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Abstract. Systems’ requirements are usually written in a natural language since it generally 

means a greater understanding among the various stakeholders. However, using an informal 

language potentially gives rise to interpretation problems, which are to be resolved prior to using 

(automated) verification techniques. This article tackles an important issue pertaining to 

requirement engineering: how to guide and help requirements’ formalization? In order to 

support the formalization process, we propose a methodology based on a formal structure, which 

is the corner stone of the refinement process. The operating mode of the refinement process is 

highly iterative: the aforementioned structure is constructed incrementally until its validity is 

formally obtained. Although this process is formally backed up, it is a fundamentally subjective 

one, which means that interpretation errors can still occur. In case of errors, it is essential to be 

able to backtrack refinements until an interpretation error is found. This is why we require that 

each refinement be associated with a justification which may subsequently be analyzed in case an 

error occurred during the verification phase. This formalization process was designed to be used 

alongside an (unspecific) engineering process, in charge of the implementation. Once the 

formalization is complete, it is checked against the implementation using testing techniques, or 

directly against an implementation model via model-checking. 

 

Keywords: formal framework, requirement engineering, requirement formalization, requirement 

traceability, critical systems, software engineering. 

 

1. Introduction 

 
When engineering a system, it is recommended that goals, functionalities and constraints are 

identified as precisely as possible. This is what constitutes the requirement documents or the 

specifications, for short. In this (or these) document(s), we may find recommendations, but also 

requirements: sentences that must be valid on the final system.  

Requirements are usually written in natural language (e.g. English), either because formal languages 

are not known by the requirement engineers, or because it is too early in the conception process to use 

such a specification form (i.e. there are not enough details to successfully write a formal requirement). 

The main issue with writing requirements in a natural language is that they cannot serve as inputs for 

automated verification techniques. 

Indeed, formal languages are mandatory to bring into play automated verification techniques, since 

they are the only languages computers can understand. Moreover, formal languages are not ambiguous: 

this means a sentence cannot be understood in different ways. This implies that humans too can benefit 

from using a formal language since the requirement will be fully understood without a prior 

interpretation from the user. The main problem is that both writing and reading activities are not simple 

to accomplish when it comes to formal languages. 

The formalization process consists in writing requirements using a mathematical formal notation. It 

can be a hard task if done directly from an informal requirement and there cannot be any true guide to 

formalization: only expertise and experience (and maybe some heuristics like in [31]) can help to know 

how to get a sound formal writing. 

                                                           
1 This research has been partially supported by Region Nord Pas de Calais and European fund Feder under the FUI 

National project FerroCOTS, labelled by i-Trans (N° 10030031M081). 



To ease the process, the generally recommended solution is to perform some kind of refinement: 

either working on informal requirements as in the case of KAOS methodology [6], or on formal 

abstract requirements like for B method [1]. Each solution has its limits. 

The methodology proposed in this article only concerns a small part of requirement engineering and 

may be integrated in other higher level methodologies (like KAOS for example). Here we deal mainly 

with software engineering, i.e. the logical/control part of systems. As hypotheses, we suppose that the 

system implementation is ready (or at least, that the required low level information of the future 

implementation are available), and that a requirements’ document comprising all the requirements to 

be formalized is readily available. What we want to achieve is to be able to automatically check the 

validity of each requirement on the given implementation. The verification step is outside the scope of 

this work: we only want to focus on formalization using a refinement method. We propose a 

refinement methodology supported by a formal structure: the Pseudo-Requirement Graph. It consists in 

two types of nodes: refinements and pseudo-requirements. Refinements can help to clarify or on the 

contrary to abstract some requirements parts. They can also help to decompose a requirement into 

small pieces which may be useful to re-use some already written part of requirement and also to come 

closer to a formalization. In summary, the idea is to proceed by iterations in which the requirement is 

modified so that it becomes closer and closer to a formal logical assertion that can be used by an 

automatic verification tool (a model-checker for example). 

Although expertise is necessary to successfully accomplish the requirement formalization, it may 

not be sufficient in light of the safety objectives of safety critical systems such as trains, planes, etc. 

Indeed, an error can never be excluded, even if the system is implemented by the best experts. When an 

error is detected, it is imperative that the source of the problem be backtracked, as soon as possible, so 

that the error can be quickly corrected. But also, to possibly learn from this mistake and therefore take 

necessary measures for a similar error not to occur again. This involves using traceability mechanisms, 

to be able to backtrack the refinement process, in order to analyze the interpretation choices and their 

consequences. 

The paper is structured as follows: Section 2 gives an overview of the related works about 

requirement refinement methods. In Section 3, we present the formal framework for requirements’ 

formalization by introducing the formalization process firstly then the pseudo-requirement graph 

which backs our refinement process. In Section 4, we give an informal explanation about the pseudo-

requirement graph. In Section 5, a case study featuring a train gates control system is presented. 
Finally, Section 6 recalls the main contributions and gives an overview of the future work. 

 

2. Related Works 

 
To get a better idea of how our approach compares to others, we will restate our problem while 

emphasizing some key-words which will help us to guide this comparison. 

Our main goal is to automatically check requirements. The requirements we are using are written in 

an informal form, while automation requires that a formal specification be provided. Then, we need to 

refine the input informal requirements, so that in the end each of them (in the ideal case) is entirely 

formalized. Because refinement from an informal to a formal language is a highly subjective process 

prone to (incorrect) interpretations, we also want to keep a trace of such interpretations, so that in the 

case the verification tool states that the requirement is not fulfilled by the system, it is easier to 

backtrack the refinements and check each of them and find what could have gone wrong. 

Due to the quite strong (and not new) interest in finding techniques to transform an informal 

statement into a formal one, this section does certainly not pretend to be exhaustive. Instead, we 

wanted to give a good grasp about the available techniques and methodologies. 

In Table 1, the related works are sorted according to 1) Formal: after the methodology is applied, 

the requirement is formalized; 2) (resp. 3)) Informal (resp. Formal) Refinement: refinements are done 

while the requirement is in an informal (resp. formal) form; 4) Documentation: associate the 

refinement with some documentation (typically to explain the interpretation choices); 5) Natural 

Language Processing (NLP): (semi-)automatic processing of the informal requirement. 

 

 

 



Table 1. Quick Taxonomy of related Works 

Paper Formal 
Requirement  

Tr. links 

 

NLP 
Type 

Informal Formal Doc. 

[38] *      A 

[17] * * (1 lvl)   ~  A(B) 

[3] *      A 

[6],[7] * *   *  AB 

[35]  *   *  B 

[41]  *   *  B 

[2]  *   *  B 

[26] *      A 

[32] *      A 

[39] *      A 

[4] *      A 

[5] * * (1 lvl)   ~  A(B) 

[37] *  *    A 

[40],[25] *      A 

[36]  *     B 

[27] *      A 

[30] *      A 

[43] *  *    A 

[19] *      A 

[33]      * D 

[11]  *  * ~ (rationale)  BC 

[21]      * D 

[18] *  *    A 

[23]  *   *  B 

[24]      * D 

[10]  *   *  B 

[29]      * D 

[42] * (links only)   *  AB 

[16]      * D 

[28] * *   ~  (orig. req)  AB 

[34] *  * ~ ~  ABC 

[31] * *  * *  ABC 

[15]  * (colors)  ~ ~ (color trail)  B 

[8]      * D 

 

First, lots of works propose to directly formalize the requirements. These works essentially target 

software engineering (and this is why direct formalization can actually be used). They are identified by 

Type A in Table 1. Some of these works propose to make the refinement inside the formal world. The 

requirement is then written incrementally: at each refinement step, at least one constraint is added. 

Then comes the Goal-Oriented Requirement Engineering (GORE) methodologies and the likes 

(Type B or AB). GORE methodologies advocate to focus on the question why while analyzing and 

constructing requirements (i.e. to study a requirement based on its utility and purpose in the system). 

These methodologies are highly iterative, and then natively support informal refinement and 

traceability (of refinements). These methodologies are very generic: they can be applied on a very wide 



range of systems; they were designed to be a unique framework: (ideally) all aspects concerning 

requirement engineering should be handled by such methodologies. One of them, KAOS [6], has a 

stronger focus on software engineering (although it is far from being restricted to that area) and allows 

formalization and formal refinements (using the extension proposed in [7]). [17] and [5] are A(B)-type 

because the refinement part is only done using an intermediate language (i.e. there is only one 

refinement step).  

Automatic or semi-automatic techniques (Type D) can be applied on informal requirements using 

natural language processing techniques. These techniques can parse a text written in a natural language 

(English is the most common) and are capable of identifying agents, roles, etc. They can build a class 

diagram or even a behavioral model. Although automation is a great feature, these techniques are not 

capable of taking design-decisions like precising an ambiguity: so they cannot automatically produce a 

sound formal form (otherwise this would mean that the “informal” requirement was in fact “formal”), 

but they are valuable tools for early analysis of requirements. 

Finally, works whose type is ABC comply with our documentation requirement: in [34], the authors 

use breadcrumbs, or a new (formal) knowledge about the system to modify the existent requirements 

whose behavior may have to be changed according to that new breadcrumb. Breadcrumbs are thought 

to be a kind of documentation and therefore must be kept along with the requirements. In [31], a Goal 

Argumentation Method is proposed: it comprises a decision procedure, clarification techniques and an 

argumentation model. First, problems/weaknesses/ambiguities are checked using some predefined 

techniques. From this problem, one has to explore the alternative solutions, then pick one along with 

arguments in its favor. As for the clarification technique, it consists in labeling the words of the goal 

according to their type of fuzziness: ambiguous, over-general, vague, synonymous. For each type of 

fuzziness, the authors propose some heuristics to help clarify the goal. Finally, an argumentation must 

be given with an argumentation model, which is a graph-like structure storing relation between 

arguments (implication, counter-implication). 

As for ∼, this symbol is used in Table 1 to denote an implicit or unclear feature of the work. For 

example, in [28], requirements are sorted and refined using pattern storing whose original 

requirement(s) it is clarifying. So, there is some kind of traceability, even if it remains limited. 

 

3. A Formal Framework for Requirements Formalization 

 
Before going into more details about the framework, let us review how we propose to use it. 

 

3.1. Usage of the Framework 
 

The formalization process will be done inside a data structure called pseudo-requirement graph. It is 

constituted of two types of objects: pseudo-requirements and refinements. A pseudo-requirement is 

either a requirement or a part of a requirement (or an atom, as atoms are generally parts of a 

requirement). This is a top-down process: it starts from the high level requirements (i.e. rough pseudo-

requirements that are actually true requirements, directly taken from the requirements’ document) and 

end with directly formalizable pseudo-requirements (which we call atomic pseudo-requirements). 

The activity diagram of Figure 1 shows the control flow. First, the graph validity must be tested. If it 

is indeed valid, then the requirements of the graph are checked. To do the actual checking, we use 

model-checking, but nothing prevents one to use other techniques, as soon as they are compatible with 

the formal language used (here CTL* - CTL for Computation Tree Logic). 

On the one hand, if the verification phase confirms that all requirements are met, then everything is 

fine and the process ends. On the other hand, if an error is found by the verification tool, the graph 

must be backtracked from the pseudo-requirements which have no children (at this step, the graph must 

be valid, which means that they are atomic pseudo-requirements). At each step of the backtracking, the 

user must check (with its own expertise, as this process cannot be automatized) whether the refinement 

rationale leading to the current pseudo-requirements is justified. Should an error be found, the faulty 

sub-graph, whose root is the faulty refinement, must be erased and the formalization must be resumed 

from that point. If there is no error in the current refinement, then the same checking must be operated 

on the parents of the current pseudo-requirement. 



When the graph is not valid, it must be corrected either by modifying/deleting existing 

refinements/pseudo-requirements or by adding a new requirement using a new refinement. First, the 

user must pick a valid pseudo-requirement: any requirement — which has not been already refined and 

which is not a formalized atom — would do. When an appropriate pseudo-requirement is found, a 

refinement category must be picked amongst the following: precision, abstraction, correction, 

decomposition or generic. These categories will be further explained in section 4. A refinement 

contains necessary information such as: parts involved in the refinement, justification of the 

refinement, etc. This information has to be filled according to the chosen category (some fields may be 

omitted, depending on the category, except for generic). Once the refinement has been fully specified, 

the requirement (or the set of requirements if the category is a decomposition) holding the result of the 

refinement has to be written. The final step is to link the refinement to the resulting requirement and 

add it to the graph. 

 

 

Figure 1. Formalization Process 

Practically speaking, the formalization coherence between the pseudo-requirements does not have to 

be done manually. In fact, atomic pseudo-requirements are the only objects for which formalization is 

actually manipulated by the user. Once all the atoms are formalized, it is possible to automatically fill 

the formalization fields of all the pseudo-requirement parents until the root.  

Two limitations, coming from the formal verification methodologies, are to be discussed here. In a 

previous paragraph we explained how the graph allows us to backtrack refinements when an error is 

detected at the verification phase. It was implied that the error was coming from the formalization 

itself, but it could also come from an error in the model. In that case, one would not find any error in 

the refinement process, but before knowing where the error actually comes from (the implementation 

model or the formalization?), there may be a lot of tedious review work to do. Another -even more 

serious- problem would be that an error could exist in the implementation model (or in both the 

implementation model and the formalization), but the (potentially incorrect) formalization is still valid 

on the incorrect model: there, the verification tools are not capable to actually detect any deficiencies in 

the implementation model and/or in the formalization. Besides formal verification techniques, test 

could also be used based on the basis of the obtained properties  

 

3.2 Pseudo-Requirement Graph 

 
Now that the general usage of a requirement graph has been explained, we will focus on formally 

defining the structure itself. 

 

The Formal Logic. We will first present the formal language we chose as the target language. 

 

Definition 1. Let Prop be the set of atomic propositions. Let Pred be a set of variables. A 

requirement formalization is a formula whose grammar is defined as follows: 



 

f ::= Prop |  f ∧ f | ￢ f  |  f U f  |  f S f |  X f | Y f 

 

The set of all possible formulas over Prop is denoted FProp or the shorter F whenever Prop need not 

be precised. Please note that we have used the set Prop as a grammar rule: any element of Prop can be 

chosen from the rule Prop. The operator U is called until operator, and X is the next operator. S and Y, 

called since and yesterday operator are respectively the past-dual of U and X. 

Presenting the semantics of such a composite logic (it is an assembling of various logics) is not 

interesting with regard to the subject of the article. Operators U and X are quite usual and their 

semantics may be found in [13]. As for S and Y, please refer to [20]. 

The other temporal operators are defined from those previous four and the usual Boolean 

connectors: 

 

- finally: F� = true U� 

- globally: G� = ¬F¬� 

- weak until: αWβ = (α U β) ∨ (Gα) 

- previously: P� = true S� 

- historically: H� = ¬P¬� 

- before: αBβ = (αSβ) ∨ (Hα) 

 

If necessary, the logic can also be extended with predicates and with the usual existential and 

universal quantifiers. 

 

f ::= ... | (∃x)(f) | (∀x)(f) | Pr(x1, ... , xn) 

 

where x, x1, . . . , xn are variables and Pr is a predicate name. 

 

      The Structure 

 
      Definition 2. A Pseudo-Requirement Graph is a tuple 

<P, R, Pre, Post, Link, What, Why, How, Desc, F, Type>, in which: 

 

- P is the set of pseudo-requirements; 

     - R is the set of refinements, such that P � R = �; 

     - Pre: R � P is the refinement source-link 

     - Post: R � 2
P
 is the refinement target-link 

     - Link: R � F is the refinement formal-link 

     - What: R � String is the what-property of the refinement 

     - Why: R � String is the why-property of the refinement 

     - How: R � String is the how-property of the refinement 

     - Desc: P � String is the desc-property of the pseudo-requirement 

     - F: P � F is the formalization of the pseudo-requirement 

- Type ∈  {Req, Part, Atom} is the type of the pseudo-requirement 

 

A requirement graph is composed of two types of nodes: pseudo-requirements and refinements. A 

pseudo-requirement “holds” three items: Desc, the informal description of the pseudo-requirement; F 

its formalization and Type, as its name suggests it, its type. A pseudo-requirement can be of type Req, 

in which case it is a genuine requirement. It can be of type Part, in which case it is no longer a 

requirement but only a part of a requirement. And it can finally be of type Atom, which means it is 

directly formalizable.  

A refinement holds the rationale information which are useful for traceability: Why, What and How? 

To a refinement is also associated the link between the pseudo-requirement it refines and the pseudo-

requirement bearing the result of the refinement.  



Finally, the relation between pseudo requirements and refinements is given by the two relations Pre 

and Post. Pre associates a refinement to the pseudo-requirement is it refining, while Post associates a 

refinement to the set of pseudo-requirements which are the result of the refinement. 

 

Definition 3. The set of ancestors pred
∞

 (p) of a pseudo-requirement p is defined as follows: 

- pred1(p) = { t ∈  P | ( ∃ x ∈R)(t = Pre(x) ∧ p ∈  Post(x)) }
2
 

- predi (p) = predi-1(p) ∪ { t | ( ∃ x)(t = Pre(x) ∧ (Post(x) � predi-1(p)) � �) } 

- pred ∞ (p) = 
∞

=1i� predi(p) 

 

The computing stops because P is bounded and pred is monotonic. 

pred1(p) gives the direct ancestors of p: if p ∈  Post(x) and t = Pre(x) then p refines at least a part of 

t by the refinement x and then t ∈  pred1(p).  

predi(p) gives the set of ancestors, distant from p by at most i “generations”. Being at most of i
th
 

generation means being of (i − 1)
th

 generation or being the direct ancestor of any (i − 1)
th

 generation 

pseudo-requirement. 

The set of all ancestors of p is then the infinite union of all the ancestors up to i
th

 generation. Please 

note that this set is not infinite and must reach a fixed point as there can only be a finite amount of 

pseudo-requirements and because Card(predi) ≥  Card(predi-1). 

 

Definition 4. The set of successor succ ∞ (p) of a pseudo-requirement p is defined as follows: 

- succ1(p) = { t ∈  P | ( ∃ x ∈R)(t ∈Post(x) ∧ p = Pre(x)) } 

- succi(p) = succi-1(p) ∪ { t | ( ∃ x)(t ∈Post(x) ∧ Pre(x) ∈succi-1(p)) } 

- succ ∞ (p) =
∞

=1i�  succi(p) 

succ1(p) gives the direct successors of p: if p = Pre(x) and t ∈Post(x) then t refines at least a part of 

p by the refinement x and then t ∈succ1(p). 

succi(p) gives the set of successors, distant from p by at most i “generations”. Being at most the i
th
 

successor either means being at most the (i − 1)
th
 successor or being the direct successor of any at most 

(i − 1)
th 

pseudo-requirement successor. 

As previously the set of all successor is given by an infinite union, but the set succ
∞

(p) is finite 

because it eventually reaches a fixed point (the proof uses the same arguments as previously). 

 

Definition 5. Validity of Requirement Graph 

Let G = <P, R, Pre, Post, Link, What, Why, How, Desc, F, Type> be a requirement graph. G is a 

valid Requirement Graph iff all the following sentences hold: 

- (∀x ∈R)(Link(x): FPost(x)), i.e. the formula, which gives the link between Post pseudo-requirements, 

only uses these Post pseudo-requirements as terms. 

- (∀x ∈ R)(∀y ∈ Post(x))(y is used in Link(x)). Informally, this means that all the pseudo- 

requirements obtained after the x refinement are used in Link(x). 

- Desc is an injective function. This means that whenever two (pseudo-) requirements hold the same 

informal description then they must be the same (pseudo-)requirement.  

-  (∀p)(p∉pred ∞ (p)). This property ensures that there is no refinement loop. 

- (∀p)(Type(p) = Atom �  (∀x ∈ pred ∞ (p))(Type(x) ≠ Atom)). In other words, if a pseudo-

requirement is an Atom, then none of its ancestors can be an Atom. An Atom pseudo-requirement 

cannot be further refined as it is directly formalizable. 

-  (∀p)(succ ∞ (p) = φ �  Type(p) = Atom). A pseudo-requirement that does not have any successor 

must be of type Atom. 

                                                           
2 Note that (∀p)(Card(Pred1(p)) = 1) 



- (∀p)( ∃ x)( ∃ p∈Post(x) ∧ Link(x) = ∧ i∈Post(x) i) �  (∀q∈succ
∞

(p)) (Type(q) ≠ Req)). This 

signifies that whenever a refinement x does not link Pre(x) with Post(x) by a logic formula in 

conjunctive form, then every ancestor is of type Part or Atom, but not Req. Indeed, as soon as a link is 

more complex than a conjunction, the verification of any Post(x) is meaningless when performed alone. 

In other words, this means that the pseudo-requirement of  Post(x) are no longer genuine requirements 

because they do not specify a complete requirement (only a part). 

- (∀p)( ∃ r)(Pre(r) = p�F(p) = (Link(r) in which every q∈Post(r) is replaced by F(q))). This 

property ensures that the formalization feedback is done correctly: the formalization f of a pseudo-

requirement p must be equal to the formula given by the link of the refinement r, in which every 

pseudo-requirement q∈ Post(r) is replaced by its formalization F(q). The formalization F(p) of a 

pseudo-requirement p, such that Type(p) ∈{Req, Part}, is computed from the set succ
∞

(p) � {p | 

Type(p) = Atom}, i.e. the pseudo-requirements which are the successors of p but also which are of type 

Atom. 

- (∀x)( ∀y)(Pre(x) = Pre(y) � x = y), if two refinements refine the same requirement, then they must 

actually be the same refinement. 

 

4. A Closer View on the Pseudo-Requirement Graph 

 
Three items are associated with a pseudo-requirement: Desc, its informal description; F its 

formalization in terms of CTL*; and finally its Type. Let us review the different types that a pseudo-

requirement can be: Req, the pseudo-requirement is actually a requirement: if such a pseudo-

requirement is formalized, then it means that it can be passed to the verification tools; Part, in that case, 

the pseudo-requirement is only a part of a requirement, which means that, although it could be passed 

to a verification tool, the result of the verification would not be useful. In other words the verification 

of a pseudo-requirement whose type is “part” is meaningless; Atom, in the ideal case, an atomic 

pseudo-requirement is reducible to a variable: in all rigor, if an atomic pseudo-requirement is not a 

variable, this means that a decomposition could be applied, but sometimes, this decomposition may be 

a bit too “pedantic” and would not bring much (or even no) useful information. Anyway, when a 

pseudo-requirement is atomic, this means that its formal and informal descriptions are actually very 

close semantically (and often syntactically): no interpretation has to be done and no implicit fact has to 

be known in order to understand the passage from the informal text to its formalization. 

Four elements are associated with a refinement r: What, it describes what part of the pseudo 

requirement Pre(r) is refined. What a what-property can hold is hard to explain because of the various 

style of informal writings. Ideally we think of it as a “conceptual unit” that should be small (the more 

precise the What property of the refinement, the more precise the review in case of an error). But more 

importantly, it must be coherent with the Why and How-property; Why, this property explains why the 

refinement is helpful: this can often be answered by first asking why this choice of refinement instead 

of one another, or why this part of the refinement instead of one another. In any case, this should be a 

practical information of an implicit fact about the system’s domain or implementation; How, describes 

the result of modifying what is pointed out by the What-property according to what is explained by the 

Why property. This is the result of the refinement on the What part (the actual result of the refinement 

being Post(r)); finally, Link describes how the Pre(r) pseudo-requirement is formally related to the 

requirement(s) in Post(r): the link-property is a CTL* formula whose terms all belong to Post(r), and 

for which all the elements of Post(r) are terms of Link. 

Pragmatically speaking, there are categories of refinement of whose some properties may be hard or 

useless to fill. We will exhibit some of such categories of refinement, but others can be defined 

according to the type of requirement one has to formalize. We think the following four are quite 

generic and should therefore be generally applicable and useful: Precision: when a part must be 

disambiguated and/or precised; Abstraction: when a part is described in too much details regarding the 

system which is being studied (in other words, when a part is out of scope); Correction: when the 

pseudo-requirement is incorrect; Decomposition: when the pseudo-requirement can be decomposed in 

several parts. Any other type of refinement is considered generic.  



These categories are only a shortcut to avoid using “generic” refinements. Their choice is purely 

subjective but must be coherent with the information given and the result of the refinement (although 

nothing can help us to ensure this coherence, except manual proof reading).  

Property 6. The attributes What, Why and How of generic refinements are mandatory. If any of 

those is not set, then the requirement graph is invalid. Moreover Link(r) = Post(r) and Card(Post(r)) = 

1. 

Property 7. The attribute Why of Precision/Abstraction-refinements may be omitted, as the 

category explicitly tells the reason of the refinement. However, this attribute can still be used to further 

the precision of the motivation for the refinement and, in so doing, to add some implicit knowledge that 

would otherwise stay hidden to the backtrack review process in case of an error. 

Property 8. The attributes What and How of a decomposition-refinement r may be omitted, as 

Pre(r) is What, except for some operators which will be formalized in Link and How is the 

combination of Post(r) and Link. 

Definition 9. A Pseudo-requirement whose type is Req is called a requirement. Only requirements 

are to be checked. 

 

5. Graphical Representation and Example 

 
A graphical representation has the advantage — over a linear textual form — to emphasize on the 

link between pseudo-requirements and refinements but also to present an overview of the overall 

process. Before going further and show the formalization process through an example, let us choose a 

graphical convention to represent the pseudo-requirement graph. 

Pseudo-requirements are drawn using a rectangle. Pseudo-requirements are pictured with a different 

border according to their type: a dashed line for true requirements, a thin line for requirement parts and 

a thick line for atomic requirements. 

Refinements are drawn using a rounded rectangle. Whenever a refinement is applied on the whole 

source requirement, the What and How properties are completely omitted; if not, the What property is 

represented by a gray zone in the source requirement and the How is normally included in the 

refinement. Links are only precised in refinement r when Link � Post(r). 

The requirement whose pseudo-requirement graph is pictured in Figure 2 is relative to a train gates 

control system. The requirement is the following: 

 

The driver shall be informed of the deployment authorization state of the bridge plate
3
 before 

the opening of the doors, after having detected the presence of a low railway platform of 

840mm at a train station and the train speed is low. 

 

The first important remark is that the property F of the requirement Rq is (obviously) not filled until 

the end. Rq is decomposed into two requirements Rq1 and Rq2, which are linked by the CTL* formula: 

[](Rq2 U Rq1). The requirement Rq will then be formalized as soon as both Rq1 and Rq2 are 

formalized. Backtracking a formalization can easily be automatized, so the person in charge of writing 

this pseudo-requirement graph would not actually write the formalization of anything else other than 

atomic pseudo-requirements. 

Rq1 is first abstracted then formalized, because we then arrived at the implementation level and 

Auth_D is the Boolean variable representing the signal. Rq2 is decomposed twice, leading to four 

atomic pseudo-requirements. We will not go into more details, as we think reading the pseudo-

requirement graph should be quite straightforward. One interesting point to notice is the refinement 

R22111 (on the bottom left), whose category is generic. This could be considered as decomposition, but 

this would be a bit awkward, so here is a typical usefulness of a generic refinement. If such a 

refinement would often appear, it could be advantageously replaced by a new type of refinement 

category. 

                                                           
3 Bridge plates are devices helping to get in or out of the train. 



 

Figure 2. Example of a Pseudo-Requirement Graph 



6. Conclusion 
 

We have proposed a refinement process supported by a formal graph structure: the requirement 

graph. A requirement graph consists in two types of nodes: pseudo-requirements and refinements. 

Pseudo-requirements can be a part of a requirement or a requirement itself, and refinements relate two 

or more pseudo- requirements. Refinements store information of what exactly is refined, why the 

refinement must take place and how it takes place. In the end, the pseudo-requirements are formalized 

using the CTL* logic. Our proposal is only a shallow analysis of a requirement in the sense that it 

formalizes a requirement in a form that is more descriptive than operative (even though the bounds 

between the two are quite fuzzy). In particular, and contrary to other techniques, it does not propose a 

way to build a behavioral model from a set of requirements, because basically, we only seek to obtain a 

property to hold on the implementation. This is why our formalization technique could be incorporated 

in methodologies focusing on software systems (or similar systems), like KAOS. 

Although this approach is quite usable independently, it seems preferable to allow some interaction 

points with the team in charge of the implementation in order to achieve a sound formalization. Indeed, 

at the formal level, it may be necessary to possess some knowledge about the architecture of the 

implementation and its interactions. In this perspective, this approach should be better used as a late 

requirement engineering tool. 

As perspectives, we seek to explore how to better manage re-engineering, and/or necessary 

corrections/changes in requirements. We will also investigate other potential refinement categories and 

heuristics. The integration of the approach inside UML/SysML is also studied. Moreover while 

analyzing system specification, even if the requirements are correct when taken individually, they may 

have some inconsistency between each-others, then we aim at developing some mechanisms to 

investigate requirements’ consistency [22]. 

As for the choice of our formal language, even if we think that CTL* is a language that is not hard 

to learn and that one get used to it rather quickly, it may be worthwhile to study using specification 

patterns instead of directly CTL*, as presented in [12]. 
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