
HAL Id: hal-00852402
https://hal.science/hal-00852402

Submitted on 20 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Markovian bounds on functions of finite Markov chains
James Ledoux, Laurent Truffet

To cite this version:
James Ledoux, Laurent Truffet. Markovian bounds on functions of finite Markov chains. Advances in
Applied Probability, 2001, 33, pp.505-519. �hal-00852402�

https://hal.science/hal-00852402
https://hal.archives-ouvertes.fr


Markovian Bounds on functions of Finite Markov

Chains

James Ledoux∗ and Laurent Truffet†

8 March 2001

Abstract

In this paper, we obtain Markovian bounds on a function of a homogeneous

discrete time Markov chain. For deriving such bounds, we use well known

results on stochastic majorization of Markov chains and the Rogers-Pitman’s

lumpability criterion. The proposed method of comparison between functions

of Markov chains is not equivalent to generalized coupling method of Markov

chains although we obtain same kind of majorization. We derive necessary and

sufficient conditions for existence of our Markovian bounds. We also discuss

the choice of the geometric invariant related to the lumpability condition that

we use.

Keywords: weak lumpability, stochastic comparison, strong ordering.
AMS 60J10

1 Introduction

We are considering dynamic systems which could be modeled by a homogeneous
discrete time Markov chain (DTMC) on a totally ordered finite state space. In
the context of quick estimation of performance parameter we present a bounding
method for a performance criterion which only depends on information about subsets
of states (aggregates or lumped states) of the Markov chain.

More formally, let us consider a S-valued DTMC with S = {1, . . . , η}, X =
(Xn)n∈N, also denoted by X = (α,P ), where α is the probability distribution of X0

and P the η×η transition probability matrix (t.p.m.). Let us consider a performance
parameter (θn)n∈N such that

∀n ∈ N, θn = ξn(φ(X0), . . . , φ(Xn)), (1)

∗IRMAR UMR-CNRS 6625 & Institut National des Sciences Appliquées, 20 avenue des Buttes

de Coesmes, 35708 Rennes Cedex 7, France
†IRCCyN UMR-CNRS 659 & Ecole des Mines de Nantes, Dpt. Automatique-Productique, 4

rue Alfred Kastler BP. 20722, 44307 Nantes Cedex 3, France

1



where φ : S −→ Σ = {1, . . . , N}, with N < η, and ξn : Σn+1 −→ R. The main
problem is that (φ(Xn))n∈N, the aggregated process, is not a homogeneous Markov
chain except under conditions called weak lumpability criteria [6]. Thus, under the
following assumptions:

A1: φ is nondecreasing and φ(S) = Σ,

A2: for every n, ξn is nondecreasing function in the sense of componentwise order-
ing,

we investigate a method to get Σ-valued Markov chains (Y n)n∈N and (Y n)n∈N such
that:

∀n ∈ N, (Y 0, . . . , Y n) ≤st (φ(X0), . . . , φ(Xn)) ≤st (Y 0, . . . , Y n) (2)

where ≤st denotes the strong order of random vectors [12]. An interesting conse-
quence of (2) is that:

∀n ∈ N, θn ≤st θn ≤st θn, (3)

where θn = ξn(Y 0, . . . , Y n) and θn = ξn(Y 0, . . . , Y n) for any n ∈ N.
In this paper we focus on the way to obtain stochastic majorization (2). Our

methodology is based on well-known results on stochastic majorization [5], [7], [12]
and on weak lumpability [6], [9]. It is a generalization of a first work [13] in the
following ways. In [13], the author uses a weak lumpability criterion pointed out
by Schweitzer [10]. Weak lumpability property has been proved to be equivalent to
the existence of some invariant subspace by matrix P (see [8]). Thus, every known
criterion corresponds to a specific choice of this subspace. We deal here with a
geometric invariant discussed in [6],[9] which is more general than Schweitzer’s one.
Therefore, we obtain bounds in cases which are not covered by results in [13] (e.g.
see Subsection 5.3). Moreover, the invariant space in the Schweitzer’s criterion is
a priori known. This is not the case here where we have to propose a method to
select suitable invariant space.

The paper is organized as follows. We present in Section 2 background material
on stochastic majorization and Rogers-Pitman’s lumpability criterion that will be
used throughout this paper. Moreover, we explain how such results can be combined
so as to derive Markovian bounds. Section 3 deals with existence of Markovian
bounds on the aggregated process. It is very similar to the study of existence of
exact lumpable bounds in [13]. In Section 4 we develop a policy of choice of the
geometric invariant involved in the lumpability criterion. In Section 5 these results
are applied to the cases of one or two aggregates. Such a context allows us to provide
additional material to results of Section 4. Numerical aspects of our method are
presented from an illustrative example. We conclude in Section 6.

Let us introduce some notations.
(a) By convention, vectors are row vectors. Column vectors are indicated by mean
of the transpose operator (.)∗. 1 denotes vector with all its components equal to
1. Notation 1n, n ≥ 1, stands for n-dimensional vector 1. diag(Di) denotes block
diagonal matrix with generic diagonal block entry Di.
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(b) A(S) and A(Σ) denote the sets of all probability distributions on S and Σ,
respectively.
(c) Let I be an element of Σ. By convention the ith element of set φ−1(I) = [aI , bI ]
will be denoted iI , iI = 1, . . . , ηI , where ηI is the number of elements of set φ−1(I).
Note that it is also the (aI − 1 + i)th element of S since φ is nondecreasing.

(e) Let us define the η × N matrix, V , associated with function φ, by: V (s, I)
∆
=

1{φ(s)=I}, s ∈ S, I ∈ Σ. Note that: V = diag(1∗
ηI
).

(f) LetA be a η×η matrix: AI,J = [A(i, j)]i∈φ−1(I),j∈φ−1(J),AI,. = [A(i, j)]i∈φ−1(I),j∈S.
A(k, .) and A(., j) denote the kth row and the jth column of matrix A, respectively.
(g) With conventions (c) and (f) and by definition of the partition (φ−1(I))I∈Σ of S,
scalar AI,J(lI , kJ) refers to entry A(aI − 1 + l, aJ − 1 + k) of a η × η matrix A.

2 Preliminaries

2.1 Stochastic majorization.

We recall well-known results on comparison of random processes in the sense of
strong order [12] because aggregated process Xφ = (φ(Xn))n∈N is a nondecreasing
function of X. Componentwise ordering between any vectors x = (x(1), . . . , x(n))
and y = (y(1), . . . , y(n)) of Rn is defined by

x ≤ y ⇐⇒
(
∀i = 1, . . . , n : x(i) ≤ y(i)

)
.

Definition 2.1 (Strong ordering) Let X, Y be two R
n-valued random variables

(RVs). X is smaller than Y in the sense of strong ordering, denoted by X ≤st Y ,
iff for all nondecreasing real functions f from R

n (in the sense of componentwise
ordering on R

n), we have: E[f(X)] ≤ E[f(Y )] provided that expectations exist.

Situation of special interest. In the case where X and Y are {1, . . . ,m}-
valued RVs with respective probability distributions x = (x(1), . . . , x(m)) and
y = (y(1), . . . , y(m)), we have:

X ≤st Y iff x Um ≤ y Um (componentwise),

where
Um = [1{i≥j}]i,j=1,...,m.

Since X and Y are compared with the ≤st order through their probability distri-
butions, inequality X ≤st Y is also denoted by x ≤st y. Sometimes we shall write
x ≺Um

y to emphasize the order of involved stochastic vectors.
We write A ≺U B for two m×m stochastic matrices A and B if

A(i, .) ≤st B(i, .) ∀i = 1, . . . ,m or A Um ≤ BUm (coefficient-wise).

A m×m matrix M is said to be a ≤st-monotone matrix if

M (i, .) ≤st M (i+ 1, .) ∀i = 1, . . .m− 1 or U−1
m M Um ≥ 0 (coefficient-wise).
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Let us now recall main result on stochastic majorization. For more references on
this topic see e.g. [5], [12] and [7].

Result 2.1 (Sufficient condition to compare DTMC with same state space)
Let Z = (λ,A) and W = (ν,B) be two DTMC taking values in the same state space,
with initial distributions λ and ν, t.p.m A and B, respectively. If
(a) λ ≤st ν;
(b) A ≺U B;
(c) there exists a ≤st-monotone matrix M such that

A ≺U M ≺U B,

then
∀n ∈ N, (Z0, . . . , Zn) ≤st (W0, . . . ,Wn). (4)

When (4) holds, we will say that process W is an ≤st-upper bound on process Z.

Remark 2.1 Because projectors are nondecreasing functions, Relation (4) implies
that for every n ∈ N, Zn ≤st Wn. This could be rewritten as

∀n ≥ 0, λ An ≤st ν Bn. (5)

2.2 C-lumpable matrix

In general a function of a Markov chain Xφ = (φ(Xn))n∈N may be not a homoge-
neous Markov chain. The Markov property for Xφ is strongly related to the initial
distribution of the original chain (Xn)n∈N (see [6]). We recall some basic facts on a
lumpability criterion introduced in Kemeny-Snell’s book on finite Markov chain [6]
and generalized by Rogers and Pitman [9] for Markov process with continuous state
space.

Let us consider aN×η stochastic matrixC = diag(cI) with cI is a ηI-dimensional
probability vector. Note that CV is the identity matrix of order N ×N .

Definition 2.2 Matrix L is said to be a C-lumpable matrix if

CL = (CLV )C. (6)

We have the following properties for such a C-lumpable matrix.

1. For any convex combination βC of row vectors of matrix C, (φ(Xn))n∈N is a

version of the Markov chain (βCV , L̂) = (β, L̂) where

L̂ = CLV .

In particular, the process (φ(Xn))n∈N has the same one-dimensional distribu-

tions as Markov chain (β, L̂), that is

∀n ≥ 0, βCLnV = βL̂
n
.
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Note that initial distribution giving a Markov chain (φ(Xn))n∈N may be not
restricted to the previous convex combinations.

2. Relation (6) is equivalent to say that vectors cI (I ∈ Σ) satisfy

∀I, J ∈ Σ, cILI,J = L̂(I, J) cJ . (7)

3. The following relation is a direct consequence of the equality (6):

∀n ≥ 0, CLn = (CLV )nC = L̂
n
C. (8)

Relation (8) states that state probability vectors for the original model (Xn)n∈N
with any initial distribution βC are obtained from a computation with a
N × N matrix. Such a relation is known (e.g. [10], [1]) when vector cI is an
uniform distribution over φ−1(I). Introduction of such a matrix C was mainly
motivated by this property.

2.3 Markovian bounds

The key idea to get a Markovian bound for the aggregated process is summarized in
the following proposition, which combines results on stochastic majorization and C-
lumpability. We only consider upper bounds (lower case being obviously deduced).

Proposition 2.1 Let (Xn)n∈N = (α,P ) be a S-valued Markov chain, L be a C-

lumpable matrix into matrix L̂. We assume that P is ≤st-monotone. For β ∈ A(Σ),
we denote the Markov chain (βC,L) by (Wn)n∈N.

If
α ≤st βC and P ≺U L

then
∀n ≥ 0, (φ(X0), . . . , φ(Xn)) ≤st (φ(W0), . . . , φ(Wn)). (9)

where (φ(Wn))n∈N is the Markov chain (β, L̂). In particular, we have for the state
probability vectors

∀n ≥ 0, αP n ≺Uη
βL̂

n
C (10)

αP nV ≺UN
βL̂

n
. (11)

Proof. Result 2.1 yields (X0, . . . , Xn) ≤st (W0, . . . ,Wn) for every n ≥ 0. Since
φ is nondecreasing, we obtain (9). We get Xn ≤st Wn and φ(Xn) ≤st φ(Wn) from
Remark 2.1, that is

αP n ≺Uη
βCLn

and Relation (11). Since L is C-lumpable into L̂, (φ(Wn))n∈N is the Markov chain

(β, L̂). The last inequality and Relation (8) give Inequality (10). �
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Let us mention interesting consequences of the previous result. Assume that

there exists Markov chains Y = (β, L̂) and Y = (β, L̂) which are a ≤st-lower bound
and a ≤st-upper bound on (φ(Xn))n∈N, respectively, and that

β C ≤st α ≤st β C,

with C = diag(cI) and C = diag(cI). First of all, it is possible to estimate error
made in approximating the aggregated process by Y or Y :

∀n ≥ 0, d(n)
∆
= max

I=1,...,N
|β L̂

n

(I)− β L̂
n
(I)|. (12)

In a second time, we can also quickly estimate error made on original chain using
only knowledge on Y and Y :

∀n ≥ 0, D(n)
∆
= max

I=1,...,N ;iI=1,...,ηI
|β L̂

n

(I) cI(iI)− β L̂
n
(I) cI(iI)| (13)

The next section focuses on the existence of C-lumpable matrix L such that
P ≺U L when C is fixed. Section 4 deals with the problem of the choice of matrix
C.

3 Existence of Markovian bounds on aggregated

process

Let us recall thatX = (α,P ) denotes the initial DTMC. Existence and computation
of an ≤st-upper Markovian bound on process Xφ can be stated from the following
theorem. This result is a slight extension of [13] where C was the Schweitzer’s
matrix, i.e. cI =

1
ηI

1ηI , I ∈ Σ.

As it is shown in [13], we can assume without loss of generality that P is a
≤st-monotone matrix on S till the end of the paper.

Theorem 3.1 There exist at least one C-lumpable matrix, L, such that:

P ≺U L,

if and only if there exists a Σ×Σ stochastic matrix L̂ whose entries are solution of
system

I, J = 1, . . . , N :

cI P I,J U ηJ + (
∑N

K=J+1 cI = P I,K1
∗
ηK
) 1ηJ ≤

L̂(I, J) cJ U ηJ + (
∑N

K=J+1 L̂(I,K)) 1ηJ (componentwise)

(14)

Proof. We could give a similar proof than in [13]. In particular, the necessary
condition is as in [13]. However, proof of the converse statement has been drastically
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shortened and gives a clear insight into the geometry underlying the construction of
the C-lumpable matrix L.

(if) It is easy to see that P ≺U L iff

∀I = 1, . . . , N P I,. U η ≤ LI,. U η.

Left-multiplying this last inequality by the stochastic vector cI and using (7) we

obtain that entries of the stochastic matrix L̂ satisfy system (14).
(Only if) Construction of the matrix L is in the same way as in [13]. For any

I ∈ Σ, we choose a ≤-nonincreasing sequence of vectors (dj)
η
j=1 where dj is an

element of set

Dj = {x ∈ [0, 1]ηI |x ≥ mj (componentwise) , cI x
∗ = rj},

wherem∗
j =

∑η

k=j P I,.(., k) and rj = (cφ(j) U ηφ(j) e
∗
j−aφ(j)+1) L̂(I, φ(j))+

∑N

K=φ(j)+1 L̂(I,K).

For any I ∈ Σ, we define matrix LI,. from vectors (dj)
η
j=1 by

∀j ∈ S, LI,.(., j) = d∗
j − d∗

j+1 (with convention dη+1 = 0).

It is easy to check that above-defined matrix L is C-lumpable and such that P ≺U

L.
We just have to justify existence of vectors (dj)

η
j=1 for any I ∈ Σ. In fact

system (14) gives that each vector mj satisfies

cI m
∗
j ≤ rj. (15)

Note that the sequence (rj)
η
j=1 and (mj)

η
j=1 are nonincreasing.

Now existence of the nonincreasing sequence (dj)
η
j=1 is proved by induction. We

have d1 = 1 since r1 = 1 and m1 = 1. Let us assume that we have obtained
1 ≥ d2 ≥ · · · ≥ dj ≥ 0 for some j > 1. We compute dj+1 as follows. We have
dj ≥ mj ≥ mj+1 and cI d

∗
j = rj ≥ rj+1 ≥ cIm

∗
j+1. The last inequality follows from

(15). We get that dj is ”over” the affine hyperplane {x ∈ R
ηI | cI x∗ = rj+1} and

mj+1 is ”under” this hyperplane. Therefore, the segment of line [mj+1,dj] joining
mj+1 to dj cuts {x ∈ R

ηI
+ | cI x

∗ = rj+1} in one point. Let dj+1 be this point. Then
dj+1 is such that 0 ≤ mj+1 ≤ dj+1 ≤ dj since any point of the segment [mj+1,dj]
has this property. Finally, we have cI d

∗
j+1 = rj+1 by construction. �

Corollary 3.1 Let us assume that there exists a stochastic matrix L̂ whose entries
satisfy system (14). The entries of any stochastic matrix Λ such that L̂ ≺U Λ are
still solution to system (14).

Proof.
Assume that L̂ ≺U Λ with Λ = [λ(I, J)]I,J∈Σ. We first show that

∀J ∈ Σ, ∀β ∈ [0, 1], β L̂(I, J) +
N∑

K=J+1

L̂(I, J) ≤ β λ(I, J) +
N∑

K=J+1

λ(I,K). (16)
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For a fixed J , let us define g(β) = β = (λ(I, J) − L̂(I, J)) +
∑N

K=J+1(λ(I,K) −

L̂(I,K)). g is an affine function. Since L̂(I, .) ≤st Λ(I, .), g is such that g(0) ≥ 0
and g(1) ≥ 0. Therefore, g(β) ≥ 0 for all β ∈ [0, 1].

Thus, for each l in {0, . . . , ηJ−1}, we have inequality (16) with β =
∑ηJ

kJ=ηJ−l cJ(kJ).
This shows that scalars (λ(I, J))I,J∈Σ satisfy system (14). �

We deduce from Theorem 3.1 and Proposition 2.1, an existence condition and
the computation of an ≤st-upper Markovian bound on process Xφ.

Corollary 3.2 If the two following conditions are fulfilled

(a) there exists a stochastic matrix L̂ whose entries satisfy system (14)

(b) there exists a probability vector β ∈ A(Σ) such that

α ≤st β C, (17)

then the Σ-valued Markov chain Y = (β, L̂) is an ≤st-upper bound on Xφ, i.e.

∀n ∈ N, (φ(X0), . . . , φ(Xn)) ≤st (Y0, . . . , Yn).

To end this section, let us mention that it is also possible to study lower bounding
problem. Same kind of results could be derived by reversing inequalities in (14),
Theorem 3.1 and in (17), Corollary 3.2.

4 Policy of choice of matrix C

In this section we deal with the selection of the stochastic matrix C = diag(cI).
The choice is based on the following condition of existence of a C-lumpable upper
bound.

Lemma 4.1 (Existence of upper bounds) There exists at least one C-lumpable
matrix L such that P ≺U L iff

(Γ) ∀I ∈ Σ, cI P I,N U ηN ≤ cN U ηN .

Proof. If there exists a C-lumpable upper bound, then the scalars L̂(I, J), I, J ∈ Σ,

satisfy (14). Since L̂(I,N) ≤ 1 for every I ∈ Σ, we deduce from inequalities (14)
with J = N , that cI P I,N U ηN ≤ cN U ηN for every I ∈ Σ.

Conversely, let us assume that condition (Γ) is fulfilled. It is easy to check that
the scalars

L̂(I, J) = 1{J=N} I, J ∈ Σ,

satisfy constraints (14) and define a stochastic matrix L̂. �

Remark 4.1 For any matrix C, lower bound always exists.
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Theorem 4.1 Solution of (Γ) is obtained as follows.

1. We choose vector cN satisfying

cN PN,N U ηN ≤ cN U ηN . (18)

In particular, a stochastic left-eigenvector vN corresponding to the spectral
radius ρN of matrix PN,N always satisfies (18).

2. Since P is ≤st-monotone, every stochastic vector cI satisfies cI P I,N U ηN ≤
cN U ηN (I = 1, . . . , N − 1).

Proof. For the first assertion, we just have to quote that the spectral radius of a
substochastic matrix is always smaller than 1.

Since P is ≤st-monotone, we have

∀I = 1, . . . , N − 1, P I,N U ηN ≤ PN,NU ηN (componentwise).

Then we have for the following convex combination of previous inequalities

cI P I,N U ηN ≤ cN PN,N U ηN

which gives the second assertion.
Therefore, if cN satisfies (18) then (Γ) is also satisfied. �

Remark 4.2 Condition (Γ) is always satisfied with C = diag(vI), where vI is a
stochastic left-eigenvector associated with the spectral radius ρI of P I,I . Moreover,
if P is C-lumpable, this choice for C ensures that the upper bound L coincides with
P .

Remark 4.3 The existence of a C-lumpable upper bound does not imply existence
of C ′-lumpable upper bound for matrix C ′ such that C ′ ≺U C (see Subsection 5.3).

5 Applications

We go into further details for deriving bounds on aggregated process in the two
following contexts. We consider lumping in one or two classes. Such partitions are
basically involved in reliability theory when each state of a system is either a up-state
or a down-state. Down-states of the Markov model are lumped in one aggregate.
The other ones may define a second aggregate. The illustrative example will give
another instance of framework (queueing theory) where such partitions are useful.
Let us recall that P is assumed to be a ≤st-monotone matrix on S.
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5.1 One aggregate

We lump only one subset of states of S. It means that the N − 1 former ”classes“
contain only one state of S and the last class lumps the others. Thus we have
η1 = · · · = ηN−1 = 1 and ηN = η − N + 1. In such a case, we define matrix C by
cI = (1) for I = 1, . . . , N − 1 and cN = vn where vN is a stochastic left eigenvector
of matrix PN,N corresponding to its spectral radius ρN . It follows from Remark 4.2

that we always have a stochastic matrix L̂ solution of system (14). In fact, we can

choose matrix L̂ as follows.

1. L̂(N,N) = ρn, L̂(N, J) = vNPN,J for J = 1, . . . , N − 1;

2. For every I = 1, . . . , N − 1, compute the smallest vector L̂(I, .) with respect
to the partial order ≤st such that

J = 1, . . . , N − 1 P I,J U ηJ +
∑N

K=J+1 P I,K1
∗
ηK

≤
∑N

K=J L̂(I,K)

P I,N U ηN ≤ L̂(I,N) vN U ηN .

It is not difficult to justify that such a definition of scalars (L̂(I, J))I,J∈Σ gives a

stochastic matrix L̂ whose entries are solution of system (14). Note that matrix L̂

whose entries are defined by

L̂(N,N) = ρn, L̂(N, J) = vN PN,J for J = 1, . . . , N − 1;

and L̂(I, J) = 1{J=N} for I = 1, . . . , N,

is always a solution of system (14).

5.2 two aggregates

When we have two aggregates, i.e. a partition of S in two subsets, we choose vectors
{c1, c2} and matrix L̂ as follows.

1. L̂(2, 2) is the spectral radius ρ2 of the nonnegative matrix P 2,2 and c2 is a
stochastic left-eigenvector v2 of P 2,2 corresponding to ρ2.

2. c1 = v2(I − P 2,2)
−1P 2,1 =

1
1−ρ2

v2P 2,1.

3. c1, c2, L̂(2, 2) are fixed. Set L̂(1, 2) = max(C1, C2) with

C1 = max

(
max

i=1,...,η1,c1Uη1 (i) 6=1

(
c1P 1,1U η1 + c1P 1,21

∗
η2
1η1 − c1U η1

)
(i)

1− (c1U η1) (i)
, 0

)

C2 = max
i=1,...,η2,c2Uη2 (i) 6=0

(c1P 1,2U η2) (i)

(c2U η2) (i)

10



This choice of vectors {c1, c2} is valid from Theorem 4.1. Now, entries of matrix L̂

are solution of system (14) with vectors {c1, c2}. We show that this choice is partly
optimal in the following sense.

With only two aggregates, system (14) becomes

{
c1 P 1,2 U η2 ≤ L̂(1, 2) c2 U η2

c1 P 1,1 U η1 + c1 P 1,2 1
∗
η2
1η1 ≤ (1− L̂(1, 2)) c1 U η1 + L̂(1, 2) 1η1

(20a)

{
c2 P 2,2 U η2 ≤ L̂(2, 2)c2 U η2

c2 P 2,1 U η1 + c2 P 2,2 1
∗
η2
1η1 ≤ (1− L̂(2, 2)) c1 U η1 + L̂(2, 2) 1η1 .

(20b)

Note that L̂ ≺U L̃ is equivalent to

L̂(1, 2) ≤ L̃(1, 2), L̂(2, 2) ≤ L̃(2, 2).

For fixed vectors {c1, c2}, if entries of matrix L̂ satisfy (20a,20b) then it follows

from Corollary 3.1 that entries of any stochastic matrix L̃ such that L̂ ≺U L̃ also
satisfy (20a,20b). We would like to obtain the smallest matrix L̂ with respect to

the partial order ≤st whose entries satisfy (20a,20b). So, we have to choose L̂(2, 2)
as follows

L̂(2, 2) = max (G1(c2), G2(c1, c2))

with

G1(c2) = max
i=1,...,η2;x2=Uη2 (i) 6=0

(x2 P 2,2 U η2)(i)

(x2 U η2)(i)

G2(c1, c2) = max
i=1,...,η1,x1Uη1 (i) 6=1

(x2 P 2,1 U η1 + x2 P 2,2 1
∗
η2
1η2 − x1 U η1)(i)

1− (x1U η1)(i)
.

The optimal choice for L̂(2, 2), c1 and c2 would be

L̂(2, 2) = max(G1(c2), G2(c1, c2)) = inf
c1≥0,c2∈D2

(max(G1(c2), G2(c1, c2))) (21)

where D2 = {c2 ≥ 0 | ∀i, (c2U η2(i) = 0 =⇒ c2P 2,2U η2(i) = 0)}.
Since v2 ∈ D2 and 1

1−ρ2
v2P 2,1 is a stochastic vector, we always have

inf
c1≥0,c2∈D2

(max(G1(c2), G2(c1, c2))) ≤ ρ2 = max(G1(v2), G2(
1

1− ρ2
v2P 2,1,v2)).

Thus, the choice L̂(2, 2) = ρ2, c2 = v2 and c1 =
1

1−ρ2
v2P 2,1 is not optimal in general

with respect to Problem (21). But, this will be the case when matrix U−1
η2
P 2,2U η2

or P 2,2 is irreducible. Note that P 2,2 is a monotone matrix so that U−1
η2
P 2,2U η2 is

a nonnegative matrix.

11



Proposition 5.1 If matrix U−1
η2
P 2,2U η2 or P 2,2 is irreducible then the positive vec-

tor v2 and ρ2 are such that

ρ2 = inf
c1≥0,c2∈D2

(max(G1(c2), G2(c1, c2))) = G1(v2) > 0

ProofP. roof is in two steps.

First step: show that ρ2 = G1(v2) = infc2∈D2 G1(c2);

Second step: show that infc2∈D2 G1(c2) = infc1≥0,c2∈D2(max(G1(c2), G2(c1, c2))).

If matrix P 2,2 is irreducible then the spectral radius ρ2 is positive and there exists
a unique positive stochastic left-eigenvector v2 corresponding to ρ2. Note that ρ2 is
also the spectral radius of matrix U−1

η2
P 2,2U η2 since U−1

η2
P 2,2U η2 is matrix P 2,2 up

to a basis change.
We always have

inf
c2∈D2

G1(c2) ≤ ρ2 = G1(v2). (22)

Let us assume that infc2∈D2 G1(c2) = λ < ρ2. Therefore, there exists ε > 0 and a
stochastic vector w2 ∈ D2 such that

G1(w2) ≤ λ+ ε < ρ2

which is equivalent to
w2P 2,2U η2 ≤ (λ+ ε)w2U η2 . (23)

Since U−1
η2

P 2,2 U η2 ≥ 0, we easily see that

∀n ≥ 1, U−1
η2

1

n

n∑

k=1

(
P 2,2

ρ2

)k

U η2 ≥ 0. (24)

We get from Relation (23) that

0 ≤ w2
1

n

n∑

k=1

(
P 2,2

ρ2

)k

U η2 ≤
1

n

n∑

k=1

(
λ+ ε

ρ2

)k

w2 U η2 . (25)

Note that series ( 1
n

∑n

k=1

(
P 2,2

ρ2

)k
)n≥1 in (24) converges to the matrix x∗

2v2 where

x2 is a positive right-eigenvector of matrix P 2,2 (see e.g. [11]). Taking limit as n
growths to infinity in (25), we have w2x

∗
2v2 = 0. Because x2,v2 > 0, it implies

w2 = 0, which is a contradiction.
When matrix U−1

η2
P 2,2U η2 is irreducible, let us rewrite Relation (23) as

0 ≤ w2U η2U
−1
η2
P 2,2U η2 ≤ (λ+ ε)w2U η2 .

12



One just has to remark that series ( 1
n

∑n

k=1

(
U−1

η2
P 2,2Uη2

ρ2

)k
)n≥1 converges to the ma-

trix x̃∗
2ṽ2 with x̃2, ṽ2 > 0. The fact that w2U η2x̃

∗
2 = 0 implies w2 = 0, which is a

contradiction.
Thus, we have equality in (22) when matrix P 2,2 or U−1

η2
P 2,2U η2 is irreducible.

It remains to compare infc2∈D2 G1(c2) to infc1≥0,c2∈D2(max(G1(c2), G2(c1, c2))).
It is clear that

inf
c1≥0,c2∈D2

(max(G1(c2), G2(c1, c2))) ≥ inf
c2∈D2

G1(c2).

Now, since the left hand side of the inequality is less than ρ2 and ρ2 is G1(v2) =
infc2∈D2 G1(c2) from the first part of the proof, the proposition is proved. �

Remark 5.1 In fact, it is easy to check that we can always select as matrix L̂ with
the initial choice of vectors c1, c2

L̂ =

(
0 1

1− ρ2 ρ2

)
.

This shows that computation of L̂(1, 2) is always possible, that is 0 ≤ max(C1, C2) ≤
1.

Remark 5.2 Assumptions U−1
η2
P 2,2U η2 is irreducible and P 2,2 is irreducible are

not related. Indeed, the following matrix P 2,2 is such that U−1
η2
P 2,2U η2 ≥ 0:




1/5 1/5 1/5
1/5 1/5 1/5
0 2/5 3/5


 .

Matrix P 2,2 is irreducible but U−1
η2
P 2,2U η2 is not. Conversely, the following matrix

P 2,2 is reducible 


0 1/5 1/5
0 1/5 2/5
0 2/5 3/5




but U−1
η2
P 2,2U η2 is irreducible.

5.3 Illustrative example.

Let us consider the queue-size process, X = (Xn)n∈N of a discrete time queue,
departure first, with one server and capacity C (server included). Service duration
is deterministic and equal to 1. The queue has i.i.d. batch arrivals specified by the
row vector b = (b0, . . . , ba) with a > 0, bi denoting the probability of i arrivals in
time interval [n, n + 1), n = 0, 1, 2, . . .. The aim of this subsection is to study the
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output process of such a queue and illustrate our method on a simple numerical
example.

X is a DTMC on state space S = {1, . . . , C + 1}. State 1 means that queue is
empty. Output process of such a queue isXφ = (φ(Xn))n∈N with φ(Xn) = 1+1{Xn≥2}

for every n. Indeed, if queue is not empty at time n there will be one departure at
time n+ 1 because service time is 1.

Let us consider the following numerical example: a = C = 3 and b = (0.35, 0.05, 0.4, 0.2).
The t.p.m. P of X is

P =




0.35 0.05 0.4 0.2
0.35 0.05 0.4 0.2
0.0 0.35 0.05 0.6
0.0 0.0 0.35 0.65


 .

P is ≤st-monotone and partition of S is φ−1(1) = {1}, φ−1(2) = {2, 3, 4}.
We have to choose vectors c1, c2. Because of cardinality of set φ−1(1), vector c1

is (1). Condition (Γ), Lemma 4.1 is rewritten as follows

(Γ1) : c1 P 1,2 U 3 ≤ c2 U 3 and (Γ2) : c2 P 2,2 U 3 ≤ c2 U 3

with P 1,2 = (0.05, 0.4, 0.2) and P 2,2 =




0.05 0.4 0.2
0.35 0.05 0.6
0.0 0.35 0.65


 .

Let us examine two cases. The first case corresponds to c2 =
1
3
13 which clearly

does not verify (Γ2) (note that C is then the Schweitzer’s matrix). We will show that
only lower bound can be obtained. The second case corresponds to c′2 =

1
10

(1, 2, 7).
This vector satisfies conditions (Γ1,Γ2) and we will see that upper bound exists. So,
we consider the two matrices C = diag((1), 1

3
13) and C ′ = diag((1), 1

10
(1, 2, 7)).

Note that we have C ≺U C ′. Thus a C ′-lumpable upper bound exists but no
C-lumpable upper bound exists.

First case c2 = 1
3
13. Using our method, we have to solve System (14) of

inequalities (upper bound case). Writing down (14) (with I = J = 2), we get the
following inequality

1

3
(0.2 + 0.6 + 0.65) ≤

1

3
L̂(2, 2)

which can not be satisfied with 0 ≤ L̂(2, 2) ≤ 1. Therefore, there is no solution
and it is not possible to derive an upper bound from this vector c2. Let us note
that looking at lower bound, we have to reverse inequalities in System (14). Then

we conclude to the existence of at least one lower C-lumped matrix, L̂. Take for
instance:

L̂ =

(
0.4 0.6
0.117 0.883

)
. (26)
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Second case c′2 =
1
10

(1, 2, 7). System (14) reduces to

I = 1, J = 1 : L̂(1, 1) + L̂(1, 2) = 1 I = 1, J = 2 : L̂(1, 2) ≥ 2
3

I = 2, J = 1 : L̂(2, 1) + L̂(2, 2) = 1 I = 2, J = 2 : L̂(2, 2) ≥ 0.89
0.90

.

So, there exists at least an upper bounding C ′-lumped matrix. Let us take L̂ as

L̂ =

(
1
3

2
3

1
90

89
90

)
. (27)

Note that we have the following conditions on L̂ to derive a lower bound:

L̂(1, 1) + L̂(1, 2) = 1, L̂(1, 2) ≤ 0.65

L̂(2, 1) + L̂(2, 2) = 1, L̂(2, 2) ≤ 0.85.

Consider α = (1, 0, 0, 0) ∈ A(S) as initial distribution (that is queue is initially
empty). Take β = (1, 0) ∈ A(Σ). We obviously have that β C ≤st α ≤st β C ′

since β C = β C ′ = α. Then we deduce from Corollary 3.2 that the DTMC

(Y n)n∈N = (β, L̂), with L̂ defined by (27), is an ≤st-upper Markovian bound on
aggregated process (φ(Xn))n∈N. We also recall that, from Proposition 2.1, it is
possible to obtain ≤st-bound on RV Xn with the help of RV Y n. Indeed, the

probability vector β (L̂)n C is an ≤st-upper bound on the probability distribution
of Xn. We report in Table 1, the computation, for n = 0, 1, 5, 10, of the probability
distribution of the RVs Xn (column (1)), φ(Xn) (column (3)) and bound Y n (column
(4)). In column (2), we compute the ≤st-upper bound on the probability distribution
of RV Xn. Table 1 clearly illustrates results of Corollary 3.2 and Proposition 2.1:

∀n, α P n V ≤st β (L̂)n (compare column (3) with column (4))

∀n, α P n ≤st β (L̂)n C (compare column (1) with column (2)).

Results for lower bound Y = (β, L̂) with L̂ defined by (26) are given in Table 2.

In Table 3, we report numerical results concerning maximum deviation at each
step n for the aggregated process and the original chain, d(n) and D(n), defined
by (12) and (13), respectively. d(n) is computed from columns (4) of Table 1 and
Table 2, D(n) from columns (2).

Remark 5.3 Using generalized coupling method of Doisy [4], we get the following

upper bounding matrix

(
0.35 0.65
0.0 1.0

)
. It is easily seen that accuracy of this bound

on the aggregated process is worse than ours when time grows up.
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n (1) : α Pn ∼ Xn (2) : β (L̂)n C′

0 (1, 0, 0, 0) (1, (0, 0, 0))

1 (0.35, 0.05, 0.4, 0.2) (0.33, (0.067, 0.134, 0.469))

5 (0.0646, 0.1049, 0.2772, 0.5533) (0.0194,= (0.09806, 0.19612, 0.68642))

10 (0.0564, 0.1044, 0.2754, 0.5638) (0.0162,= (0.09838, 0.19676, 0.68866))

n (3) : α Pn V ∼ φ(Xn) (4) : β (L̂)n ∼ Y n

0 (1, 0) (1, 0)

1 (0.35, 0.65) (0.33, 0.67)

5 (0.0646, 0.9354) (0.0194, 0.9806)

10 (0.0564, 0.9436) (0.0162, 0.9838)

Table 1: Upper bound with C ′ = diag((1), 1
10
(1, 2, 7)).

n (1) : α Pn ∼ Xn (2) : β L̂
n
C

0 (1, 0, 0, 0) (1, (0, 0, 0))
1 (0.35, 0.05, 0.4, 0.2) (0.4, (0.2, 0.2, 0.2))
5 (0.0646, 0.1049, 0.2772, 0.5533) (0.1647, (0.2785, 0.2784, 0.2784))
10 (0.0564, 0.1044, 0.2754, 0.5638) (0.1632, (0.2790, 0.2789,0.2789))

n (3) : α Pn V ∼ φ(Xn) (4) : β L̂
n

∼ Y n

0 (1, 0) (1, 0)
1 (0.35, 0.65) (0.4, 0.6)
5 (0.0646, 0.9354) (0.1647, 0.8353)
10 (0.0564, 0.9436) (0.1632, 0.8368)

Table 2: Lower bound with C = diag((1), 1
3
(1, 1, 1)).

6 Conclusion

In this paper we develop a new methodology to provide family of Markovian bounds
on aggregated process defined as a surjective nondecreasing function of a monotone
Markov chain. Namely, we investigate bounds on the finite dimensional distributions
of the aggregated process with respect to the stochastic strong order.

Polyhedral cone is the central concept of our methodology. Polyhedral cone gen-
erated by U η induces strong order between S-valued RV and also comparison be-
tween stochastic processes. Rogers and Pitman’s lumpability criterion for a Markov
chain is nothing else but the invariance of a polyhedral cone generated by some ma-
trix C (see [8]). Thus, we have to choose a stochastic matrix C = diag(cI) which
also ensures that an upper Markovian bound on aggregated process exists (lower
bound always exists). In fact, the only constraint to obtain such a Markovian upper

n d(n) D(n)
0 0 0
1 0.07 0.269
5 0.1453 0.408
10 0.147 0.409

Table 3: Bounds on error made.
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bound is to choose cN as a stochastic vector of the polyhedral cone generated by
matrix (I −PN,N) U ηN . For I = 1, . . . , N − 1, cI may be any probability vector on
φ−1(I).

We emphasize that it is very difficult to know a priori if bounds are accurate.
It mainly depends on choice of matrix C. Paper proposes to take C = diag(vI),
where vI is the stochastic left-eigenvector associated to spectral radius ρI of P I,I .
This choice is motivated by two main arguments: (a) if P is C-lumpable then upper
C-lumpable bound L coincides with P ; (b) in the case of two aggregates, select v2

ensures that spectral radius ρ2 of an irreducible matrix P 2,2 is the optimum value

for L̂(2, 2) (see Section 5). Note that using stochastic eigenvectors is not new in
bounding methodology. We can think about work of Courtois and Semal [2],[3]. This
work is mainly concerned with componentwise bounds on the stationary distribution
π of an irreducible Markov chain X = (Xn)n≥0. We briefly recall the background to
the derivation of such bounds. Let us write vector π as

π =

(
πI

πI1
∗ πI1

∗

)

I=1,...,N

for any arbitrary partition of the state space S (πI is the restriction of π to states
class φ−1(I)). Vector π(I) = πI

πI1
∗ is the stochastic left-eigenvector of the t.p.m. of

Markov chain (XTn
)n≥1 on the state space φ−1(I), where Tn is the nth entrance epoch

into subset φ−1(I) by X. Vector π̂ = (πI1
∗)NI=1 is the stochastic left-eigenvector of

matrix L̂ defined by

L̂(I, J) = π(I)P I,J1
∗, I, J = 1, . . . , N.

Then we have to obtain componentwise bounds on vector π(I) to get componentwise
bounds on vector π. We see that their approach and ours are related in the sense
that L̂ will be the t.p.m. of the aggregated process (φ(Xn))n≥0 if Markovian. But
this the only connection between them.
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