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A geometric invariant in weak lumpability of finite

Markov chains

James Ledoux∗

Abstract

We consider weak lumpability of finite homogeneous Markov chains, that is when a lumped

Markov chain with respect to a partition of the initial state space is also a homogeneous Markov

chain. We show that weak lumpability is equivalent to the existence of a direct sum of poly-

hedral cones which is is positively invariant by the transition probability matrix of the original

chain. It allows us, in a unified way, to derive new results on lumpability of reducible Markov

chains and to obtain spectral properties associated with lumpability.

AMS 1991 Subject Classification : Primary 60J10

Secondary 15A48.

Keywords: States aggregation, Positive invariance of cones.

1 Introduction

Finite Markov chains are extensively used as an analytic tool for systems modeling, in particular for

dependability evaluation. Generally, we have to compute dependability measures which are only

concerned with information on lumped states of the Markovian model or the transient features

of the model can be only achieved by means of aggregation techniques which assume that the

aggregated model is again a Markov chain. In this paper we are interested in deciding whether an

aggregated chain is Markovian or not. Formally, let us consider a homogeneous Markov chain X ,

in discrete or continuous time, on a finite state space which is assumed to be S = {1, . . . , N}. Let

P = {C(1), . . . , C(M)} be a fixed partition of S in M < N classes. We associate with the given

chain X the aggregated chain Y , over the state space Ŝ = {1, . . . ,M}, defined by:

Yt = l ⇐⇒ Xt ∈ C(l), for any t.

We are interested in the initial distributions of X which give an aggregated homogeneous Markov

chain Y . If such a distribution exists, we say that the family of Markov chains sharing the same

transition probability matrix (t.p.m.) is weakly lumpable. This problem has been addressed in

Kemeny and Snell [5], Abdel-Moneim and Leysieffer [1], Rubino and Sericola [10] for Markovian

models of reparable systems, that is when the generated chain is irreducible. When the system is

non-reparable, the Markovian model has an absorbing state. If we may assume that it has an only

∗INSA, 20 Avenue des Buttes de Cöesmes 35043 Rennes Cedex, FRANCE, email: ledoux@{univ-

rennes1.fr}{irisa.fr}.
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one irreducible transient states class, then weak lumpability for such a chain is tackled in Ledoux et

al. [8]. In order to properly assess the effectiveness of systems where performance is “degradable”,

measures of performability over finite mission time have been proposed. Such measures call for

general reducible Markov chains. In the present paper we propose new results on weak lumpability

of reducible Markov chains. Note that aggregation of any finite continuous time Markov chain can

be replaced in the discrete time context (see [8]) and, therefore, will not be discussed in the sequel.

A large amount of work on lumpability Markov chains is concerned in proving the unicity

of the transition probability matrix of the Markovian aggregated chains. This property is vital

to the computation of the set of all initial distributions leading to an aggregated Markov chain

with the linear system approach developed in [1] and [10]. This paper emphasizes geometrical

properties associated with the weak lumpability condition when we are interested in aggregated

Markov chains sharing the same t.p.m. In particular, it can be used to give an unified view of

the previous works and to derive new results for general finite Markov chains. After reviewing

some preliminaries on polyhedral cones, we analyze in Section 2, for a general finite Markov

chain with transition probability matrix P , the set of all initial distributions which give aggregated

Markov chains sharing the same t.p.m. Pointing out the relation between lumpability and positive

invariance of cones in Section 3, we show that this set is non empty if there exists a family of M
polyhedral cones which are “invariant” under sub-matrices of matrix P . This result allows us to

state in Section 4 that if the partition P is a refinement of the partition of the state space S induced

by the usual “communication” equivalence relation, then we obtain an explicit formula for the

transition probability matrix of any Y , which depends only on P and P . Throughout Section 3 and

Section 4, various properties reported in Ledoux [6], Abdel-Moneim and Leysieffer [2] and Peng

[9] are extended to general finite Markov chains and new spectral results are also derived.

Notation

• The set of all probability distributions on S will be denoted by A. The support of a proba-

bility distribution α is defined as the subset of S corresponding to all positive components

of α.

• By convention, vectors are row vectors. Column vectors are indicated by means of the

transpose operator (.)T. The vector with all its components equal to 1 (respectively 0) is

denoted merely by 1 (respectively 0). The vector ei denotes the ith vector of the canonical

basis of RN . We denote by I the identity matrix and by diag(v) (by diag(Hi)) the (block)

diagonal matrix with generic diagonal (block) entry v(i) (the matrix Hi), the dimensions

being defined by the context.

• The cardinality of the class C(l) is denoted by n(l). We assume the states of S ordered

such that C(l) = {n(1) + · · · + n(l − 1) + 1, . . . , n(1) + · · · + n(l)} for 1 ≤ l ≤ M (with

n(0) = 0).

• For any subset C of S (whose cardinality is n) and α ∈ A, the restriction of α to C, i.e. the

vector (α(i), i ∈ C), is denoted by αC or RCα. On the other hand, a vector β on [0, 1]n(l) can

be viewed as the vector on [0, 1]N defined by: [R−1
l β](i) = 0 if i /∈ C(l) and [R−1

l β](i) =
β(i − n(1) − · · · − n(l − 1)) if i ∈ C(l). If C is a subset of A (respectively of [0, 1]n(l))
then RlC (respectively R−1

l C) denotes the set {αC(l) | α ∈ C} ⊆ [0, 1]n(l) (respectively

{R−1
l β | β ∈ C} ⊆ R

N ).
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• If C ⊆ S and αC1
T 6= 0, αC is the vector of A defined by αC(i) = α(i)/αC1

T if i ∈ C and

by 0 if i /∈ C.

2 Preliminaries on cones and weak lumpability

2.1 Cone, polyhedral cone of Rn

The basic definitions on the cones are reviewed from Berman and Plemmons [3]. Throughout

this subsection C denotes a subset of Rn. For any C, Span(C) (respectively Aff(C)) refers to the

linear (respectively affine) hull of C. The set Cone(C) denotes the conical hull of C that is the set

of all finite nonnegative linear combinations of the elements of C. The elements of C are called

the generators of Cone(C). If Cone(C) = C then C is called a cone. Conv(C) is the set of all

finite convex linear combinations of the elements of C. The dimension of a subset C is defined by

dim(C) = dim Aff(C). The interior of C relative to the affine space A is denoted by intA(C). A

convex cone C is pointed if C ∩ (−C) = {0} and solid if intRn(C) 6= ∅. Note that a convex subset C
is such that int Aff(C)(C) 6= ∅. Finally, a closed, pointed, solid convex cone is called a proper cone.

Definition 2.1 A polyhedral cone C of Rn is the solution set of a system of linear homogeneous

inequalities, i.e. C = { x ∈ R
n | xH ≥ 0 } where H ∈ R

n×m. Such a cone is a closed convex

subset of Rn and is non-trivial if it is not reduced to {0}. We recall that a bounded solution set of

a system of linear inequalities is called a polytope of Rn.

Definition 2.2 Let C be a cone of Rn, C1 and C2 be two sub-cones of C. The cone C is the direct

sum of C1 and C2, that is denoted by C = C1 ⊕C2, if Span(C1)∩ Span(C2) = {0} and C = C1 + C2.

2.2 Weak lumpability of a finite Markov chain

Let X = (Xn)n≥0 be a homogeneous Markov chain over state space S, given by its transition

probability matrix P = (P (i, j))i,j∈E and its initial distribution α; when necessary we denote it

by (α, P ). Let P (i, C) denote the transition probability of moving in one step from state i to the

subset C of S, that is P (i, C) =
∑

j∈C P (i, j). Let PC(l)C(m) be the n(l) × n(m) sub-matrix of

P given by (P (i, j))i∈C(l),j∈C(m). We denote the aggregated chain constructed from (α, P ) with

respect to the partition P by agg(α, P,P). A sequence (C0, C1, . . . , Cj) of subsets of S is called

possible for the initial distribution α if IPα(X0 ∈ C0, X1 ∈ C1, . . . , Xj ∈ Cj) > 0.

The approach developed in [5] and in [10] consists in rewriting the conditional expression

IPα(Xn+1 ∈ C(m) |Xn ∈ C(l), Xn−1 ∈ Cn−1, . . . , X0 ∈ C0) (defined for any (C0, C1, . . . , Cn−1, C(l))
possible for α) as IPβ(X1 ∈ C(m)) where β is the probability distribution (IPα(Xn = i | Xn ∈
C(l), . . . , X0 ∈ C0))i∈S . Roughly speaking, it consists in including the past into the initial

distribution. Consequently, agg(α, P,P) is a homogeneous Markov chain if such a probability

IPβ(X1 ∈ C(m)) depends only on l and m. If so, it is the transition probability from state l to m
for the lumped Markov chain. However, the transition probability matrix of the aggregated process

which may depend on the initial distribution α (see Ledoux [7]).

Let P̂ be a M × M stochastic matrix. We will study in the set, denoted by AM(P̂ ), of all

initial distributions α leading to an aggregated homogeneous Markov process agg(α, P,P) with

transition probability matrix P̂ :
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AM(P̂ ) = { α ∈ A | agg(α, P, C) is a homogeneous Markov chain with t.p.m. P̂ }

To lighten the presentation, AM will also refer to AM(P̂ ) if there is no ambiguity. The aim of this

subsection is to analyze properties of this set when it is not empty.

Let us define the following matrices.

• For any l ∈ Ŝ, Pl denotes the n(l)×N sub-matrix of P : (P (i, j))i∈C(l),j∈S .

• P̃ denotes the N ×M matrix defined by: ∀i ∈ S, ∀m ∈ Ŝ, P̃ (i,m) = P (i, C(m)). For any

l ∈ Ŝ, we denote by P̃l the n(l)×M sub-matrix of P̃ : (P̃ (i,m))i∈C(l),m∈Ŝ .

• The lth row of the stochastic matrix P̂ is denoted by P̂l.

• For all l ∈ Ŝ, we set Hl = P̃l − 1
TP̂l (n(l)×M ) and for any j ≥ 1, we define the following

N ×M j+1 block diagonal matrices

H [1] = diag(Hl), H [j+1] = diag(PlH
[j]). (1)

We are in position to adopt the linear system approach from [10] and in the same manner, we have:

AM(P̂ ) =
⋂

j≥1

Aj where Aj = { α ∈ A | αH [k] = 0, for k ≥ 1 }.

Now, each polytope Aj can be seen as the trace on the set A of the following polyhedral cone:

Cj def
= {α ≥ 0 | αH [k] = 0, for 1 ≤ k ≤ j}, (2)

that is Aj = Cj ∩ A for j ≥ 0 (with the convention C0 = R
N
+ and A0 = A). Consequently, we

note that AM(P̂ ) = CM(P̂ ) ∩ A where CM(P̂ )
def
=

⋂
j≥1 C

j and we have

AM(P̂ ) 6= ∅ ⇐⇒ CM(P̂ ) 6= {0}.

Next, if we note that Cj+1 is deduced from Cj by attaching the (eventually) additional constraints

(αH [j+1] = 0) and that dim(C1) ≤ N then the following extension of Theorem 3.4 from [10] is

intuitively clear:

CM(P̂ ) = CN (3)

where N is the number of states of the original chain.

We note from the diagonal structure of the matrices H [j], that, for α ≥ 0, α ∈ Cj is equivalent

to R−1
l αC(l) ∈ Cj for all l ∈ Ŝ. It allows us to derive part of the following lemma.

Lemma 2.3 Let us set Cj
l = RlC

j for every l ∈ Ŝ. We have, for all j ≥ 1, Cj = ⊕l∈ŜR
−1
l Cj

l where

R−1
l Cj

l ⊆ Cj is a polyhedral cone of RN (Cj
l is a polyhedral cone of Rn(l)).

proof. We can check from the definition of the sets Cj (see (1), (2)) that for j ≥ 1,

Cj
l =

{
β ∈ R

n(l)
+ | βHl = 0 and βPlH

[k] = 0, 1 ≤ k ≤ j − 1
}
. (4)

Consequently, Cj
l (respectively R−1

l Cj
l ) is a polyhedral cone of Rn(l) (respectively R

N ).

4



The well-known necessary and sufficient condition reported in [5] for having strong lumpability

of (., P ) with an irreducible matrix P can be extended to a general stochastic matrix. The only

requirement is that all the aggregated chains share the same t.p.m. P̂ . In that case, by definition,

the family (., P ) of Markov chains is strongly lumpable if AM(P̂ ) = A or CM(P̂ ) = R
N
+ for any

α ∈ A. In fact, it is equivalent to require that A1 = A0 or C1 = C0. Now, C1 = R
N
+ is equivalent

to H [1] = 0 or to (Hl = 0, ∀l ∈ Ŝ) which are precisely the conditions given by the following

theorem.

Theorem 2.4 If we require that all the aggregated chains share the same transition probability

matrix, then the family (., P ) of Markov chains is strongly lumpable if and only if for each pair of

classes C(l) and C(m), P (i, C(m)) does not depend on i ∈ C(l).

In particular, this result is necessary to derive some results in [2] though the characterization that

they explicitly used is the Kemeny and Snell’s one with the irreducibility assumption.

3 Lumpability and positive invariance

Definition 3.1 A matrix A leaves a cone C of RN invariant or matrix A is nonnegative on the cone

C, that will be denoted by A
C

≥ 0, if for every x ∈ C the vector xA ∈ C (i.e. CA ⊆ C). The cone C
is said to be positively invariant by matrix A.

Some spectral properties of matrices leaving a proper cone invariant are reviewed from [3].

Result 3.2 If matrix A leaves a proper cone C invariant then the spectral radius ρ(A) is an eigen-

value of A and C contains a left eigenvector of A corresponding to ρ(A).

Note that a nonnegative matrix is a matrix which leaves the proper cone R
N
+ of RN invariant. We

will deal with cones which are not solid. Consequently, we have to derive a weaker result than the

previous one.

Lemma 3.3 If matrix A leaves a non-trivial, closed, pointed convex cone C invariant then there

exists a nonnegative eigenvalue λ of A such that C contains a left eigenvector of A associated

with λ.

If a nonnegative matrix A is irreducible and leaves a non-trivial, closed, convex cone C ⊆ R
N
+

invariant then C contains the positive left eigenvector corresponding to the spectral radius ρ(A).

proof. Matrix A represents the matrix of a linear operator f on R
N with respect to the canonical

basis (with the convention that f(ei), for every i ∈ N , is the ith row of matrix A, that is f(x) = xA
for all x ∈ R

N ). Matrix A is nonnegative on C means that f(C) ⊆ C. Consequently, f leaves the

linear subspace L = Span(C) ⊆ R
N invariant and it implies that the restriction of f to the subspace

L, denoted by f|L, is a linear operator from L to L. The cone C is also invariant by f|L and is solid

with respect to L. Thus, the proper cone C is positively invariant by the matrix A|L of the operator

f|L. Result 3.2 can be applied to A|L and conclusions are associated with the spectral radius of that

matrix. However, the eigenvectors and the spectral radius of f|L are eigenvectors and a nonnegative

eigenvalue of the initial linear operator f on domain R
N , that gives the first part of the lemma.

If the nonnegative matrix A is irreducible, then there exists an unique (up to a constant multiple)

left eigenvector of A in R
N
+ (in fact in intRN

+ i.e. it is a positive left eigenvector) which corresponds
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to the spectral radius of A. Now, for any closed, (pointed) convex cone C ⊆ R
N
+ , if A

C

≥ 0 then we

deduce from the first part of the proof that there exists a nonnegative left eigenvector of matrix A
in C ⊆ R

N
+ . Since there is only one left eigenvector of A in R

N
+ , it is positive and associated with

the spectral radius of the matrix A. The second part of the lemma holds.

We want emphasize that the positive invariance of polytope, used in Lemma 3.5 from [10] as a

simple stop test in their incremental computation of AM from the Aj ones, is a central geometric

invariant of the weak lumpability property as soon as we are interested in aggregated Markov

chains sharing the same transition probability matrix.

Theorem 3.4 The set AM(P̂ ) 6= ∅ or CM(P̂ ) 6= {0} if and only if there exists a non-trivial

polyhedral cone C ⊆ C1 such that P
C

≥ 0 and C is the direct sum ⊕l∈ŜR
−1
l Cl where Cl

def

= RlC for

all l ∈ Ŝ.

proof. Suppose that CM 6= {0}. Let us verify that CM fulfills the required conditions. We have

CM = CN from relation (3). Since CN = CN+1, we have for any vector α =
∑

l∈Ŝ R
−1
l αC(l) ∈ CN

and for any j such that 1 ≤ j ≤ N

αH [j+1] = 0 ⇐⇒ ∀l ∈ Ŝ, αC(l)PlH
[j] = 0 (by definition of system H [j+1])

=⇒ αPH [j] =
∑

l∈Ŝ

αC(l)PlH
[j] = 0,

that is αP ∈ CN . The set CM is the direct sum of its M “projections” from relation (3) and

Lemma 2.3.

Conversely, if there exists a polyhedral cone C ⊆ C1, which is distinct from {0} and is posi-

tively invariant by P , such that C = ⊕l∈ŜR
−1
l Cl then we show by induction that

C ⊆ Cj ∀j ≥ 1.

The first step is obvious. Let us assume that C ⊆ Cj with j > 1. For every α ∈ C, we have

R−1
l αC(l) ∈ C ⊆ Cj for all l ∈ Ŝ (since C is a direct sum), next [R−1

l αC(l)]P = αC(l)Pl ∈ C ⊆ Cj

for all l ∈ Ŝ (because P
C

≥ 0). We conclude that [∀l ∈ Ŝ, αC(l)PlH
[j] = 0] or αH [j+1] = 0. Thus,

we have C ⊆ Cj+1. Finally, we obtain C ⊆
⋂

j≥1 C
j = CM.

Using the direct sum property, Theorem 3.4 can be reformulated with “local” characteristics.

That gives the main result of this section.

Theorem 3.5 The set AM(P̂ ) 6= ∅ or CM(P̂ ) 6= {0} if and only if there exists a family of M
polyhedral cones (Cl)l∈Ŝ , not all trivial, such that

{
Cl ⊆ C1

l ⊆ R
n(l)
+ ∀l ∈ Ŝ,

ClPC(l)C(m) ⊆ Cm ∀l,m ∈ Ŝ.

Remark 1 The polyhedral cone CM(P̂ ), when it is distinct from {0}, satisfies the conditions of

Theorem 3.5. From Theorem 3.4, it follows that CM(P̂ ) is the largest polyhedral sub-cone of

C1 which is positively invariant by P and is the direct sum of M polyhedral cones. However, it

may exist a smaller polyhedral sub-cone of C1 than CM(P̂ ) which is only positively invariant (for

instance the polyhedral cone CMP
def
= {αP | α ∈ CM} if CMP ⊂ CM [7]). ◭
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Theorems 3.4 and 3.5 can be associated with the Lemma 3.3 to give the following corollary.

Corollary 3.6 If CM(P̂ ) 6= {0} then it contains a nonnegative left eigenvector corresponding to a

nonnegative eigenvalue of P .

For any l ∈ Ŝ, if the cone RlCM(P̂ ) of R
n(l)
+ is non-trivial then it contains a nonnegative left

eigenvector corresponding to the nonnegative eigenvalue P̂ (l, l) of PC(l)C(l).

proof. The first assertion is a direct consequence from positive invariance of CM and from Lemma 3.3.

Since [RlCM]PC(l)C(l) ⊆ [RlCM] (Theorem 3.5) and RlCM 6= {0}, there exists a nonzero left

eigenvector vl in RlCM associated with an eigenvalue ρl of PC(l)C(l) with Lemma 3.3; and if so, we

have with vector (R−1
l vl)

C(l) as initial distribution for the original chain P̂ (l, l) = IP(R−1
l

vl)C(l)(X1 ∈

C(l)) = vlPC(l)C(l)1
T/vl1

T = ρl.

Remark 2 The fact that P̂ (l, l) is necessarily an eigenvalue of PC(l)C(l) completely generalizes

the result given in [6] for an irreducible original chain. It was based on the fact that Markovian

property induces geometric sojourn times in each class C(l) and on the Jordan’s canonical form of

a matrix. Recall that P̂ (l, l) may not be ρ(PC(l)C(l)) (see [7]) ◭

From Corollary 3.6, a cone which may fulfill the sufficient condition for weak lumpability

given in Theorem 3.4 is the one which can be formed from a family {vl, l ∈ Ŝ} of nonnegative left

eigenvectors (and nonzero vectors) associated with the family of sub-matrices {PC(l)C(l), l ∈ Ŝ }.

Let us set

Cv
def
= Cone({R−1

l vl, l ∈ Ŝ}) = ⊕
l∈Ŝ

Cone(R−1
l vl). (5)

Since vl 6= 0 for every l ∈ Ŝ, we choose as P̂ the following stochastic matrix defined by

∀l ∈ Ŝ, P̂l = (R−1
l vl)

C(l)P̃ .

Thus, we deduce from Theorem 3.4 that

P
Cv
≥ 0 =⇒ Cv ⊆ CM(P̂ ).

Such a situation raises with the exact lumpability property described in Schweitzer (1984). Indeed,

it corresponds to assume that for all l ∈ Ŝ,
∑

i∈C(l) P (i, j) depends only on l and m for every

j ∈ C(m). Consequently, for every l ∈ Ŝ, the vector vl = 1C(l) is a left eigenvector corresponding

to the eigenvalue
∑

i∈C(l) P (i, j) of nonzero matrix PC(l)C(l) such that

1C(l)PC(l)C(m) = [
∑

i∈C(l)

P (i, j)] 1C(m) ∀m ∈ Ŝ,

and we have Cv ⊆ CM(P̂ ) according to the previous discussion. The fact that exact lumpability

implies weak lumpability is well known. For instance, exact lumpability is used in Buchholz [4]

for exact determination of stationary and transient measures of the initial chain from an aggregated

Markov chain.

The following corollary takes advantage of the identification of the sub-cone Cv of CM(P̂ ) =
CN defined in (5) and of the affine independence of the M vectors R−1

l vl (i.e. dim Cv = M ).
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Corollary 3.7 We have CM(P̂ ) 6= {0} if and only if CN−M
l 6= {0} for some l ∈ Ŝ. In that case,

we have

CM(P̂ ) = ⊕
l∈Ŝ

R−1
l CN−M

l .

When C(l) is is an irreducible state class of S then Corollary 3.6 and Lemma 3.3 give the

following additional assertions. The final part also uses the positive invariance properties of cones

RlCM(P̂ ) (l ∈ Ŝ) given in Theorem 3.5.

Corollary 3.8 Let us assume that RlCM(P̂ ) 6= {0}. If PC(l)C(l) is an irreducible matrix then

RlCM(P̂ ) contains only one left eigenvector vl of PC(l)C(l) and this vector is positive. Moreover,

P̂ (l, l) is the spectral radius of PC(l)C(l). Thus, we necessarily have P̂l = (R−1
l vl)

C(l)P̃ .

Moreover, for any state class C(m) which can be accessed from a state of C(l) (i.e. there ex-

ists a possible sequence (C(l), C(i1), . . . , C(ik), C(m)) for some ei with i ∈ C(l)), we have

vlPC(l)C(i1) · · ·PC(ik)C(m) 6= 0 is in RmCM(P̂ ) and P̂m = (R−1
m [vlPC(l)C(i1) · · ·PC(ik)C(m)]

C(m)P̃ .

4 Lumpability of reducible Markov chains

The previous results can be applied to the aggregation of Markov chain with respect to a partition P
which is a refinement of the partition of S corresponding to the usual communication equivalence

relation. This partition is denoted by I = (Ik)k∈J throughout this section. The elements of I
are called the communication classes or the irreducibility classes and |J | denotes the cardinality

of I. Such a state class Ik induces an irreducible sub-matrix PIkIk of P . Consequently, we can

associated with each state class Ik, the unique stochastic left eigenvector vk of PIkIk corresponding

to the spectral radius of PIkIk . Throughout this section, we assume that the states of S are ordered

such that P is a lower block-triangular matrix

P =




PI1I1 0 · · · 0

∗ PI2I2

. . .
...

∗ ∗
. . . 0

∗ ∗ ∗ PI|J|I|J|


 .

Partition P is a refinement of the partition I if ∀l ∈ Ŝ, ∃!k ∈ J such that C(l) ⊆ Ik. For each

k ∈ J , there exists Lk ⊆ Ŝ such that Ik = ⊎l∈Lk
C(l). Any nonnegative vector α on Ik can be seen

as an element of ⊗l∈Lk
R

n(l)
+ . Consequently, we denote the vector on S,

∑
l∈Lk

R−1
l αC(l), by R−1

Ik
α.

Example 1 Let us consider the following partition P = {C(1) = {1}, C(2) = {2, 3}, C(3) =
{4}, C(4) = {5, 6, 7}} of the state space S = {1, 2, 3, 4, 5, 6, 7}. The reducible transition proba-

bility matrix P is given by:

P =




1/4 1/4 1/2 0 0 0 0
0 1/6 5/6 0 0 0 0
7/8 1/8 0 0 0 0 0
1/7 0 0 3/14 3/14 3/14 3/14
1/8 1/24 0 1/6 1/6 1/6 1/3
1/12 0 0 1/8 3/8 1/4 1/6
0 0 1/12 3/8 1/8 1/4 1/6




.
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The partition in communication classes is I = {I1 = {1, 2, 3}}, I2 = {4, 5, 6, 7}} with I1 =
C(1) ⊎C(2) and I2 = C(3) ⊎C(4). The stochastic left eigenvectors corresponding to spectral ra-

dius of respective matrices PI1I1 and PI2I2 are v1 = (7/16, 3/16, 6/16), v2 = (1/4, 1/4, 1/4, 1/4).
Vectors R−1

I1
v1, R

−1
I2
v2 are respectively (7/16, 3/16, 6/16, 0, 0, 0, 0) and (0, 0, 0, 1/4, 1/4, 1/4, 1/4).

△

A family of communication classes (Ii0 , · · · , Iin) is called a path if each class Iik−1
has an

access to the class Iik for k = 1, . . . , n (that is there exists a state in Iik−1
which communicates

with a state of Iik). We call Ii0 the starting point and Iin the end point of the path.

Theorem 4.1 Let us assume that partition P is a refinement of the partition I = (Ik)k∈J of S.

We have the family of vectors (vk)k∈J , vk being the stochastic left eigenvector associated with the

spectral radius of matrix PIkIk . If α ∈ A is such that αIk 6= 0 and agg(α, P,P) is a homogeneous

Markov chain, then, for any m such that Im belongs to a path with starting point Ik, we have

agg(R−1
Im
vm, P,P) is a homogeneous Markov chain and for all l ∈ Ŝ such that C(l) ⊆ Im:

P̂l = (R−1
Im
vm)

C(l)P̃ ; (6)

moreover the family Fm composed of vectors R−1
l (vm)C(l) is such that Cone(Fm) ⊆ CM(P̂ ).

Remark 3 The previous theorem can be interpreted as follows: if a state of a class Ik is allowed to

be an initial state of our Markovian model then all the rows of matrix P̂ corresponding to the state

classes of the P included in Ik or in the element of a path with starting point Ik, are necessarily

given by formula (6) and depend only on I and P . ◭

proof. We have Ik = ⊎l∈Lk
C(l) for some Lk ⊆ Ŝ. We deduce from Theorem 3.5 that if

agg(α, P,P) is a homogeneous Markov chain then there exists a pointed polyhedral cone, de-

fined by CIk = ⊕l∈Lk
R−1

l Cl, such that cone RIkCIk is positively invariant by the irreducible matrix

PIkIk . Lemma 3.3 states that this last cone contains the stochastic left eigenvector vk correspond-

ing to the spectral radius of PIkIk when it is non-trivial. Since all the distributions of cone CIk
lead to an aggregated Markov chain with the same t.p.m. P̂ , we deduce that agg(R−1

Ik
vk, P,P) is a

homogeneous Markov chain and that P̂l = (R−1
Ik
vk)

C(l)P̃ for every l ∈ Ŝ such that C(l) ⊆ Ik.

Let us now consider a path with starting point Ik and assume that there exists a distribution α
such that αIk 6= 0 and agg(α, P,P) is Markov. The chain agg(R−1

Ik
vk, P,P) is also a homogeneous

Markov chain from the first part of the proof. Since CM is positively invariant by P , we have

that for any n ≥ 0, R−1
Ik
vkP

n ∈ CM. The class Ik communicate with any element Ii of the

path. Consequently, letting i, there exists ni > 0 such that for wi = R−1
Ik
vkP

ni , RIiwi 6= 0 and

agg(wi, P,P) is a homogeneous Markov chain. The rows of matrix P̂ corresponding to the classes

of P included in Ii are necessarily given by P̂l = (R−1
Ii
vi)

C(l)P̃ , from the first part of the proof.

The last part of the theorem follows from the fact that each Rlvm is in RlCM (since R−1
Im
vm ∈

CM) and from the conical property of CM.

Remark 4 If we wish that all initial distributions on A lead to an aggregated homogeneous

Markov chain (strong lumpability property) then, for all k ∈ Ŝ, there must exist such a distri-

bution whose support contains states from class Ik. Thus, Theorem 4.1 allows us to conclude that

all the aggregated chains share the same transition probability matrix. Consequently, the unicity

condition on this matrix required in Theorem 2.4 can be dropped. ◭
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Example 1 (continued) From Theorem 4.1, the 4× 4 matrix P̂ is necessarily given by

P̂1 = (1/4, 3/4, 0, 0), P̂2 = (7/12, 5/12, 0, 0),

P̂3 = (1/7, 0, 3/14, 9/14), P̂4 = (5/12, 1/24, 2/9, 2/3).

Let us form the matrices H1, H2, H3, H4:

H1 = H3 = 0, H2 =

(
−7/12 7/12 0 0
7/24 −7/24 0 0

)
, H4 =




1/18 0 −1/18 0
1/72 −1/24 −7/72 1/8
−5/72 1/24 11/72 −1/8


 .

The nonnegative solutions to the homogeneous system associated with each previous matrix define

the four following polyhedral cones C1
1 , C

1
2 , C

1
3 , C

1
4 (see formula (4)):

C1
1 = C1

3 = R+; C1
2 = Cone(v′2); C1

4 = Cone(v′4);

with v′2 = (1, 2) = R2v1/R2v11
T and v′4 = (1, 1, 1) = R4v2/R4v21

T. Note that v′2 (respectively v′4)
is the positive left eigenvector (unique to a constant multiple) corresponding to the spectral radius

P̂ (2, 2) = 5/12 (respectively P̂ (4, 4) = 2/3) of the irreducible matrix PC(2)C(2) (respectively

PC(4)C(4)). It is easy to check that the conditions of the Theorem 3.5 are met and thus CM(P̂ ) 6=
{0}. If we construct the cone Cv′ = Cone({e1, (R

−1
2 v′2), e3, (R

−1
4 v′4)}), then we observe that

C1 = Cv′ . It follows that CM(P̂ ) = Cv′ . △

Let us define the following positive vector on S, v
def
=

∑
k∈J R

−1
Ik
vk, the convex subsets of RN

Cv = ⊕
l∈Ŝ

Cone(R−1
l vC(l)), Av = Cv ∩ A

and matrix P̂ by P̂l = vC(l)P̃ for all l ∈ Ŝ. In the previous example, we found that CM(P̂ ) = Cv
or AM(P̂ ) = Av. We can verify (with Theorem 3.5) that

AM(P̂ ) = Av =⇒ ∀l,m ∈ Ŝ, (vC(l)P )C(m) = vC(m). (7)

On the other hand, property in the right hand side implies that Av ⊆ AM(P̂ ) with Theorem 3.4.

Thus, it is a sufficient condition for weak lumpability with matrix P̂ , as noted in [5] for irre-

ducible matrix P . We also note that the right hand side in (7) gives for all l ∈ Ŝ, vC(l)PC(l)C(l) =

P̂ (l, l)vC(l). Thus, for all l ∈ Ŝ, vC(l) is a positive left eigenvector of matrix PC(l)C(l) corresponding

to the eigenvalue P̂ (l, l). It can be useful to know when the converse implication of (7) holds. It is

shown to be valid in [9] under the irreducible assumption for the initial matrix P and the additional

condition (Γ):

(Γ): the column vectors of matrices P kV (k ≥ 0) span R
N

where V is the N × M matrix defined by V (i, l) = 1 if i ∈ C(l) and 0 otherwise. The previous

comments specify some relation between the various equivalent conditions given in Theorem 3.1

from [9]. Since this theorem is based only on the condition (Γ) and the unicity of the t.p.m.

associated with any aggregated chain from AM(P̂ ), it can be directly extended to our context

omitting the proof. Note that all Peng’s results hold in the context of Section 2. Under (Γ), the

following theorem states also that, for the aggregated chain, the Markovian property is equivalent

to satisfy the Chapman-Kolmogorov equations.
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Theorem 4.2 Let us assume that partition P is a refinement of the partition I of S. Under the

condition (Γ), the following are equivalent:

agg(v/v1T, P,P) satisfies to the Chapman-Kolmogorov equations;

(vC(l)P )C(m) = vC(m) for all l,m ∈ Ŝ;

AM(P̂ ) = Av.

Theorem 4.1 of this section can be applied to derive the two main published results on weak

lumpability. The first one deals with irreducible matrix P in [10], that is I reduces to only one

class. If agg(α, P,P) is a homogeneous Markov chain then agg(π, P,P) is also a homogeneous

Markov chain where π is the stochastic vector solution to πP = π. The t.p.m. P̂ is the same for

any aggregated homogeneous Markov chain and is given by P̂l = πC(l)P̃ , l ∈ Ŝ.

A second family of Markov chains can also be treated with Theorem 4.1. As in [8], let us con-

sider a transition probability matrix P such that the partition of S induced by the communication

equivalence relation is I = {I1, I2}: where I1 contains one absorbing state and I2 all the transient

ones. If there exists α ∈ A such that αI2 6= 0 and agg(α, P,P) is a homogeneous Markov chain

then agg((0, v), P,P) is also a homogeneous Markov chain with v is the stochastic vector solution

to vPI2I2 = ρv, where ρ is the spectral radius of the matrix PI2I2 . We recall that v is called the

quasi-stationary distribution associated with the family (., P ). The t.p.m. P̂ is the same for any

homogeneous Markov chain agg(α, P,P) with an initial distribution α whose support contains

transient states. It is given by P̂1 = e1 and P̂l = (0, v)C(l)P̃ , l ∈ Ŝ \ {1}.

Conclusion

This paper extends to general finite Markov chains the linear system approach used in [1],[10] for

the weak lumpability problem. In adopting here the viewpoint of positive invariance of polyhedral

cones, we propose new results on weak/strong lumpability of a finite Markov chain. Most of our

results are expressed with local characteristics of the chain, that is to the level of the state classes

of the partition. This allows us to derive (or extend) spectral properties associated with exact

aggregation. In a general manner, our work specifies some geometrical invariants corresponding

to the lumpability requirement which are promising for studying related problems: investigate

formally the weak lumpability of strongly structured Markovian models and analyze sensitivity to

the “data” of the exact aggregation feasibility. We do not go into further details here.
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