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A SEMI-LAGRANGIAN DISCONTINUOUS GALERKIN

SUPERCONVERGENCE

C. STEINER, M. MEHRENBERGER, AND D. BOUCHE

Abstract. We show a superconvergence property for the Semi-Lagrangian

Discontinuous Galerkin scheme of arbitrary degree in the case of constant
linear advection equation with periodic boundary conditions.

1. Introduction

The aim of this paper is to show a superconvergence property for the Semi-
Lagrangian Discontinuous Galerkin scheme (SLDG) of arbitrary degree. Such a
scheme has been developped already in [7] and then more recently in [9, 11, 5] for
Vlasov-Maxwell/Poisson applications. One key point, in such applications, is to
use directional splitting which leads to a succession of constant advection problems
and the scheme has the advantage of not being restricted to a CFL condition. The
case of non constant advection is more delicate and can lead to different strategies
for the evaluation of the flux, which has to be further approximated; see [9] for a
discussion, and [10] for a pionnering work on the subject in a general setting. The
SLDG scheme continues to be under investigations, see [1, 2, 8].
Superconvergence of the Discontinuous Galerkin method has been the subject of
several developments. In [6] a Fourier approach is used to analyze the supercon-
vergence properties. While being limited to uniform mesh with periodic boundary
conditions and linear problems, Fourier approach permits to give precise informa-
tion of the error. It is however often restricted to low degrees as symbolic computa-
tions become more and more complex when the degree increases. Note that other
technics have been developed for treating more general cases, as the post-processing
introduced in [4]; see also many other references in [6].
We consider here the superconvergence of the SLDG scheme in the case of constant
linear advection equation with periodic boundary conditions. We are able to give
a result for an arbitrary degree, which seems not to have been considered, to our
knowledge, for the SLDG scheme. The technic of proof is also new and may have its
own interest. It uses a vectorial Fourier decomposition, Cauchy-Schwarz inequality
and the Euler-MacLaurin formula.
The paper is organized as follows. In Section 2, we introduce the Semi-Lagrangian
Discontinuous Galerkin scheme. The statement of the theorem of superconvergence
is given in Section 3. In Section 4, we describe the structure of the truncation and
numerical errors. An eigenstructure analysis of the scheme’s amplification matrix is
proceeded in Section 5. In Section 6, we resume the previous results and conclude
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the proof. Numerical results showing superconvergence are presented in Section 7
and conclusion is given in Section 8.

2. Semi-Lagrangian Discontinuous Galerkin scheme

2.1. Notations. The equation under study is the constant linear advection equa-
tion

∂tf + a∂xf = 0 (x, t) ∈ [0, 1]× [0,+∞[

f(0, x) = f0(x) x ∈ [0, 1]

with a constant velocity a > 0.

Let Ω = [0, 1] be the domain, which is divided in N cells :

Ci = [xi−1/2, xi+1/2], i = 0, ..., N − 1.

We suppose here that the mesh is uniform: the space step ∆x satisfies

∆x = xi+1/2 − xi−1/2 =
1

N
, i = 0, ..., N − 1.

We define also the time step ∆t which is also suppose to be constant and write
tn = n∆t. Periodic boundary conditions will be used.

2.2. SLDG scheme. Let d ∈ N. On each cell Ci = [xi−1/2, xi+1/2], we put d + 1
Gauss points denoted by {xij}(i,j)∈{0,...,N−1}×{0,...,d}. Denoting by {αj}j∈{0,...,d}
the Gauss points in the interval [0, 1] and {ωj}j∈{0,...,d} their associated weights,
we first introduce the Lagrange polynomials at points αj restricted to the interval
[0, 1] :

ϕj(x) =
∏
`, 6̀=j

x− α`
αj − α`

for x ∈ [0, 1], ϕj(x) = 0 otherwise

and the corresponding polynomial for the cell Ci :

ϕij(x) = ϕj

(
x− xi−1/2

∆x

)
.

By writing fn ≈ f(tn, ·) in the form fn(x) =
∑
i,j f

n
ijϕij(x), the degrees of freedom

fnij ≈ f(tn, αij) are given by

ωj∆xf
n
ij =

∫
R
fn(x)ϕij(x)dx.

Using the advection equation for updating the degrees of freedom, we get the semi-
Lagrangian discontinuous Galerkin (SLDG) scheme:

ωj∆xf
n+1
ij =

∫
R
fn(x− a∆t)ϕij(x)dx.

This leads to

ωj∆xf
n+1
ij =

N−1∑
k=0

d∑
`=0

fnk`

∫
R
ϕ`

(
x− a∆t− xk−1/2

∆x

)
ϕj

(
x− xi−1/2

∆x

)
dx.

By defining i? and α such that xi−1/2 − a∆t = xi?−1/2 + α∆x,
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xi?−1/2 xi?+1/2

a∆tα∆x
tn

xi−1/2 xi+1/2

tn+1

and using the change of variable x = xi−1/2 + s∆x, we get :

ωj∆xf
n+1
ij = ∆x

N−1∑
k=0

d∑
`=0

fnk`

∫
R
ϕ`(i

? − k + α+ s)ϕj(s)ds

and finally, obtain the following explicit formula for the SLDG scheme:

(2.1) ωjf
n+1
ij =

d∑
`=0

fni?,`

∫
R
ϕ`(α+ s)ϕj(s)ds+

d∑
`=0

fni?+1,`

∫
R
ϕ`(α+ s− 1)ϕj(s)ds.

We define the L2 discrete norm as follows:

‖z‖22 =
1

N

N−1∑
i=0

d∑
j=0

ωjz
2
i,j , z = (zi,j) ∈ RN(d+1).

3. Superconvergence property

The goal of this paper is to prove the following theorem.

Theorem 3.1. Consider the constant linear advection equation

∂tf + a∂xf = 0 (x, t) ∈ [0, 1]× [0, T ]

f(0, x) = f0(x) x ∈ [0, 1]

with f0 ∈ C2d+2([0, 1]) and the Semi-Lagrangian Discontinuous Galerkin scheme
for the discretisation of this equation. We write −a∆t

∆x = i?0 + α where i?0 ∈ Z and
0 ≤ α < 1. Then there exists constants C1, C2 > 0 which depend on α, on the
regularity of the solution and independent of time T such that the numerical error
at point xij : enij = fnij − f(tn, xij) is bounded in the L2 discrete norm:

‖en‖2 ≤ C1∆xd+1 + nC2∆x2d+2.

Remark 3.2. We can restrict us to the case where 0 < a∆t
∆x < 1 by using the fact

that the scheme is exact when a∆t
∆x ∈ Z.

Remark 3.3. One advantage of this new estimation is to have convergence over a
longer time. In fact, if 1 ≤ β ≤ d and if we fix the values of ∆x and ∆t, we are
looking for the largest time T = n∆t such that

‖en‖2 ≤ C4∆xβ

where C4 is a constant.
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(1) In the classical case, we have ‖en‖2 ≤ C5n∆xd+1 which leads to

T ≤ C6∆xβ−d

where C5, C6 are constants.
(2) In the superconvergence case, we get

T ≤ C7∆xβ−2d−1

where C7 is a constant.

Remark 3.4. The scheme considered here is different from that described in [6].
The scheme in [6] corresponds to the exponential integrator when α → 0 of the
scheme considered in this paper, which is here not covered by the analysis, but may
be adapted. See [3] for a similar example.

Remark 3.5. The degree is here arbitrary. Fourier approach, as in [6], is possible
for low degrees (see Section 7). It gives more precise informations but the com-
putational complexity increases strongly with the degree, and seems to become
impractible for higher degrees.

4. Truncation and numerical errors

4.1. Truncation error. We write x = (xij)i=0..N−1,j=0..d.

Notation 4.1. S : RN(d+1) → RN(d+1) is the Semi-Lagrangian Discontinuous
Galerkin scheme operator given by (2.1).

Notation 4.2. The truncation error at point xij and time tn is defined by

gnij =
1

∆t

(
f(tn+1, xij)− S(f(tn,x))ij

)
.

The following proposition gives an expression of the truncation error.

Proposition 4.3. There exists constants Ekj independent of i and n and dependent
on α such that

gnij =

2d+1∑
k=0

Ekj
∆xk

∆t
∂kxf(tn, xij) +O

(
∆x2d+2

∆t

)
.

Proof. We assume that 0 < a∆t
∆x < 1, thus i? = i − 1 and α = 1 − a∆t

∆x . The
computation of the truncation error at point xij defined by

1

∆t

(
f(tn+1, xij)− S(f(tn,x))ij

)
gives :

1

∆t

f(tn + ∆t, xij)−
1

ωj

d∑
j′=0

f(tn, (i− 1 + αj′)∆x)

∫ 1

s=α

ϕj′(s)ϕj(s− α)ds

− 1

ωj

d∑
j′=0

f(tn, (i+ αj′)∆x)

∫ α

s=0

ϕj′(s)ϕj(s+ 1− α)ds

 .

We use the constant advection equation to go back :

f(tn + ∆t, xij) = f(tn, xij − a∆t)
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and then, by Taylor expansion at point xij , the truncation error at point xij reads

2d+1∑
k=0

Ekj
∆xk

∆t
∂kxf(tn, xij) +O

(
∆x2d+2

∆t

)
where

Ekj =
(α− 1)k

k!
− 1

ωj

d∑
j′=0

(
(αj′ − αj − 1)k

k!

∫ 1

s=α

ϕj′(s)ϕj(s− α)ds+

(αj′ − αj)k

k!

∫ α

s=0

ϕj′(s)ϕj(s+ 1− α)ds

)
.

�

We first can state that the first coefficients are zero, which leads to classical con-
vergence estimates of order d+ 1:

Proposition 4.4. For all 0 ≤ k ≤ d and all 0 ≤ j ≤ d, the coefficients of the
truncation error, defined in Proposition 4.3, satisfy

Ekj = 0.

Proof. We begin with the case k = 0 :

E0
j = 1− 1

ωj

d∑
j′=0

(∫ 1

s=α

ϕj′(s)ϕj(s− α)ds +

∫ α

s=0

ϕj′(s)ϕj(s+ 1− α)ds

)

= 1− 1

ωj

[ ∫ 1

s=α

 d∑
j′=0

ϕj′(s)

ϕj(s− α)ds+

∫ α

s=0

 d∑
j′=0

ϕj′(s)

ϕj(s+ 1− α)ds

]
.

We have

1−
d∑

j′=0

ϕj′(s) ≡ 0

since the left term is a polynomial of degree d with d+ 1 zeros (α0, ..., αd). Then,
we get

E0
j = 1− 1

ωj

(∫ 1−α

s=0

ϕj(s)ds+

∫ 1

s=1−α
ϕj(s)ds

)
= 1− 1

ωj

∫ 1

s=0

ϕj(s)ds

= 1−
d∑
i=0

ϕj(αi)

= 1−
d∑
i=0

δij

= 0.
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The coefficient Ekj for 1 ≤ k ≤ d reads :

Ekj =
(α− 1)k

k!
− 1

ωj

d∑
j′=0

(
(αj′ − αj − 1)k

k!

∫ 1

s=α

ϕj′(s)ϕj(s− α)ds+

(αj′ − αj)k

k!

∫ α

s=0

ϕj′(s)ϕj(s+ 1− α)ds

)
.

For 1 ≤ k ≤ d,

d∑
j′=0

(αj′ − αj − 1)kϕj′(s) ≡ (s− αj − 1)k

and
d∑

j′=0

(αj′ − αj)kϕj′(s) ≡ (s− αj)k

because the left and right terms are polynomials of degree at most d with d + 1
commune values at αi (i = 0, . . . , d). Then :

Ekj =
1

k!

[
(α− 1)k − 1

ωj

∫ 1

s=α

(s− αj − 1)kϕj(s− α)ds+

− 1

ωj

∫ α

s=0

(s− αj)kϕj(s+ 1− α)ds

]
.

By change of variable, we obtain

Ekj =
1

k!

[
(α− 1)k − 1

ωj

∫ 1

s=0

(t− 1 + α− αj)kϕj(t)dt
]
.

The polynomial

t 7→ (t− 1 + α− αj)kϕj(t)

is of degree less or equal than 2d, therefore we get by Gauss quadrature formula :

Ekj =
1

k!

[
(α− 1)k − (αj − 1 + α− αj)k

]
= 0.

�

In order to obtain a superconvergence property, we have the following weaker prop-
erty which is valid also for higher order terms, until the degree 2d+ 1:

Proposition 4.5. For all k = 0, . . . , 2d+1, the coefficients of the truncation error,
defined in Proposition 4.3, satisfy

d∑
j=0

ωjE
k
j = 0.
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Proof. Note that the cases k = 0, . . . , d are already given by the previous proposi-
tion. The coefficient Ekj reads

Ekj =
(α− 1)k

k!
− 1

ωj

d∑
j′=0

(
(αj′ − αj − 1)k

k!

∫ 1

s=α

ϕj′(s)ϕj(s− α)ds+

(αj′ − αj)k

k!

∫ α

s=0

ϕj′(s)ϕj(s+ 1− α)ds

)
thus
d∑
j=0

ωjE
k
j =

1

k!

(
(α− 1)k −

d∑
j=0

d∑
j′=0

(
(αj′ − αj − 1)k

∫ 1

s=α

ϕj′(s)ϕj(s− α)ds+

(αj′ − αj)k
∫ α

s=0

ϕj′(s)ϕj(s+ 1− α)ds

))
.

We thus have to establish that for all d+ 1 ≤ k ≤ 2d+ 1 :

d∑
j=0

d∑
j′=0

(
(αj′−αj−1)k

∫ 1

s=α

ϕj′(s)ϕj(s−α)ds+(αj′−αj)k
∫ α

s=0

ϕj′(s)ϕj(s+1−α)ds

)
= (α−1)k.

In this proof, we use the following properties :

(P1) For all polynomial P of degree less or equal than d, we have

d∑
j=0

P (αj)ϕj(s) ≡ P (s).

(P2) For all polynomial P of degree less or equal than 2d+ 1, we have∫ 1

0

P (x)dx =

d∑
i=0

ωiP (αi).

By using the binomial theorem and separating the cases r ≤ d and r > d, we get :

A :=

d∑
j=0

d∑
j′=0

(
(αj′ − αj − 1)k

∫ 1

s=α

ϕj′(s)ϕj(s− α)ds+ (αj′ − αj)k
∫ α

s=0

ϕj′(s)ϕj(s+ 1− α)ds

)

=

d∑
j,j′=0

d∑
r=0

∫ 1

s=α

(
k

r

)
αrj′(−αj − 1)k−rϕj′(s)ϕj(s− α)ds

+

d∑
j,j′=0

k∑
r=d+1

∫ 1

s=α

(
k

r

)
αrj′(−αj − 1)k−rϕj′(s)ϕj(s− α)ds

+

d∑
j,j′=0

d∑
r=0

∫ α

s=0

(
k

r

)
αrj′(−αj)k−rϕj′(s)ϕj(s+ 1− α)ds

+

d∑
j,j′=0

k∑
r=d+1

∫ α

s=0

(
k

r

)
αrj′(−αj)k−rϕj′(s)ϕj(s+ 1− α)ds.
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As k ≤ 2d+ 1, the relation r > d implies k − r ≤ d. We can use the property (P1)
in each term :

A =

d∑
j=0

d∑
r=0

∫ 1

s=α

(
k

r

)
sr(−αj − 1)k−rϕj(s− α)ds

+

d∑
j′=0

k∑
r=d+1

∫ 1

s=α

(
k

r

)
αrj′(−s+ α− 1)k−rϕj′(s)ds

+

d∑
j=0

d∑
r=0

∫ α

s=0

(
k

r

)
sr(−αj)k−rϕj(s+ 1− α)ds

+
d∑

j′=0

k∑
r=d+1

∫ α

s=0

(
k

r

)
αrj′(−s+ α− 1)k−rϕj′(s)ds

=: (1) + (2) + (3) + (4).

We first calculate the sum (2) + (4) since only the limits of integration differ in
these two expressions.

(2) + (4) =

d∑
j′=0

k∑
r=d+1

∫ 1

s=0

(
k

r

)
αrj′(−s+ α− 1)k−rϕj′(s)ds.

As s 7→ (−s + α − 1)k−rϕj′(s) is a polynomial of degree less or equal than 2d, we
can apply the property (P2) :

(2) + (4) =

d∑
j′=0

k∑
r=d+1

(
k

r

)
αrj′(−αj′ + α− 1)k−rωj′ .

Applying property (P2), this time to the polynomial s 7→ sr(−s+ α− 1)k−r which
is of degree 2d+ 1 :

(2) + (4) =

k∑
r=d+1

(
k

r

)∫ 1

0

sr(−s+ α− 1)k−rϕj′(s)ds.

Turning to the computation of (1)+(3). By making the change of variables s = s−α
and s = s+ 1− α, we get

(1) + (3) =

d∑
j=0

d∑
r=0

∫ 1−α

s=0

(
k

r

)
(s+ α)r(−αj − 1)k−rϕj(s)ds

+

d∑
j=0

d∑
r=0

∫ 1

s=1−α

(
k

r

)
(s− 1 + α)r(−αj)k−rϕj(s)ds.
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Separating again the case r ≤ d et r > d :

(1) + (3) =

d∑
j=0

k∑
r=0

∫ 1−α

s=0

(
k

r

)
(s+ α)r(−αj − 1)k−rϕj(s)ds

−
d∑
j=0

k∑
r=d+1

∫ 1−α

s=0

(
k

r

)
(s+ α)r(−αj − 1)k−rϕj(s)ds

+

d∑
j=0

k∑
r=0

∫ 1

s=1−α

(
k

r

)
(s− 1 + α)r(−αj)k−rϕj(s)ds

−
d∑
j=0

k∑
r=d+1

∫ 1

s=1−α

(
k

r

)
(s− 1 + α)r(−αj)k−rϕj(s)ds.

We can then use the binomial theorem and the property (P1) for polynomials
(−s− 1)k−r and (−s)k−r :

(1) + (3) =

d∑
j=0

∫ 1−α

s=0

(s+ α− αj − 1)kϕj(s)ds

−
d∑
j=0

k∑
r=d+1

∫ 1−α

s=0

(
k

r

)
(s+ α)r(−αj − 1)k−rϕj(s)ds

+

d∑
j=0

∫ 1

s=1−α
(s− 1 + α− αj)kϕj(s)ds

−
d∑
j=0

k∑
r=d+1

∫ 1

s=1−α

(
k

r

)
(s− 1 + α)r(−αj)k−rϕj(s)ds

=

d∑
j=0

∫ 1

s=0

(s+ α− αj − 1)kϕj(s)ds

−
k∑

r=d+1

∫ 1−α

s=0

(
k

r

)
(s+ α)r(−s− 1)k−rds

−
k∑

r=d+1

∫ 1

s=1−α

(
k

r

)
(s− 1 + α)r(−s)k−rds.
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We make the change of variable s = s− 1 in the last term :

(1) + (3) =

d∑
j=0

∫ 1

s=0

(s+ α− αj − 1)kϕj(s)ds

−
k∑

r=d+1

∫ 1−α

s=0

(
k

r

)
(s+ α)r(−s− 1)k−rds

−
k∑

r=d+1

∫ 0

s=−α

(
k

r

)
(s+ α)r(−s− 1)k−rds

=

d∑
j=0

∫ 1

s=0

(s+ α− αj − 1)kϕj(s)ds

−
k∑

r=d+1

∫ 1−α

s=−α

(
k

r

)
(s+ α)r(−s− 1)k−rds.

The change of variable s = s+ α in the last term follows to :

(1) + (3) =

d∑
j=0

∫ 1

s=0

(s+ α− αj − 1)kϕj(s)ds

−
k∑

r=d+1

∫ 1

s=0

(
k

r

)
sr(−s+ α− 1)k−rds.

We sum finally our two intermediate results and we obtain:

(1) + (2) + (3) + (4) =

d∑
j=0

∫ 1

s=0

(s+ α− αj − 1)kϕj(s)ds

=

d∑
j=0

k∑
r=0

(
k

r

)∫ 1

s=0

(s+ α)r(−αj − 1)k−rϕj(s)ds.

We separate the cases r ≤ d et r > d :

(1) + (2) + (3) + (4) =

d∑
j=0

d∑
r=0

(
k

r

)∫ 1

s=0

(s+ α)r(−αj − 1)k−rϕj(s)ds

+

d∑
j=0

k∑
r=d+1

(
k

r

)∫ 1

s=0

(s+ α)r(−αj − 1)k−rϕj(s)ds.

In the first term, we use the property (P2) with the polynomial s 7→ (s+ α)rϕj(s)
of maximal degree 2d. In the second term, we use the property (P1) with the
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polynomial s 7→ (−s− 1)k−r of maximal degree d :

(1) + (2) + (3) + (4) =

d∑
j=0

d∑
r=0

(
k

r

)
ωj(αj + α)r(−αj − 1)k−r

+

k∑
r=d+1

(
k

r

)∫ 1

s=0

(s+ α)r(−s− 1)k−rds.

As the polynomial s 7→ (s+ α)r(−s− 1)k−r is of degree k ≤ 2d+ 1, we can apply
(P2) in the first term :

(1) + (2) + (3) + (4) =

d∑
r=0

(
k

r

)∫ 1

s=0

(s+ α)r(−s− 1)k−rds

+

k∑
r=d+1

(
k

r

)∫ 1

s=0

(s+ α)r(−s− 1)k−rds

=

∫ 1

s=0

k∑
r=0

(
k

r

)
(s+ α)r(−s− 1)k−rds

= (α− 1)k.

which completes the proof. �

4.2. Numerical error. The numerical error at point xij and time tn is defined by

enij = f(tn, xij)− Sn(f(t0,x))ij

We classically relate the numerical error with the truncation error:

Proposition 4.6. We have

en = Sen−1 + ∆tgn−1.

By iteration, we get

(4.1) en = ∆t

n−1∑
`=0

S`gn−1−`.

Proof. By definition, we have

en = f(tn,x)− S(Sn−1(f(t0,x)))

and

Sn−1(f(t0,x)) = f(tn−1,x)− en−1.

This leads to

en = Sen−1 + f(tn,x)− S(f(tn−1,x)),

which gives the result. �
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5. Eigenstructure analysis

We see in the expression of the numerical error (4.1) that we have to deal with pow-
ers of S. Such a study can be tackled by looking at the spectral decomposition of S.

For each cell i = 0, . . . , N − 1, the scheme given by (2.1) can be written asf
n+1
i,0
...

fn+1
i,d

 = A−1

f
n
i−1,0

...
fni−1,d

+A0

f
n
i,0
...
fni,d


where A−1, A0 ∈Md+1(R) are the matrices :

(A−1)ij =

∫
R
ϕj(α+ s)ϕi(s)ds =

∫ 1

s=α

ϕi(s− α)ϕj(s)ds

(A0)ij =

∫
R
ϕj(α+ s− 1)ϕi(s)ds =

∫ α

s=0

ϕi(s− α+ 1)ϕj(s)ds.

Then, in the natural basis associated to x, the matrix of S is given by

S =


A0 A−1

A−1 A0

. . .
. . .

A−1 A0

 ∈MN(d+1)(R)

The matrix S is a block-circulant matrix, we can then perform a vectorial Fourier
decomposition. Such decomposition is already used in [5].

Proposition 5.1. We have the decomposition

S = UDU?

where

D =

D0

. . .

DN−1

 U =

 U0,0 . . . U0,N−1

...
. . .

...
UN−1,0 . . . UN−1,N−1


with

Dm = A0 +A−1e
2iπm
N Uk,` =

1√
N
e

2iπk`
N Id+1

and Id+1 is the identity matrix of size (d+ 1)× (d+ 1).

Proof. The (k, `)-block of the matrix UDU? is equal to

1

N

N−1∑
m=0

Dme
2iπm(k−`)

N = A0δk` +A−1δk+1,`

where δ is the Kronecker symbol. �

We are now looking for the eigenstructure of S. For this, we are reduced to look
at the eigenstructure of the matrices Dk, k = 0, . . . , N − 1. We first consider the
matrice D0 :
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Proposition 5.2. The only eigenvalue of module 1 of the matrix D0 := A−1 +A0

is 1, which is not multiple. Other eigenvalues have modulus strictly less than 1.
Moreover, we have

Dn
0 −→
n→+∞

G

where G denotes the Gauss weights matrix :

G =


ω0 ω1 . . . ωd
ω0 ω1 . . . ωd
...

...
...

...
ω0 ω1 . . . ωd

 .

Proof. In this proof, we will use the following relations :

(5.1)

d∑
j=0

ϕj(x) = 1 for all 0 ≤ x ≤ 1

(5.2)

∫ 1

0

ϕj(s)ds = ωj .

Let λ be an eigenvalue of the matrix D0. There exists x = (x0, ..., xd) such that
D0x = λx :

λωjxj =

d∑
j′=0

xj′

∫ 1

s=α

ϕj′(s)ϕj(s− α)ds+

d∑
j′=0

xj′

∫ α

s=0

ϕj′(s)ϕj(s+ 1− α)ds.

We denote by P the polynomial of degree less or equal than d such that P (αj) = xj
for all j = 0, ..., d. Then we obtain

λωjP (αj) =

d∑
j′=0

P (αj′)

∫ 1

s=α

ϕj′(s)ϕj(s− α)ds(5.3)

+

d∑
j′=0

P (αj′)

∫ α

s=0

ϕj′(s)ϕj(s+ 1− α)ds.

We sum over j :

λ

d∑
j=0

ωjP (αj) =

d∑
j′=0

P (αj′)

∫ 1

s=α

ϕj′(s)
d∑
j=0

ϕj(s− α)ds

+

d∑
j′=0

P (αj′)

∫ α

s=0

ϕj′(s)

d∑
j=0

ϕj(s+ 1− α)ds

and we get, by (5.1) and Gauss quadrature formula,

λ

∫ 1

s=0

P (s)ds =

d∑
j′=0

P (αj′)

∫ 1

s=α

ϕj′(s)ds+

d∑
j′=0

P (αj′)

∫ α

s=0

ϕj′(s)ds

then we use (5.2) and Gauss quadrature formula and we obtain finally

λ

∫ 1

s=0

P (s)ds =

∫ 1

s=0

P (s)ds.(5.4)
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We conclude that if λ 6= 1 then
∫ 1

s=0
P (s)ds = 0.

We multiply (5.3) by P (αj) :

λωjP
2(αj) =

d∑
j′=0

P (αj′)P (αj)

∫ 1

s=α

ϕj′(s)ϕj(s− α)ds

+

d∑
j′=0

P (αj′)P (αj)

∫ α

s=0

ϕj′(s)ϕj(s+ 1− α)ds.

We sum over j :

λ

d∑
j=0

ωjP
2(αj) =

∫ 1

s=α

 d∑
j′=0

P (αj′)ϕj′(s)

 d∑
j=0

P (αj)ϕj(s− α)

 ds

+

∫ α

s=0

 d∑
j′=0

P (αj′)ϕj′(s)

 d∑
j=0

P (αj)ϕj(s+ 1− α)

 ds

and we get, since deg(P 2) ≤ 2d ≤ 2d + 1 and Gauss quadrature formula is still
valid :

(5.5) λ

∫ 1

0

P (s)2ds =

∫ 1

0

P (s)(1[α,1[(s)P (s− α) + 1[0,α](s)P (s+ 1− α))ds.

By Cauchy-Schwarz inequality, we have(∫ 1

0
P (s)(1[α,1[(s)P (s− α) + 1[0,α](s)P (s+ 1− α))ds

)2

≤∫ 1

0
P (s)2ds ·

∫ 1

0
(1[α,1[(s)P (s− α) + 1[0,α](s)P (s+ 1− α))2ds.

The last term can be simplified :∫ 1

0

(1[α,1[(s)P (s− α) + 1[0,α](s)P (s+ 1− α))2ds

=

∫ 1−α

0

P (s)2ds+

∫ 1

1−α
P (s)2ds =

∫ 1

0

P (s)2ds

then we obtain :

(5.6)

∣∣∣∣∫ 1

0

P (s)(1[α,1[(s)P (s− α) + 1[0,α](s)P (s+ 1− α))ds

∣∣∣∣ ≤ ∫ 1

0

P (s)2ds.

The relations (5.5) and (5.6) lead to

(5.7) |λ|
∫ 1

0

P (s)2ds ≤
∫ 1

0

P (s)2ds.

We have equality in (5.6) if and only if the functions s 7→ P (s) and s 7→ 1[α,1[(s)P (s−
α) + 1[0,α](s)P (s + 1 − α) are proportional i.e. there exists (µ1, µ2) 6= (0, 0) such
that

µ1P (s) = µ2(1[α,1[(s)P (s− α) + 1[0,α](s)P (s+ 1− α)).

It is clear that a such relation is not possible if P is of degree 1 (we suppose
0 < α < 1) and if P has a degree greater than 1, we can differentiate the relation
and the relation still remain the same for the derivatives which will be of degree 1
at a moment. Also P is necessarily constant.



A SEMI-LAGRANGIAN DISCONTINUOUS GALERKIN SUPERCONVERGENCE 15

If |λ| = 1 we have equality in (5.7) and then, by the previous remark, P is constant.
Then, if |λ| = 1 and λ 6= 1, the relation (5.4) implies P = 0 which is not possible.

We consider the two subspaces V = {P ∈ Cd[X] | P is constant} and W = {P ∈
Cd[X] |

∫ 1

0
P (x)dx = 0}. These two subspaces are in direct sum associated to the

decomposition P (X) =
∫ 1

0
P (x)dx +

(
P (X)−

∫ 1

0
P (x)dx

)
. These subspaces are

moreover stable by D0.

In fact, if P ∈ V we can assume that P ≡ 1. The jth-component of D0

1
...
1

 reads

1

ωj

d∑
j′=0

∫ 1

s=α

ϕj′(s)ϕj(s− α)ds+
1

ωj

d∑
j′=0

∫ α

s=0

ϕj′(s)ϕj(s+ 1− α)ds =
1

ωj

∫ 1

0

ϕj(s)ds = 1.

If P ∈ W, we have
∫ 1

0
P =

∑d
i=0 ωiP (αi) = 0 then

∫ 1

0
D0P reads

d∑
j=0

 d∑
j′=0

P (αj′)

∫ 1

s=α

ϕj′(s)ϕj(s− α)ds+

d∑
j′=0

P (αj′)

∫ α

s=0

ϕj′(s)ϕj(s+ 1− α)ds


=

d∑
j′=0

P (αj′)

∫ 1

s=α

ϕj′(s)

d∑
j=0

ϕj(s− α)ds+

d∑
j′=0

P (αj′)

∫ α

s=0

ϕj′(s)

d∑
j=0

ϕj(s+ 1− α)ds

=

d∑
j′=0

P (αj′)

∫ 1

s=0

ϕj′(s)ds

=

d∑
j′=0

ωj′P (αj′)

= 0.

For summary, the matrixD0 admits the eigenvalue λ = 1 associated to the eigenspace
V of dimension 1 and others eigenvalues of modulus strictly less than 1 associated
to the space W of dimension d.

The base vector ei corresponds to the polynomial Pi defined by Pi(αj) = δij .
The projection of Pi in subspace V gives

∫
Pi =

∑
j Pi(αj)ωj = ωi. So, we have

lim
n→+∞

Dn
0 ei = ωi

1
...
1


which completes the proof. �

We then consider the other matrices D1, . . . , DN−1 :

Proposition 5.3. For all m = 1 ... N−1, the matrix Dm = A0 +A−1e
2iπm
N verifies

Dn
m −→
n→+∞

0



16 C. STEINER, M. MEHRENBERGER, AND D. BOUCHE

Proof. In this proof, we will use as above the following relations :

(5.8)

d∑
j=0

ϕj(x) = 1 for all 0 ≤ x ≤ 1

(5.9)

∫ 1

0

ϕj(s)ds = ωj .

Let λ be an eigenvalue of the matrice Dm. There exists x = (x0, ..., xd) such that
Dmx = λx :

λωjxj = e
2iπm
N

d∑
j′=0

xj′

∫ 1

s=α

ϕj′(s)ϕj(s− α)ds+

d∑
j′=0

xj′

∫ α

s=0

ϕj′(s)ϕj(s+ 1− α)ds.

We denote by P the polynomial of degree less or equal than d such that P (αj) = xj
for all j = 0, ..., d. Then :

λωjP (αj) = e
2iπm
N

d∑
j′=0

P (αj′)

∫ 1

s=α

ϕj′(s)ϕj(s− α)ds(5.10)

+

d∑
j′=0

P (αj′)

∫ α

s=0

ϕj′(s)ϕj(s+ 1− α)ds.

We sum over j :

λ

d∑
j=0

ωjP (αj) = e
2iπm
N

d∑
j′=0

P (αj′)

∫ 1

s=α

ϕj′(s)

d∑
j=0

ϕj(s− α)ds

+

d∑
j′=0

P (αj′)

∫ α

s=0

ϕj′(s)

d∑
j=0

ϕj(s+ 1− α)ds

and we get, by (5.8) and Gauss quadrature formula,

λ

∫ 1

s=0

P (s)ds = e
2iπm
N

d∑
j′=0

P (αj′)

∫ 1

s=α

ϕj′(s)ds+

d∑
j′=0

P (αj′)

∫ α

s=0

ϕj′(s)ds

then we use (5.9) and Gauss quadrature formula and we obtain finally

(λ− 1)

∫ 1

s=0

P (s)ds = (e
2iπm
N − 1)

∫ 1

s=α

P (s)ds.(5.11)

We multiply (5.10) by P (αj) :

λωjP
2(αj) = e

2iπm
N

d∑
j′=0

P (αj′)P (αj)

∫ 1

s=α

ϕj′(s)ϕj(s− α)ds

+

d∑
j′=0

P (αj′)P (αj)

∫ α

s=0

ϕj′(s)ϕj(s+ 1− α)ds.
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We sum over j :

λ

d∑
j=0

ωjP
2(αj) = e

2iπm
N

∫ 1

s=α

 d∑
j′=0

P (αj′)ϕj′(s)

 d∑
j=0

P (αj)ϕj(s− α)

 ds

+

∫ α

s=0

 d∑
j′=0

P (αj′)ϕj′(s)

 d∑
j=0

P (αj)ϕj(s+ 1− α)

 ds

and we get, since deg(P 2) ≤ 2d ≤ 2d + 1 and Gauss quadrature formula is still
valid :

(5.12) λ

∫ 1

0

P (s)2ds =

∫ 1

0

P (s)(1[α,1[(s)e
2iπm
N P (s−α) + 1[0,α](s)P (s+ 1−α))ds.

By Cauchy-Schwarz inequality, we have∣∣∣∫ 1

0
P (s)(1[α,1[(s)e

2iπm
N P (s− α) + 1[0,α](s)P (s+ 1− α))ds

∣∣∣2 ≤∫ 1

0
P (s)2ds ·

∫ 1

0

∣∣∣1[α,1[(s)e
2iπm
N P (s− α) + 1[0,α](s)P (s+ 1− α)

∣∣∣2 ds.
The last term can be simplified, since the functions have distinct supports :∫ 1

0

∣∣∣1[α,1[(s)e
2iπm
N P (s− α) + 1[0,α](s)P (s+ 1− α)

∣∣∣2 ds
=

∫ 1

0

∣∣∣1[α,1[(s)e
2iπm
N P (s− α)

∣∣∣2 +

∫ 1

0

∣∣1[0,α](s)P (s+ 1− α)
∣∣2 ds =

∫ 1

0

P (s)2ds

then we obtain :

(5.13)

∣∣∣∣∫ 1

0

P (s)(1[α,1[(s)e
2iπm
N P (s− α) + 1[0,α](s)P (s+ 1− α))ds

∣∣∣∣ ≤ ∫ 1

0

P (s)2ds

and the relations (5.12) and (5.13) lead to

(5.14) |λ|
∫ 1

0

P (s)2ds ≤
∫ 1

0

P (s)2ds.

We have equality in (5.13) if and only if the functions s 7→ P (s) and s 7→ 1[α,1[(s)e
2iπm
N P (s−

α) + 1[0,α](s)P (s + 1 − α) are proportional i.e. there exists (µ1, µ2) 6= (0, 0) such
that

µ1P (s) = µ2(1[α,1[(s)e
2iπm
N P (s− α) + 1[0,α](s)P (s+ 1− α)).

It’s clear that a such relation is not possible if P is of degree 1 (we suppose
0 < α < 1) and if P has a degree greater than 1, we can derivate the relation
and the relation still remain the same for the derivatives which will be of degree 1
at a moment. Also P is necessarily constant.

If |λ| = 1 we have equality in (5.14) and then, by the previous remark, P is constant.
In this case, we obtain, using (5.11) :

λ = (1− α)e
2iπm
N + α

then we have proved the fact that λ belongs to the segment between 1 and e
2iπm
N

and finally the condition 0 < α < 1 implies that |λ| < 1.
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1

e
2iπm
N

Finally, all the eigenvalues have a modulus strictly less than 1 which completes the
proof. �

Using the two previous propositions, we then can establish :

Corollary 5.4. We have the convergence property :

Sn −→
n→+∞

UD∞U?

where

D∞ =


G 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 .

6. End of the proof

By Proposition 4.6, we have

en = ∆t

n−1∑
`=0

S`gn−1−`,

which leads to

‖en‖2 ≤ ∆t

n−1∑
`=0

‖S` − UD∞U?‖2‖gn−1−`‖2︸ ︷︷ ︸
(1)

+ ∆t

∥∥∥∥∥
n−1∑
`=0

UD∞U?gn−1−`

∥∥∥∥∥
2︸ ︷︷ ︸

(2)

.

First term : we note

ρd = max(|λ| | λ eigenvalue of S and |λ| < 1)

then we have the majoration

‖S` − UD∞U?‖2 ≤ ρ`d.

We have

‖gn−1−`‖2 ≤ Cd
∆xd+1

∆t

then

n−1∑
`=0

‖S` − UD∞U?‖2‖gn−1−`‖2 ≤
1− ρnd
1− ρd

Cd
∆xd+1

∆t
≤ C1

∆xd+1

∆t
.
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Second term : we show, by calculation, that the vector UD∞U?g` is equal to d∑
j=0

ωj

N−1∑
i=0

g`ij


1

...
1

 ∈ R(d+1)N

and we have, by Proposition 4.3 :

N−1∑
i=0

d∑
j=0

ωj

n−1∑
`=0

g`ij =

n−1∑
`=0

2d+1∑
k=0

d∑
j=0

ωjE
k
j

∆xk

∆t

(
N−1∑
i=0

∂kxf(t`, xij)

)
+O

(
∆x2d+2

∆t

)

=

n−1∑
`=0

2d+1∑
k=0

d∑
j=0

ωjE
k
j

∆xk

∆t

(
N−1∑
i=0

∂kxf
0(xij − `∆t)

)
+O

(
∆x2d+2

∆t

)
.

The Euler-MacLaurin theorem states that if (m,n) ∈ Z2, m < n, k ∈ N∗ and
f : [m,n]→ C a Cr([m,n]) function then we have :

f(m)

2
+f(m+1)+. . .+f(n−1)+

f(n)

2
=

∫ n

m

f(t)dt+

r∑
k=2

bk
k!

(f (k−1)(n)−f (k−1)(m))+Rr

with

Rr =
(−1)r+1

r!

∫ n

m

B̃r(t)f
(r)(t)dt

where bn are the Bernoulli numbers and B̃n the Bernoulli polynomials. We apply
the Euler-MacLaurin theorem to the function

i 7→ ∂kxf
0(xij − `∆t) = ∂kxf

0((i+ αj)∆x− `∆t)

with r = 2d+ 2− k :

N−1∑
i=0

∂kxf
0((i+ αj)∆x− `∆t) =

∫ N

t=0

∂kxf
0((t+ αj)∆x− `∆t)dt+Rj,`2d+2−k

=
1

∆x

∫ 1

0

∂kxf
0(x)dx+Rj,`2d+2−k

where

Rj,`2d+2−k =
(−1)2d+3−k

(2d+ 2− k)!

∫ N

0

B̃2d+2−k(t)∂kxf
0(2d+2−k)

((t+ αj)∆x− `∆t)dt.

Then we have

N−1∑
i=0

d∑
j=0

ωj

n−1∑
`=0

g`ij =

n−1∑
`=0

2d+1∑
k=0

∆xk

∆t

(
1

∆x

∫ 1

0

∂kxf
0(x)dx

) d∑
j=0

ωjE
k
j


+

n−1∑
`=0

2d+1∑
k=0

d∑
j=0

ωjE
k
j

∆xk

∆t
Rj,`2d+2−k +O

(
∆x2d+2

∆t

)
We use Proposition 4.5 in order to conclude that

n−1∑
`=0

2d+1∑
k=0

∆xk

∆t

(
1

∆x

∫ 1

0

∂kxf
0(x)dx

) d∑
j=0

ωjE
k
j

 = 0
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and Rj,`2d+2−k = O(∆x2d+2−k) leads to∥∥∥∥∥
n−1∑
`=0

UD∞U?gn−1−`

∥∥∥∥∥
2

≤ nC2
∆x2d+2

∆t
.

Conclusion. The two previous paragraphs show the theorem :

‖en‖2 ≤ C1∆xd+1 + nC2∆x2d+2.

7. Symbolic and numerical results

7.1. Symbolic results. The scheme is given by Fn+1
j = A−1F

n
j−1 +A0F

n
j (see the

beginning of Section 5). We consider

F̂nk =
1

N

N−1∑
j=0

Fnj e
−2iπjk
N .

By taking the initial condition :

f(0, x) = e2iπ`x

we obtain :

(F̂ 0
k )i = e

2iπkαi
N .

The amplification matrix of the scheme F̂n+1
k = ÂkF̂nk reads

Âk = A0 +A−1e
−2ikπ
N .

We denote by λ0,k, ..., λd,k and V0,k, ..., Vd,k the eigenvalues and eigenvectors of Âk.
The solution of the scheme is given by :

F̂nk = (Âk)nF̂ 0
k .

We choose the eigenvectors V0,k, ..., Vd,k such that F̂ 0
k =

∑d
j=0 Vj,k(α) then we have

F̂nk =

d∑
j=0

λnj,kVj,k(α).

The error in Fourier space then reads :

d∑
j=0

(λnj,k − e−2iπknα∆x)Vj,k(α).

We restrict the study to the case d = 1 and note ω := 2πk. We obtain the
eigenvalues and eigenvectors by using Maple :

λ0,ω = 1− αiω∆x+
1

2
(αiω∆x)2 − 1

6
(αiω∆x)3 +

α(4α3 − 2α2 + 2α− 1)

72
(iω∆x)4 +O(∆x5),

λ1,ω = 6α2 − 6α+ 1 +O(∆x),

V0,ω =

(
1 + 3−

√
3

6 iω∆x+O(∆x2)

1 + 3+
√

3
6 iω∆x+O(∆x2)

)
,

V1,ω =

(
−
√

3(2α−1)
36 (iω∆x)2 − −4

√
3α2+(10

√
3−6)α+(3−5

√
3)

216 (iω∆x)3 +O(∆x4)√
3(2α−1)

36 (iω∆x)2 − 4
√

3α2+(−10
√

3−6)α+(3+5
√

3)
216 (iω∆x)3 +O(∆x4)

)
.



A SEMI-LAGRANGIAN DISCONTINUOUS GALERKIN SUPERCONVERGENCE 21

The computation of the error in Fourier space gives(
−
√

3(2α−1)T1(n,α)
36 (iω∆x)2 − T2(n,α)

216(6α2−6α+1) (iω∆x)3 +O(∆x4)
√

3(2α−1)T1(n,α)
36 (iω∆x)2 − T3(n,α)

216(6α2−6α+1) (iω∆x)3 +O(∆x4)

)
where

T1(n, α) = (6α2 − 6α+ 1)n − 1,

T2(n, α) = n
√

3(72α4 − 108α3 + 48α2 − 6α)

+n
√

3(6α2 − 6α+ 1)n(24α4 − 84α3 + 72α2 − 18α)

+[(6α2 − 6α+ 1)n − 1][−24
√

3α4 + (−36 + 84
√

3)α3

+(54− 74
√

3)α2 + (−24 + 40
√

3)α+ 3− 5
√

3],

T3(n, α) = −n
√

3(72α4 − 108α3 + 48α2 − 6α)

−n
√

3(6α2 − 6α+ 1)n(24α4 − 84α3 + 72α2 − 18α)

+[(6α2 − 6α+ 1)n − 1][24
√

3α4 + (−36− 84
√

3)α3

+(54 + 94
√

3)α2 + (−24− 40
√

3)α+ 3 + 5
√

3].

We validate, in this case, the estimation of the error :

‖en‖2 ≤ C1∆xd+1 + nC2∆x2d+2.

7.2. Numerical results. We process a numerical study of the convergence of the
scheme for d = 1 and d = 2 (Fig. 1). We see that in both cases, the error is of
order d+ 1 when we iterate the scheme only one time. In fact, for a low number of
iterations, the dominant term in the error bound

‖en‖2 ≤ C1∆xd+1 + nC2∆x2d+2

is C1∆xd+1. When the number of iterations n increases, the dominant term of
the error becomes nC2∆x2d+2 and then we show the emergence of a slope of order
2d+ 2 for large values of ∆x.

8. Conclusion

We prove a superconvergence property for the Semi-Lagrangian Discontinuous
Galerkin scheme. An adaptation of this proof when α goes to 0 in order to show
this property for the scheme studied in [6] could be a further work. Such a super-
convergence property in the case of the Vlasov-Poisson equation is a completely
open problem.
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Figure 1. SLGD error convergence for d = 1 and 1 iteration (top
left), 104 iterations (top right) and 106 iterations (middle left).
SLGD error for d = 2 and 1 iteration (middle right), 104 iterations
(bottom left) and 106 iterations (bottom right). We have used
f0(x) = sin(2πx) and a = 1.
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& INRIA-Nancy Grand-Est, projet CALVI

E-mail address: christophe.steiner@math.unistra.fr
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