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Abstract

We characterize the conditions under which an absorbing Markovian finite process (in dis-
crete or continuous time) can be transformed into a new aggregated process conserving the
Markovian property, whose states are elements of a given partition of the original state space.
To obtain this characterization, a key tool is the quasi-stationary distribution associated with
absorbing processes. It allows the absorbing case to be related to the irreducible one. We are
able to calculate the set of all initial distributions of the starting process leading to an aggre-
gated homogeneous Markov process by means of a finite algorithm. Finally, it is shown that
the continuous time case can always be reduced to the discrete one using the uniformization
technique.
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1 Introduction

A large amount of work has been devoted to the study of functional transformations of Markov
processes. One of the main reasons for this is that such transformations often correspond to the
only observable or desirable “response” of a system modeled by a Markovian evolution. The
functional studied here agrees to the situation where the observer keeps in sight (or receives)
information only provided by lumped states of the initial process. The suitable function is the
aggregated process for which the state space consists of state classes of the original one. We are
interested in keeping the power of Markov processes theory, which means that we want to state
whether the aggregated process is Markovian or not. Necessary and sufficient conditions have
been exhibited by Kemeny and Snell [3], Rubino and Sericola [7],[8] for irreducible homogeneous
finite processes. In this paper we characterize this situation in the case of homogeneous absorbing
finite processes.

The text is organized as follows. Section 2 introduces definitions and notation. Section 3
reviews the notion of quasi-stationary distribution which plays a central role in the paper. In
Section 4, we consider discrete time processes and we outline the extensions to our context of
the main results of [7]. We also show that the absorbing and irreducible cases can be related
to each other. As a consequence, we can use the finite algorithm provided by [7] to give the
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set, eventually empty, of initial distributions of the original process leading to a Markovian
aggregated one. In Section 5, the continuous time case is reduced to the discrete time case using
the uniformization technique. Section 6 describes how the algorithm of [7] can be used when
dealing with absorbing processes.

2 Notation and definitions

This section introduces the main notation, compatible with [7] and [8]. We consider a homoge-
neous absorbing Markov process X in discrete or continuous time.

• The state space is finite and denoted by E = {1, 2, ..., N}. Let B = {B(0), B(1), . . . , B(M)}
be a partition of the state space E, where B(0) contains only the absorbing states. The
cardinality of the class B(l) is denoted by n(l).

• We assume this process having only one absorbing state (without any loss of generality
[4].) The state 1 in E is absorbing and the remaining states are transient. We denote by
T the set {2, ..., N} of transient states which is assumed to be irreducible.

• With the given process X, we associate the aggregated process Y with state space F =
{0, 1, 2, ...,M} defined by:

Yt = l ⇐⇒ Xt ∈ B(l), for any t.

• By convention, vectors are row vectors. Column vectors are indicated by means of the
transpose operator (.)∗. If v is a vector then the notation v > 0 notifies that each component
is positive. The vector ei denotes the ith vector of the canonical basis of IRN . The vector
with all components equal to 1 (resp. 0) is denoted merely by 1 (resp. 0), its dimension
being defined by the context. We denote by I the identity matrix and by diag(v) (by
diag(Hi)) the (block) diagonal matrix with generic diagonal (block) entry v(i) (the matrix
Hi), the dimensions being defined by the context.

• We denote the set of all N -dimensional probability vectors by A and its subset of distri-
butions with support T by AT , i.e. AT = {α ∈ A/

∑
i∈T α(i) = 1}.

• Expressions of the form IPu(f(X)) are to be interpreted as the probability of event f(X) for
the homogeneous Markov chainX with fixed transition probabilities and initial distribution
u ∈ A.

• For l ∈ F and α ∈ A, the restriction of α to B(l) denoted by αB(l) is the vector with n(l)
entries (α(i), i ∈ B(l)). This construction is also referred later with respect to any subset
B of E.

• For α ∈ A and B ⊂ E such that αB1
∗ 6= 0, let αB denote the vector in A defined by

αB(i) = α(i)/
∑

j∈B α(j) if i ∈ B and by 0 if i /∈ B.
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3 Quasi-stationary distribution

The stationary distribution associated with the irreducible case is a central notion for weak
lumpability characterization. In our absorbing case, this distribution is trivial and without
interest. The vector playing the equivalent role in our context is the quasi-stationary distribution
[2],[9]. In this Section, we recall the definitions and the main properties of this distribution. In
particular we discuss the periodic case which is not considered in [2], [9].

In discrete time, the transition probability matrix P can be decomposed as follows:

P =

(
1 0
q∗ Q

)
,

where matrix Q is irreducible. In the same way, the initial distribution vector can be written
α = (α{1}, αT ). For any n ∈ IN∗, we define the following probability vector πn on T :

if Q is aperiodic: πn(j)
def
= IPα(Xn = j|Xn ∈ T ) =

αTQ
ne ∗

j

αTQn1∗
, (1)

if Q is periodic: πn(j)
def
=

n∑

k=1

αT r
kQke ∗

j

n∑

k=1

αT r
kQk1∗

, (2)

where r = 1/ρ with ρ the spectral radius of Q and v > 0 is the unique probability left eigenvector
of Q, associated with ρ. Let us denote by w the unique probability right eigenvector of Q
associated with ρ. With W = diag(w), define

Q =
1

ρ
W−1QW. (3)

Matrix Q is stochastic and irreducible. It is aperiodic (resp. periodic) if and only if matrix Q is
aperiodic (resp. periodic). Taking back expression (3) in definitions (1), (2) and using standard
arguments about the asymptotic behavior of Markov chains, we obtain the basic property of the
quasi-stationary distribution v of the absorbing Markov chain X:

for any initial distribution α ∈ A, lim
n−→∞

πn = v > 0.

4 Weak lumpability in discrete time

Let X = (Xn)n≥0 be a homogeneous Markov chain with state space E, given by its transition
probability matrix P and its initial distribution α; when necessary we denote it by (α, P ). The
partition B is fixed. Let P (i, B) denote the transition probability of moving in one step from
the state i to the subset B of E, that is P (i, B) =

∑
j∈B P (i, j). We denote the aggregated chain

constructed from (α, P ) with respect to the partition B by agg(α, P,B). We shall also consider
the family of homogeneous Markov chains over the state space E, sharing the same transition
probability matrix P , which will be denoted by ( . , P ).
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4.1 Local characterization

Definition 4.1 A sequence (C0, C1, . . . , Cj) of subsets of E is called possible for the initial
distribution α iff IPα(X0 ∈ C0, X1 ∈ C1, . . . , Xj ∈ Cj) > 0. Given any distribution α ∈ A
and a possible sequence (C0, C1, . . . , Cj) for α, we can define the vector f(α,C0, C1, . . . , Cj) ∈ A
recursively by:

f(α,C) = αC

f(α,C0, C1, . . . , Ck) = (f(α,C0, C1, . . . , Ck−1)P )Ck .

For any B ∈ B, A(α,B) denotes the subset of all distributions of the form f(α,C1, . . . , Cj, B),
that is:

A(α,B)
def
= { β ∈ A / ∃j ≥ 0 and a possible sequence (C1, . . . , Cj, B) for α,

reduced to (B) if j = 0, such that β = f(α,C1, . . . , Cj, B) }.

For any α ∈ A such that αT1
∗ 6= 0 and any B ∈ B, it is easily checked that A(α,B) is

not empty, which follows from the irreducibility of Y on F \ {0} and the fact that q∗ 6= 0. In a
similar way as in [7, Theorem 2.2], a necessary and sufficient condition for Y to be a homogeneous
Markov chain can be exhibited after noting that any possible sequence for α whose last element
is B(l), l 6= 0, never contains B(0) and that for any β ∈ A(α,B(0)), IPβ(X1 ∈ B(0)) = 1 and
IPβ(X1 ∈ B(m)) = 0 for m 6= 0. We deduce

Result 4.2 The chain Y = agg(α, P,B) is a homogeneous Markov chain iff ∀l ∈ F \ {0}, ∀m ∈
F , the probability IPβ(X1 ∈ B(m)) is the same for every β ∈ A(α,B(l)). This common value is
the transition probability for the chain Y to move from state l to state m.

4.2 Analysis of the initial distributions

In this subsection, we study the set of initial distributions α leading to a homogeneous Markov
chain Y = agg(α, P,B). We denote this set by AM, that is

AM
def
= {α ∈ A/ Y = agg(α, P,B) is a homogeneous Markov chain}.

Let us denote by AT
M the subset of AM composed by the distributions with support T . We

have
AM = λ1{e1}+ λTA

T
M where λT , λ1 ≥ 0 and λT + λ1 = 1. (4)

Therefore, we restrict the analysis to the set AT
M. When necessary, we shall specify the depen-

dency of these sets with respect to matrix P , denoting them by AM(P ) and AT
M(P ).

We can obtain analogous properties as in [7] of this set. The first one is:

If α ∈ AT
M then for any n ≥ 1,


0,

αTQ
n

αTQ
n1∗


 ∈ AT

M,



0,

n∑

k=1

αTQ
krk

n∑

k=1

αTQ
krk1∗




∈ AT
M. (5)

Using the asymptotic interpretation of the quasi-stationary distribution and the previous
relations, an analogous relation of [7, (3)] is obtained : if AT

M 6= ∅ then (0, v) ∈ AT
M. Then it
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becomes clear with Result 4.2 that the transition probability matrix of the homogeneous Markov
chain Y = agg(α, P,B), denoted by P̂ , is the same for every α ∈ AT

M: for all l, m in F , l 6= 0,

P̂ (l,m) =
∑

i∈B(l)

vB(l)(i) P (i, B(m)). (6)

Definition 4.3 The family of homogeneous Markov chains (., P ) is weakly lumpable with respect
to the partition B iff AT

M 6= ∅. For any α ∈ AM, the aggregated chain Y = agg(α, P,B) is a
homogeneous Markov chain and its transition probability matrix is given by relation (6).

An important particular case occurs when every α ∈ A leads to a homogeneous and Marko-
vian chain Y = agg(α, P,B). In this situation, the family (., P ) is strongly lumpable or simply
lumpable with respect to the partition B and is characterized by the following property:

for every pair of subsets D,B ∈ B, the probability P (d,B) is the same for any d ∈ D.

4.3 Link with the irreducible case

From the decomposition of the transition probability matrix P in Section 3, let us define the
following matrix P (v):

P (v) =

(
0 v

(I −Q).1∗ Q

)
,

where v is the quasi-stationary probability vector associated with P . This matrix P (v) is the
transition probability matrix of an irreducible Markov chain.

Result 4.4 If AM(P (v)) denotes the set of initial distributions α such that Y = agg(α,P (v),B)
is Markovian homogeneous, then we have: AM(P ) = AM(P (v)). Moreover, the transition prob-

ability matrix P̂ (v) of Y is given for every m ∈ F by P̂ (v)(l,m) = P̂ (l,m) with l = 1, . . . ,M and

by P̂ (v)(0,m) = vB(m)1
∗ (matrix P̂ is given by relation (6).)

Proof. Denote the function of Definition 4.1 by fP (resp. fP (v)) when related to P (resp. P (v).)
In a similar way, X (resp. X(v)) denotes a Markov chain with transition probability matrix P
(resp. P (v)).

If α ∈ AM(P (v)), then we have by definition of weak lumpability [7] that for any l = 0, . . . ,M
and any β′ = fP (v)(α,C0, . . . , B(l)),

P̂ (v)(l,m) = IPβ′(X
(v)
1 ∈ B(m)) =

∑

i∈B(l)

β′(i)P (v)(i, B(m)), m = 0, . . . ,M. (7)

We must show that α ∈ AM(P ). The construction of matrix P (v) implies that for any l 6= 0 and
β = fP (α,C0, . . . , B(l)), β = β′ and for any m = 0, . . . ,M

IPβ(X1 ∈ B(m)) =
∑

i∈B(l)

β′(i)P (v)(i, B(m))

= P̂ (v)(l,m).

The characterization condition of Result 4.2 is then satisfied.
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Conversely, suppose that α ∈ AM(P ). If l = 0, any vector β′ = fP (v)(α,C0, . . . , B(l)) reduces
to e1. Therefore, we have

IPβ′(X
(v)
1 ∈ B(m)) =

{
(e1P

(v))B(m).1
∗ = vB(m).1

∗ if m 6= 0,
0 if m = 0,

and this probability, which depends only on m, is therefore P̂ (v)(0,m).
Suppose that the expression of β′ does not contain the class B(0). In this case, β′ =

fP (α,C0, . . . , B(l)) because only the matrixQ appears. We deduce IPβ′(X
(v)
1 ∈ B(m)) = P̂ (l,m).

Finally, suppose that l 6= 0 and that in the definition of vector β′ the set B(0) appears at least
once. This vector can be written as follows:

β′ = fP (v)(α,C0, . . . , Cj−1, B(0), Cj+1, . . . , Cn, B(l))

where j is the largest integer between 0 and n such that the sequence Cj+1, . . . , Cn, B(l) does
not contain B(0) (with the convention that if j = n then the sequence is reduced to B(l).) Using
the recursive definition of f , β′ can also be expressed as

fP (v)

(
fP (v)(α, . . . , Cj−1, B(0))P (v), Cj+1, . . . , Cn, B(l)

)
= fP (v) ((0, v), Cj+1, . . . , Cn, B(l)) .

Therefore, we return to the previous situation and the proof is ended. 2

This last theorem allows us to use the finite algorithm described in [7] for irreducible Markov
chains as we will see in Section 6.

5 Weak lumpability in continuous time

Let X = (Xt)t≥0 be a homogeneous Markov process with state space E. We show in this section
that the continuous time case can be reduced to the discrete time one using the uniformization
technique (see for instance [6]). This can be done as in [8] where some interesting intermediate
steps are given. We give a more concise proof of this result which holds also in the irreducible case.
The process X is given by its transition rate matrix A in which we set A(i, i) = −

∑

j 6=i

A(i, j).

Consider a Poisson process (Nt)t≥0 with rate λ, such that λ ≥ max(−A(i, i), i ∈ E). Let
U = (Un)n≥0 a discrete time homogeneous Markov chain independent of (Nt) on the state space
E and with transition probability matrix P given by P = I + A/λ. It can then be shown that
the two processes (Xt)t≥0 and (UNt

)t≥0 are stochastically equivalent. Using this property, we
prove the following result.

Result 5.1 agg(α, P,B) is a homogeneous Markov chain iff agg(α,A,B) is a homogeneous
Markov process. So, we have

CM
def
= {α / agg(α,A,B) is a homogeneous Markov chain } = AM(P ).

Proof. For all k ∈ IN, B0, . . . , Bk ∈ B, 0 < t1 < · · · < tk and 0 < n1 < · · · < nk, we define to
simplify the notation,

FX(k) = IPα(Xtk ∈ Bk, . . . , Xt1 ∈ B1, X0 ∈ B0),
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FU(k) = IPα(Unk
∈ Bk, . . . , Un1 ∈ B1, U0 ∈ B0),

FN(k) = IP(Ntk = nk, . . . , Nt1 = n1).

Since N is a Poisson process with rate λ,

FN(k) = FN(k − 1)IP(Ntk−tk−1
= nk − nk−1). (8)

From the independence of U and of N ,

FX(k) =
+∞∑

n1=0

+∞∑

n2=n1

· · ·
+∞∑

nk−1=nk−2

+∞∑

nk=nk−1

FU(k)FN(k). (9)

Assume that agg(α, P,B) is Markov homogeneous. This implies

FU(k) = FU(k − 1)IPα(Unk−nk−1
∈ Bk|U0 ∈ Bk−1). (10)

We have to show that

FX(k)

FX(k − 1)
= IPα(Xtk−tk−1

∈ Bk|X0 ∈ Bk−1).

Replacing FU(k) and FN(k) in (9) by the respective relations (8) and (10), we obtain

FX(k) =
∑

n1≥0

· · ·
∑

nk≥nk−1

FU(k − 1)IPα(Unk−nk−1
∈ Bk|U0 ∈ Bk−1)

×FN(k − 1)IP(Ntk−tk−1
= nk − nk−1)

=
∑

n1≥0

· · ·
∑

nk−1≥nk−2

+∞∑

l=0

FU(k − 1)FN(k − 1)

×IPα(Ul ∈ Bk|U0 ∈ Bk−1)IP(Ntk−tk−1
= l)

= FX(k − 1)
+∞∑

l=0

IPα(Ul ∈ Bk|U0 ∈ Bk−1)IP(Ntk−tk−1
= l),

that is,
FX(k) = FX(k − 1)IPα(Xtk−tk−1

∈ Bk|X0 ∈ Bk−1). (11)

Conversely, if relation (11) holds then we can rewrite it using (9),

+∞∑

n1=0

· · ·
+∞∑

nk=nk−1

FN(k)
{
FU(k)− FU(k − 1)IPα(Unk−nk−1

∈ Bk|U0 ∈ Bk−1)
}
= 0.

From the positivity of the terms FN(k), we deduce that for all nk > · · · > n1 > 0,

FU(k) = FU(k − 1)IPα(Unk−nk−1
∈ Bk|U0 ∈ Bk−1),

and so agg(α, P,B) is a homogeneous Markov chain. 2

As stated before, in [8] (irreducible case) a different scheme is followed. For instance, before
obtaining the main result, it is shown that for any α such that agg(α,A,B) is Markov homoge-
neous, the transition matrix Â of agg(α,A,B) is the same. This also holds here and it can be
directly deduced from Result 5.1, dealing to P̂ = I + Â/λ.
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6 The algorithm

We briefly discuss the computation of the sets AM or CM in Sections 4 and 5 for absorbing
processes. In the discrete time case, the main result of Section 4 shows that we can use an
irreducible auxiliary chain which will be the input of the algorithm of [7]. The conclusion of
Section 5 is that the computation of CM for a continuous time absorbing Markov process can be
reduced to the computation of AM on the associated uniformized discrete time chain. We can
resume the situation by the following informal algorithm:

1. If X is a continuous time process then compute the uniformized matrix P = I + A/λ.

2. Compute the quasi-stationary distribution v which is the solution to vQ = ρv and v1∗ = 1,
where ρ is the spectral radius of the submatrix Q of P (see Section 3.)

3. Form the matrix P (v) of Subsection 4.3.

4. For each l ∈ F ,
̂
P

(v)
l is the lth row of the matrix P̂ (v) defined in Result 4.4,

˜
P

(v)
l and P

(v)
l

denote the respective matrices
(
P (v)(i, B(k))

)
i∈B(l),k∈F

and
(
P (v)(i, j)

)
i∈B(l),j∈E

.

Compute the n(l)× (M + 1)-matrix Hl =
˜
P

(v)
l − 1∗

̂
P

(v)
l , for each l ∈ F . Let us define the

block diagonal matrices

H [1] = diag(Hl),

H [j+1] = diag(P
(v)
l H [j]), j ≥ 1.

Consider the following sequence of polytopes of IRN :

A1 = { α ∈ A / αH [1] = 0 },

Aj+1 = { α ∈ Aj / αH [j+1] = 0 }.

The main result of [7, Theorem 3.4] identifies the polytop AM(P (v)) as AN and Result 4.4
gives

AM = AN .

If we are interested in the minimal representation of the polytop AM, i.e. the set of its
vertices, then the incremental Chernikova’s algorithm [5] is well-suited to compute these
vertices with the above recursive definition of AN .
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