notified to the systems administration
team. Unfortunately, the data collected from the event
logs do not allow us to determine with enough confidence
the real cause of such high downtime values.

Table 3. Group Availability/Unavailability
statistics

Among the 298 Unix machines included in our data
collection environment, 18 machines (denoted as [main
servers) implement critical services that are shared by the
whole network or by a subset of users. 115 reboots have
been recorded for those machines. The availability and
unavailability estimates corresponding to the main servers
are presented in Table 4. In particular, the average
unavailability of such servers is 5.27 days/year, which is
significantly lower than the value computed for the whole
network. This value represents the amount of
unavailability that has the most significant impact on the
users. Indeed, due to the distributed feature of the
network, workstation failures are less critical than the
failures of shared servers.

Min Max | Average | Median | Std Dev.
A 91.33% | 99.99% | 98.55% | 99.70% | 2.66%
A | 0.62dly |31.62dly | 5.27dly | 1.06dly | 9.74dly

Table 4. Availability and unavailability statistics
for the main servers



5.2.3 Dependencies among machines

In a distributed interconnected environment, several
types of functional dependencies might exist between the
interconnected  systems. These result from the
client—server interactions that occur in such environment.
Such dependencies are generally transparent to the users in
the absence of failures. However, when failures affecting
shared servers occur, errors might propagate and affect
several clients. The identification of such failure
dependencies is particularly useful for availability analysis
from the user point of view.

To identify failure dependencies among the Unix
machines, we have conducted three types of analyses:

1) Each time a machine is rebooted, all other machine
reboots that occur within a short period of time before
or after this event are identified

2) Each time a machine is rebooted, all the clients that
are affected by this reboot within a short period of
time are identified. This is done by identifying from
the event logs all the machines that log a “Server Not
Responding (SNR)”-like message related to the
rebooted machine. Examples of such messages are:
unix: NFS server A not
trying
automountd[234]: server B not responding
statd[789]: statd host A failed to respond

responding still

3) Each time a client records a SNR message
corresponding to server A, all other clients that record
SNR messages related to the same server within a
short period of time are identified

In the following, we present the algorithms that we
developed and implemented in Perl to carry out these
analyzes and we discuss the corresponding results.

5.2.3.1. Dependencies related to reboot events

We developed a clustering algorithm that identifies for
each machine reboot event, all the reboots of other
machines that occur within 20 minutes of the
corresponding reboot event. If multiple reboots of the
reference machine occur in less than 20 minutes, they are
grouped and the associated time window is updated as
follows: it starts 20 minutes before the first reboot and
ends 20 minutes after the last reboot. For the time
window associated to each reboot, we evaluate:

1) How many different machines recorded a reboot event
in the corresponding window. We call this analysis
Reboot-vs-Reboot dependencies;

2) How many different machines recorded a SNR
message informing that the rebooted machine is not
responding. We call this analysis Reboot-vs-SNR
dependencies.

Considering the  Reboot-vs-Reboot  dependency
analysis, each machine reboot event leads to the
generation of a cluster containing the list and the number
of machines rebooted in the time window associated to
this event. This number doesn’t include the machine
corresponding to the reboot event. If one machine
belonging to this list is rebooted more than once in the
same window, it is counted only once.

Figure 7 plots the distribution of the number of
machines rebooted per cluster. The total number of
clusters is 2322. The median value shows that for 50% of
reboot events, only one other machine was rebooted
within +20 minutes of the corresponding event. It is
noteworthy that among the 84.75% of clusters with less
than five machines, 1000 clusters have a zero size (i.e., no
other machine was rebooted around the reference reboot
event). On the other hand, only 8.32% of clusters involve
more than 15 machines. These results show that machine
reboots are loosely correlated.
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Figure 7. Reboot-vs-Reboot cluster size
distribution

Even though most of the clusters involve a small
number of machines, this does not preclude the existence
of strong dependencies with respect to reboot events
among some pairs of machines. Such dependencies can be
identified by evaluating the conditional probabilities pj;,
that if machine i is rebooted, then machine ; will be
rebooted within £20 minutes of this event. Probabilities
py; are estimated as follows:

_ number of timesi and j are rebooted together

1] number of timesi isrebooted

It is noteworthy that, in most of the cases, p; # p;.
We computed these probabilities for all (i,j)) machine
couples, the distribution function characterizing this set of
values is plotted in Figure 8, the corresponding number of
(i,j) couples is 9394.
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Figure 8. Distribution function of p; values

The results show that 12.34% of p;; values are between
0.5 and 1. This confirms that there is a subset of
machines that exhibit significant correlation with respect
to reboot events. A detailed analysis of these (i,j) couples
with p; > 0.5 revealed that in 54.96%, machines i and j
belong to the same research group, and in 32.18% they
belong to different groups, but they are physically located
in the same building (i.e., they use the same switch to
communicate with the rest of the network). Several
machines include in particular important servers of the
network such as NFS, mail, ftp, www or frequently used
application servers.

We followed a similar approach to analyze Reboot-vs-
SNR dependencies. For each time window corresponding
to a reboot event, we identified the list and the number of
machines that recorded at least one SNR — like message
informing that the rebooted machine is not responding.
Figure 9 plots the distribution function of the
corresponding numbers. All machines are considered in
this analysis, including the workstations and the main
servers of the network.

Figure 9 does not reveal strong Reboot-vs-SNR
dependencies. Indeed, the average number of machines
affected by a reboot of another machine is 0.87 and for
91.98% of reboots there wasn’t any SNR message
referring to the rebooted machine in the event logs
collected from the entire network. In fact, SNR messages
have been recorded in only 186 clusters out of 2322.
These clusters are associated to 61 different machines,
only 15 machines among these belong to the set of main
servers of the network.

The maximum number of machines affected by a
reboot is 162. This case corresponds to the reboot of a
critical server of the network that had disk problems
during a few months. From Figure 9, we can also identify
about 1.13% of cases where the reboot of one machine
affected more than 15 machines of the network. These
cases correspond to the reboot of some machines that offer
various services shared by a subset of users, e.g., NFS
servers, application servers, etc. It is noteworthy that these
machines correspond to the same servers with p; values
higher than 0.5 as discussed in the previous analysis.
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Figure 9. Reboot-vs-SNR cluster size
distribution

In order to identify the subset of machines that are
significantly affected by the reboot of other machines, we
have also computed for each pair of machines (i,j) the
probabilities g;; defined as follows:

_ number of times recorded SNR(i)

q.. =
1) number of timesi is rebooted

where i corresponds to the machine rebooted and j is the
machine recording a SNR message referring to machine i,
noted SNR(i). High values of ¢g;; denote a strong coupling
of machines i and j, due for instance to client-server
interactions.

The number of couples (i,j) for which g;; is non null,
is 835. The distribution function characterizing the
probabilities ¢;; and the corresponding statistical
parameters are given in Figure 10. Even if the average
probability is 0.3, about 17.84% of g;; values exceed 0.5.
The reboot events corresponding to these cases concern 19
machines, where only 9 among them belong to the set of
main servers.

35%

30% 29.70%

Min  Max Mean Median Std Dev
25%

21.68% 00285 1 0301 025  0.196

PLI7Y SRR

L e [ FE ) e

10% 4o | ] 9.34%

sopd 1| ] L 3.83% :
2.75%

’_‘ vaa 2% 12w

0% O = [ /=

[00.1) [0.10.2) [0.2,0.3) [0.3;0.4) [0.4:0.5) [0.5,0.6) [0.6;0.7) [0.7:0.8) [0.8,0.9) >0.9

Figure 10. Distribution of gjj values



These results show that only a few machines of the
network exhibit strong failure dependencies. In fact, if we
analyze the network file system architecture, in particular
the information contained in the mount tables, it appears
that a larger set of machines exhibit functional and data
dependencies. However, these dependencies will not be
activated if the clients do not access the servers upon the
occurrence of server failures. Similar results were observed
in the experimental study presented in [16].

5.2.3.2. Dependencies related to SNR events

This analysis is based only on the SNR messages
recorded by the clients. We selected from the data, all
such messages without considering if the server machine
referred to in the SNR message was rebooted or not. To
carry out this analysis, we have parsed sequentially the
event logs collected from the network and identified the
list of machines that are referred to in the SNR messages,
and then we applied a tupling algorithm as follows:

Algorithm:

For each machine i from the list, do

Uif the next SNR message referring to machine i is within
Dopiing, then include message in the current tuple

Uotherwise, create a new tuple for machine i

The algorithm provides, for each machine of the list,
the total number of tuples created, the duration of each
tuple and the number of different machines that recorded
the messages included in each tuple. This analysis was
carried out for all machines from the list identified above
(113 machines) and for a subset of this list corresponding
to the main servers of the network (18 machines).

Table 5 gives the number of tuples obtained for all
machines and for the main servers for different values of
Aypiing. Columns 2 and 3 of this table show that about
60% of the tuples are associated to a main server. The
remaining tuples correspond to machines that host some
applications or contain data that are accessed by a subset
of network users.

Dyping | #tuples for all machines| #tuples for main servers
20 min 4582 2743
40 min 3985 2409
60 min 3635 2210
Table 5. Number of tuples for different A¢wpiing

values

The statistics characterizing the duration of the tuples
obtained for all machines are presented in Table 6. If we
consider only those tuples associated to the main servers,
only the mean and standard deviation values vary (from a
few seconds to 10 minutes). The value of zero seconds of
the tuple duration for the minimum and the median
indicates that the corresponding tuples contain only one

message, and only one client is affected by the temporary
unavailability of the corresponding machine. These tuples
correspond to transient errors that disappear in a short
period of time. Regarding the tuples that have a long
duration (the maximum value is around 25 hours), the
number of clients affected is not necessarily correlated to
the duration of the tuples. Indeed, a thorough
investigation of these tuples showed that in some cases
only a few clients are affected but the error manifests for a
long time, and for other cases the tuple duration is short
and the number of clients affected is high. For example,
the duration of the tuple with the maximum number of
machines (217) is 8.65 hours and for the tuple
corresponding to the maximum duration only 61 clients
were affected.

Dupling Min Max Mean Median | Std Dev.
20min| Osec | 24.4h | 5.06 min| 0Osec | 29.9 min
40min| Osec | 25.9h | 10.1 min| 0Osec | 40.0 min
60min| O0sec | 25.9h | 159 min| 1sec | 51.0 min

Table 6. Tuple duration statistics

Figure 11 plots the distribution of the number of
machines per tuple corresponding to a tupling interval of
20 minutes. Similar distributions are obtained for 40 and
60 minutes tupling intervals. This figure highlights the
fact that only ~1.2% of tuples contain more than 15
machines. Most of the tuples involve less than five
machines (~96%). This high percentage suggests that even
though the clients depend on several resources distributed
over the network, most of the errors affecting the main
servers persist during a short period of time and are not
perceived by a large proportion of network users. This
result also reflects the need to take into account the users
operational profile to analyze and assess the impact of
server failures from the users perspective. Indeed, if the
servers are not accessed when errors occur, these errors are
transparent to the users.
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7. Conclusion

This paper presented the results of an availability study
based on error data collected during 11 months from 298
Unix workstations and servers interconnected through a
LAN. This study focused on the identification of machine
reboots from the event logs recorded by the operating
system and the evaluation of statistical measures
characterizing the availability of the target systems, and
error dependencies between clients and servers. Several
techniques and algorithms were presented to extract
relevant information from the event logs and to carry out
the analyses described above. The investigation of error
propagation among the machines included in our
environment revealed low correlation between clients and
servers. This can be explained in part by the fact that
errors affecting the servers persist for a short period of
time and thus only clients accessing the servers when
errors occur might be affected.

The results presented in this paper allowed us to
analyze the availability of the Unix machines connected to
our computing network. Similar analyses are currently
being performed on Windows NT and 2000 systems. Our
objective in the future is to take into account other types
of systems that do not provide event logging
mechanisms, e.g., MacOS based systems and network
communication devices. For these systems, the data
needed for availability analysis can be obtained through
on-line monitoring, that consists of testing the
availability of the corresponding systems, on a regular
basis, using dedicated probes (ping, TCP connections on
specific ports, etc.). This approach is currently under
study.
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