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On Weak Lumpability of Denumerable Markov Chains

James Ledoux
∗

16 December 1994

Abstract

We consider weak lumpability of denumerable Markov chains evolving in discrete or con-
tinuous time. Specifically, we study the properties of the set of all initial distributions of the
starting chain leading to an aggregated homogeneous Markov chain with respect to a partition
of the state space.

Keywords: Weak Lumpability, Positive recurrence, R-positivity, Quasi-stationary distribu-
tion, Uniform semi-group.

1 Introduction

Let us consider a homogeneous Markov chain X, in discrete or continuous time, on a countably
infinite state space denoted by E, which without loss of generality we assume to be a subset of
the natural numbers IN (i.e. E ⊆ IN.) Let B = {B(0), B(1), . . .} be a fixed partition of E. We
associate with the given chain X the aggregated chain Y , over the state space F = {0, 1, . . .},
defined by:

Yt = l ⇐⇒ Xt ∈ B(l), for any t.

We are interested in the set of all initial distributions of X which give an aggregated homogeneous
Markov chain Y . If this set is not empty, we say that the family of Markov chains sharing the
same transition semi-group is weakly lumpable. Most of the literature on lumpability has been
concerned with the strong lumpability situation, that is, when any initial distribution leads to
an aggregated homogeneous Markov chain. To the best of my knowledge, the weak lumpability
problem with countably infinite state space has beeen addressed only recently in Ball and Yeo
(1993) for (irreducible positive-recurrent) continuous time Markov chains. The purpose of this
note is to propose some results in discrete or continuous time, prolonging the studies reported in
Rubino and Sericola (1989,1991,1993) and Ledoux and al. (1994) for a finite state space. Section 2
deals with discrete time Markov chains and mainly concerns weak lumpability for irreducible
positive-recurrent or R-positive chains. In particular, we discuss the ergodic interpretation of
the quasi-stationary distribution. The third section shows that lumpability for any denumerable
continuous time Markov chains with an uniform transition semi-group can always be replaced in
the discrete time context. The sequel of this result are also discussed for irreducible positive-
recurrent or λ-positive continuous time Markov chains.

By convention, vectors are row vectors. Column vectors are indicated by means of the trans-
pose operator (.)∗. The vector with all its components equal to 1 (resp. 0) is denoted merely by
1 (resp. 0). The set of all probability distributions on E will be denoted by A. For any subset
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B of E and α ∈ A, the restriction of α to B, i.e. the vector (α(i), i ∈ B), is denoted by αB; if
αB1

∗ 6= 0, αB is the vector defined by αB(i) = α(i)/
∑

j∈B α(j) if i ∈ B and by 0 if i /∈ B.

2 Weak lumpability in discrete time

Let X = (Xn)n≥0 be a homogeneous Markov chain over state space E, given by its transition
probability matrix P = (P (i, j))i,j∈E and its initial distribution α; when necessary we denote it
by (α, P ). Let P (i, B) denote the transition probability of moving in one step from state i to the
subset B of E, that is P (i, B) =

∑
j∈B P (i, j). We denote the aggregated chain constructed from

(α, P ) with respect to the partition B by agg(α, P,B).

Definition 2.1 A sequence (C0, C1, . . . , Cj) of subsets of E is called possible for the initial distri-
bution α iff IPα(X0 ∈ C0, X1 ∈ C1, . . . , Xj ∈ Cj) > 0. Given any distribution α ∈ A and a possible
sequence (C0, C1, . . . , Cj) for α, we can define the vector f(α,C0, C1, . . . , Cj) ∈ A recursively by:

f(α,C) = αC

f(α,C0, C1, . . . , Ck) = (f(α,C0, C1, . . . , Ck−1)P )Ck .

For any B ∈ B, A(α,B) denotes the subset of all distributions of the form f(α,C1, . . . , Cj , B).

By definition, the aggregated chain Y = agg(α, P,B) is a homogeneous Markov chain if and
only if ∀l,m ∈ F , ∀n ≥ 0 and ∀(C0, C1, . . . , Cn−1, B(l)) possible for α,

IPα(Xn+1 ∈ B(m) | Xn ∈ B(l), Xn−1 ∈ Cn−1, . . . , X0 ∈ C0) = IPα(Xn+1 ∈ B(m) | Xn ∈ B(l))

and the probability in the right-hand side does not depend on n; in that case, it describes the
probability of going from state l to state m in one step for the aggregated chain agg(α, P,B). The
approach developed in Kemeny and Snell (1976) and in Rubino and Sericola (1989) consists in
rewriting the above conditional expression as

IPβ(X1 ∈ B(m)) with β = f(α,C0, . . . , B(l)).

that is, in including the past into the initial distribution. In the same way as in Kemeny and
Snell (1976), a necessary and sufficient condition for Y to be a homogeneous Markov chain can
be exhibited without any particular assumption on X.

Theorem 2.2 The chain Y = agg(α, P,B) is a homogeneous Markov chain iff ∀l,m ∈ F , the
probability IPβ(X1 ∈ B(m)) is the same for every β ∈ A(α,B(l)). This common value is the
transition probability for the chain Y to move from state l to state m.

The aim of this section is to study the properties of the set of distributions

AM = {α ∈ A/agg(α, P,B) is a homogeneous Markov chain }.

2.1 Weak lumpability for irreducible positive-recurrent Markov chains

Throughout this subsection, we assume that the considered Markov chain is irreducible positive-
recurrent. Therefore, there exists an unique probability vector, denoted by π, which satisfies
πP = π. Let g be a real function on E and m a probability measure on E; g is m-integrable if

m(|g|) △
=
∑

i∈E

m(i)|g(i)| = Em[ |g| ] < ∞.

For such a Markov chain, we have the following standard corollary of the ergodic theorem.
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Result 2.3 For any bounded real function g on E, we have for all α ∈ A

lim
n→∞

1

n

n∑

k=1

IEα[g(Xk)] = π(g).

We only need the following lemma to derive Theorem 2.5 from Theorem 2.2 with similar arguments
as for Theorem 3.5 in Rubino and Sericola (1989).

Lemma 2.4 Let βn be the vector (1/n)
∑n

k=1 αP
k. For any l,m ∈ F , we have

lim
n→∞

f(βn, B(l)) = f(π,B(l)),

lim
n→∞

IPf(βn,B(l))(X1 ∈ B(m)) = IPf(π,B(l))(X1 ∈ B(m)).

Proof. To obtain the first limit, it suffices to let respectively ∀i ∈ E : gj(i) = 1{j}(i) with any j ∈
B(l) and g(i) = 1B(l)(i) in Result 2.3. Since f(βn, B(l))(j) =

∑n
k=1 IPα(Xk = j)/

∑n
k=1 IPα(Xk ∈

B(l)), the numerator and the denominator tend respectively to π(gj) = π(j) and to π(g) = πB(l)1
∗.

The second limit is derived from the previous considerations and from Result 2.3 letting
g(i) = 1B(l)(i)P (i, B(m)), for i ∈ E. Indeed, we can write

IPf(βn,B(l))(X1 ∈ B(m)) =
1∑

i∈B(l) βn(i)

∑

i∈B(l)

βn(i)P (i, B(m)), (1)

and the two factors in the right-hand side of formula (1) tend respectively to 1/πB(l)1
∗ and∑

i∈B(l) π(i) P (i, B(m)). ⋄

Finally, we have

Theorem 2.5 If AM 6= ∅, then π ∈ AM and the transition probability matrix of the homogeneous
Markov chain agg(α, P,B), denoted by P̂ , is the same for all α ∈ AM. The entries of matrix P̂
are given by

P̂ (l,m) =
∑

i∈B(l)

πB(l)(i) P (i, B(m)).

The unicity of matrix P̂ for all α ∈ AM gives the convex property to the set AM. In particular,
if we construct the convex envelope of the family of vectors {πB(l), l ∈ F}, Aπ =

∑
l∈F λl π

B(l)

(with λl ≥ 0 and
∑

l∈F λl = 1) and AM 6= ∅, then we have Aπ ⊆ AM. With the previous result,
Theorem 3.7 from Rubino and Sericola (1989) can be extended to our denumerable context.
Consequently, the set AM is the (a priori) infinite intersection of a decreasing sequence of convex
sets, denoted by Aj (j ≥ 1), which are the solutions to the linear systems defined as in Rubino
and Sericola (1989,1991). It can be noted, as in Rubino and Sericola (1991), that the property
of P -stability of Aj (i.e. AjP ⊆ Aj) allows us to identify AM as the set Aj . The example of
Subsection 2.4 shows that the infinite intersection of Aj ’s can be finite and explicitly computed.

2.2 Weak lumpability of R-positive Markov chains

We are now concerned with denumerable Markov chains with absorbing states which are assumed
to be collapsed in only one class (state labeled by 0 for the aggregated process Y ) of the partition
B. The other classes constitute a partition of the set of transient states, denoted by T , of X.
It is easy to convince ourself that weak lumpability for such a Markov chain reduces to weak
lumpability of the Markov chain with only one absorbing state and absorption probabilities equal

3



to P (i, B(0)) for i ∈ E. Consequently, we consider only one absorbing state denoted by a (and
B(0) = {a}.) Let us denote by AT

M (resp. AT ) the subset of AM (resp. A) composed by the
distributions α with support T , i.e.

∑
i∈T α(i) = 1. We have AM = (1− λT ) 1

{a} + λTA
T
M where

1 ≥ λT ≥ 0. Therefore, we restrict the analysis to the set AT
M.

In discrete time, the transition probability matrix P can be decomposed as follows:

P =

(
1 0

(I −Q)1∗ Q

)
,

where matrix Q is assumed to be irreducible. In this subsection, we recall (e.g. see Seneta
(1981,Chapter VI) the definitions and the main properties of the R-classification of a non-negative
irreducible matrix. It can be shown that all the power series Qij(z) =

∑∞
k=0Q

k(i, j)zk, i, j ∈
E have a common convergence radius, denoted by R, which is usually called the convergence
parameter of matrix Q. If E is a finite set, then R is the inverse of the spectral radius of Q.
Matrix Q is said to be R-recurrent if and only if all the series

∑
k Q

k(i, j)Rk are divergent.

Furthermore, if no sequence
(
Qk(i, j)Rk

)
k≥0

tends to 0, then the matrix is said to be R-positive.

For an R-recurrent matrix Q, there exists an unique (up to a constant) R-invariant measure,
(resp. R-invariant vector) denoted by v (resp. w), that is

R vP = v (resp. R Pw∗ = w∗ ).

We can now define the stochastic matrix P whose entries are given by

P (i, j)
△
= R

w(j)

w(i)
Q(i, j), i, j ∈ E.

Denoting the diagonal matrix with generic diagonal entry w(i) byW , the previous relation becomes

P = R W−1 Q W. (2)

It is easy to show (as in Seneta (1981,Th 6.4)) that matrix P is positive-recurrent if and only if
matrix Q is R-positive. The stationary probability vector of P is π = (v(i)w(i))i∈E which gives a
second characterization of the positive recurrence of P :

∑
i viwi < ∞. It is important to note that

the R-recurrence property does not allow in any way to infer the convergence of the series
∑

k vk
or
∑

k wk. It was shown in Ledoux and al. (1994) that using quasi-stationary distribution can be
fruitful for weak lumpability of a finite absorbing Markov chain. We propose in this subsection to
extent some of those ideas to a R-positive Markov chain.

A quasi-stationary distribution is a probability measure which makes stationary the following
conditional probabilities : for all i ∈ T , IPα(Xn = i |Xn ∈ T ), that is the vector (IPα(Xn =
i |Xn ∈ T ))i∈T is independent of n. The existence of such a measure under milder conditions than
R-recurrence is discussed in many recent papers. But it can be seen that R-recurrence is nearly a
“minimal” assumption (up to Harrys Veech conditions, e.g. see Pruitt (1964).) The R-positivity
property of matrix Q is also the nearly “minimal” condition to have an ergodic interpretation
of such a quasi-stationary distribution with any probability vector as initial distribution of the
Markov chain X. Moreover the results must include the finite state space ones reported in Ledoux
and al. (1994). The following theorem gives an ergodic interpretation to the R-invariant measure
v when it defines a probability distribution. Note that we don’t make any distinction between
periodic and aperiodic cases. Throughout the remainder of this subsection, we will assume that
any initial distribution α ∈ AT satisfies a constraint of the type:

αT ≤ Cαv (3)
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where Cα si a positive scalar. It allows to consider αTW as a summable series because 0 <
αTW1∗ ≤ Cα vW1∗ = Cα π1∗ = Cα. Therefore the vector (αTW )/(αTW1∗) defines a probability
distribution.

Lemma 2.6 Let g be a non-negative function on E assumed to be π-integrable. For any initial
distribution α ∈ AT with αT ≤ Cαv, we have

lim
n→∞

1

n

n∑

k=1

(
αTWP

k
)
(g) = αTW1∗ π(g).

Proof. From Result 2.3, we have that for any i ∈ T ,

lim
n→+∞

αTW1∗
1

n

n∑

k=1

(
αTW

αTW1∗
P

k
)
(i)g(i) = αTW1∗ π(i)g(i).

Moreover, condition (3) required on α gives the following inequality for any i ∈ T :
(
αTW

1

n

n∑

k=1

P
k

)
(i) g(i) ≤ Cα

(
1

n

n∑

k=1

πP
k

)
(i) g(i) = Cα π(i)g(i).

Since
∑

i∈T π(i)g(i) = π(g) < ∞, the dominated convergence theorem allows us to write

lim
n→∞

∑

i∈T

(
αTW

1

n

n∑

k=1

P
k

)
(i) g(i) =

∑

i∈T

αTW1∗ π(i)g(i) = αTW1∗ π(g).

⋄

Theorem 2.7 Let Q be a R-positive matrix such that its R-invariant measure v satisfies v1∗ < ∞.
Assume that α is a probability distribution which verifies relation (3). If we define the vector

pn,α =

n∑

k=1

RkαTQ
k

n∑

k=1

RkαTQ
k1∗

, (4)

then we have
lim
n→∞

pn,α =
v

v1∗
.

This result can also be derived from Seneta and Vere-Jones (1966) but we use here standard
arguments on regular Markov chains which give insight into the considered assumptions.
Proof. From definition (2) of matrix P , we have

pn,α =

(αTW
n∑

k=1

P
k
)W−1

(αTW
n∑

k=1

P
k
)W−11∗

.

Let gj = W−1e ∗
j ≥ 0 and g = W−11∗ ≥ 0, then we have π(gj) = v(j) and π(g) = v1∗ < ∞. The

Lemma 2.6 allows us to write for all initial distribution such that αT ≤ Cαv :

lim
n→∞

pn,α = lim
n→∞

(αTW
∑n

k=1 P
k
)(gj)

(αTW
∑n

k=1 P
k
)(g)

=
αTW1∗ π(gj)

αTW1∗ π(g)
=

v(j)

v1∗
.
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⋄

When the state space E is finite, it is clear that relation (3) is always satisfied and the conver-
gence in Theorem 2.7 holds for any initial distribution. Under the assumptions of Theorem 2.7,
we can derive an analogous result to Theorem 2.5. The proof is obtained with similar arguments,
that is, firstly establishing the lemma

Lemma 2.8 For any distribution α ∈ AT satisfying constraint (3), let βn be the vector

βn =

n∑

k=1

RkαTQ
k

n∑

k=1

RkαTQ
k1∗

.

Then, for all l 6= 0 and m ∈ F , we have the same conclusions as in Lemma 2.4.

Proof. The first limit is obtained by combining transformation (2) and Lemma 2.6 with, for
i ∈ E, gj(i) = 1{j}(i)/w(j) (j ∈ B(l) is fixed) and g(i) = 1B(l)(i)/w(i). Since f((0, βn), B(l))(j) =∑n

k=1R
kαTQ

k(g)/
∑n

k=1R
kαTQ

k(g), the limit, as n goes to infinity, is the ratio v(j)/
∑

i∈B(l) v(i) =
f((0, v), B(l))(j).

With the help of the previous limits, the second convergence derives from transformation (2)
and Lemma 2.6 with function g defined by: g(i) = 1B(l)(i)P (i, B(m))/w(i), for i ∈ E. Therefore,
the two factors in the right-hand side of relation (1) (with the new definition of vector βn) tend
respectively to vB(l)1

∗ and to
∑

i∈B(l) v(i) P (i, B(m)). ⋄

The set {α ∈ AT / αT ≤ Cαv and agg(α, P,B) is a homogeneous Markov chain} is denoted
by AT

M(v). We are in position to show the following result:

Theorem 2.9 Let v be the quasi-stationary distribution associated with the R-positive Markov
chain X. If AT

M(v) 6= ∅ then (0, v) ∈ AT
M(v). Moreover, if P̂ denotes the transition probability

matrix of the homogeneous Markov chain agg(α, P,B) then this matrix is the same for all α ∈
AT

M(v).

Proof. Let α ∈ AT satisfying (3) such that agg(α, P,B) is a homogeneous Markov chain with
transition probability from state l to m denoted by P̂ (l,m). Let αk be the vector

αk =

(
0,

αTQ
k

αTQk1∗

)
.

For any k such that IPα(X1 ∈ B(l)) > 0 (l 6= 0), we have:

P̂ (l,m) = IPα(Xk+1 ∈ B(m) | Xk ∈ B(l))

= IP(αTQk)B(l)(X1 ∈ B(m))

= IPαk
B(l)(X1 ∈ B(m)). (5)

Choose n0 large enough such that ∀n ≥ n0,
n∑

k=1

(RkαTQ
k)B(l)1

∗ > 0 (T is irreducible). The

transition probability P̂ (l,m) can be rewritten in denoting by γk (k = 1, . . . , n) the scalar

γk =
(RkαTQ

k)B(l)1
∗

n∑

k=1

(RkαTQ
k)B(l)1

∗

,
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P̂ (l,m) =
∑

1 ≤ k ≤ n,
IPα(Xk ∈ B(l)) > 0

γk IPαk
B(l)(X1 ∈ B(m)) with (5)

= IPΓ(X1 ∈ B(m))

where Γ =
∑

1 ≤ k ≤ n,
IPα(Xk ∈ B(l)) > 0

γk(αk)
B(l) = βn

B(l).

Therefore, we obtain
P̂ (l,m) = IPf(βn,B(l))(X1 ∈ B(m)).

As n goes to infinity, we derive from Lemma 2.8 that the transition probabilities of the aggregated
chain are (independent of α and) given by

P̂ (l,m) =
∑

i∈B(l)

vB(l)(i) P (i, B(m)) l 6= 0, m ∈ F (6)

⋄

The convexity of the set AT
M(v) follows from the unicity of the transition probability matrix

for the aggregated chain.

Corollary 2.10 If AT
M(v) 6= ∅ then AT

M(v) is a convex set and it necessarily includes the convex
subset Av =

∑
l∈F λl v

B(l) with λl ≥ 0 and
∑

l∈F λl = 1.

By definition, the set AT
M(v) is a subset of AT

M. If AT
M(v) 6= ∅ we trivially have AT

M 6= ∅. The
converse is true at least in the following specific cases which respectively ensure that (0, v) ∈ AT

M.

Corollary 2.11 If the set AT
M includes a distribution with finite support or if there is a class

B(l) (l 6= 0) within the partition B, which collapses a finite number of states, then (0, v) ∈ AT
M

and we have: AT
M 6= ∅ ⇐⇒ AT

M(v) 6= ∅.

2.3 Quasi-stationary distribution as a distribution of reset after absorption

In this subsection, we will show that the set AT
M(v) is non empty if and only if the set AM

associated with a positive-recurrent chain is not empty too. Under the condition v1∗ = 1, where
v is the R-invariant measure of the R-positive matrix Q, we can define the following transition
probability matrix denoted by P (v):

P (v) =

(
0 v

(I −Q)1∗ Q

)
.

Lemma 2.12 The Markov chain with transition probability matrix P (v) is irreducible and positive-
recurrent. Its invariant probability measure is given by

π(v) = λR 1{a} + (1− λR)(0, v) with λR = (R− 1)/(2R− 1). (7)

Proof. The convergence parameter of the R-positive matrix Q is such that R > 1 (see Seneta

(1981).) Let us consider the “taboo” probability denoted by f
(k)
00 and defined by the probability

of going from state 0 to state 0 in k steps without revisiting state 0 in the meantime. The

irreducible matrix P (v) will be recurrent if and only if
∑

k≥1 f
(k)
00 = 1. Since v is R-invariant, we

have
∑

k≥1 f
(k)
00 =

∑
k≥1 vQ

k−1(I − Q)1∗ =
∑

k≥1(1/R)k−1(1 − (1/R)) = 1. Finally, the positive

7



recurrence follows from checking that the invariant probability measure of matrix P (v) is given by
formula (7). ⋄

We can now show the main result of this subsection.

Theorem 2.13 If AM(P (v)) is the set of all initial distributions α such that agg(α, P (v),B) is
a homogeneous Markov chain, we have AT

M(v) 6= ∅ ⇐⇒ AM(P (v)) 6= ∅; in that case, we have

AT
M(v) ⊆ AM(P (v)) ⊆ AM. The transition probability matrix P̂ (v) of agg(α, P (v),B) is given for

every m ∈ F by P̂ (v)(l,m) = P̂ (l,m) with l = 1, . . . ,M and by P̂ (v)(0,m) = vB(m)1
∗ (matrix P̂ is

given by relation (6).)

Proof. The above one to one correspondence between the respective entries of matrices P̂ and

P̂ (v) is deduced from relation (7) in the previous lemma and from the definition of matrix P (v).
The inclusion of AM(P (v)) in AM follows in the same manner as in the finite case (see Ledoux

and al. (1994)) and is not reproduced here. We have only to prove that if AM(P (v)) 6= ∅ then
AT

M(v) 6= ∅. Indeed if AM(P (v)) 6= ∅ then π(v) ∈ AM(P (v)) ⊆ AM from Theorem 2.5. It easily
follows that (π(v))T = (0, v) ∈ AT

M and therefore, that AT
M(v) 6= ∅.

The proposition (α ∈ AT
M(v)) =⇒ (α ∈ AT

M(P (v))) results directly from the proof of the
inclusion AM ⊆ AT

M(P (v)) in the finite case which can be found in Ledoux and al. (1994). ⋄

We have already noted that AM = λ 1{a} + (1− λ)AT
M and that, in the finite case, AT

M(v) =
AT

M. Therefore, the two sets AM and AM(P (v)) are identical. We are not able to establish the
same equality in the denumerable case. Another important fact is that the two sets λ 1{a} +
(1− λ)AT

M(v) and AM(P (v)) are distinct in general (this will be illustrated in the example.) The
equality will hold only in the case where any distribution in AM(P (v)) can be majorized by a
multiple of the stationary distribution π(v) of P (v).

2.4 Example

Let us consider the following partition B = {B(0) = {0}, B(1) = {i ≥ 1}} of the state space
E = IN. The transition probability matrix P is given by:




P (0, 0) = 1 P (0, 1) = 0 P (0, n) = 0 for n ≥ 2

P (1, 0) = 0 P (1, n) = (1/6)(5/6)n−1 for n ≥ 1
P (n, 0) = 7/8 P (n, 1) = 1/8 P (k, n) = 0
for any n ≥ 2 for n ≥ 2 for k ≥ 2, n ≥ 2.


.

The submatrix Q of transition probabilities between transient states (here, T = B(1) = {i ≥

1}) is clearly irreducible. We deduce that
∑

k≥1 f
(k)
11 zk = (1/6)z+(5/48)z2 (with the same notation

as in the proof of Lemma 2.12.) It follows from Seneta (1981,Def 6.2) that state 1 is R-positive
with R = 12/5 and therefore that all the transient states are R-positive too. The 12/5-invariant
probability measure v is given by

v(1) =
1

3
, v(2) =

1

9
, v(n) =

1

9

(
5

6

)n−1

∀n ≥ 2.

We can directly check that (0, v) ∈ AT
M. Indeed, we have only one transient class B(1). The

aggregated chain is a homogeneous Markov chain if and only if the distribution of the sojourn
times in this class B(1) is geometric with parameter P̂ (1, 1) = 5/12; this is immediate because
vector v is precisely an 12/5-invariant measure associated with matrix Q.
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Let us consider matrix P (v) which has the following vector as invariant probability measure:
π(v) = (7/19)1{a} + (12/19)(0, v) (relation (7).) We can verify (construct the convex set A1 as
defined in Rubino and Sericola (1991) and check its P -stability) that

AM(P (v)) = {α ∈ A / 3α(1) = 1− α(0)}.

We can note that AT
M(v) ⊂ AM(P (v)). Indeed, choose α ∈ AT such that

α(0) = 0, α(1) = 1/3, α(n) =
2

33

(
11

12

)n−1

∀n ≥ 2.

Since 3α(1) = 1−α(0), we have α ∈ AM(P (v)) but the ratio α(n)/v(n) ∝ (11/10)n−1 is unbounded
as n goes to infinity. Therefore, vector α cannot satisfy relation (3), so α /∈ AT

M(v).

3 Weak lumpability in continuous time

The weak lumpability property has been recently addressed in Ball and Yeo (1993) for denumer-
able irreducible positive-recurrent Markov chains evolving in continuous time. Their main result
(Theorem 2.3) is the counterpart of Theorem 2.5 in continuous time. Here, we propose to briefly
discuss weak lumpability for denumerable Markov chains with the only assumption of having an
uniform transition semi-group denoted by (Pt)t≥0 (e.g. see Freedman (1983).) The generator
of such a Markov chain is denoted by A and it is uniformly bounded. In particular, any finite
Markov chain has an uniform transition semi-group. The Markov chain (Xt)t≥0 is stochastically
equivalent to the one with transition semi-group

∞∑

n=0

e−at (at)
n

n!
Un where a ≥ sup{ i : |A(i, i)| } and U = I +A/a, (8)

The discrete-time Markov chain (Un)n≥0 with transition probability matrix U is usually called
the “uniformized” chain associated with (Xt)t≥0. In Ledoux and al. (1994), the result showing
how to reduce the weak lumpability property from continuous time to discrete time is proved
in the finite state space context. The proof is direct, avoiding preliminary works as in Rubino
and Sericola (1993) (irreducible case.) Since the statement is only based on the definition of
the Markov property and in the previous stochastic equivalence, this scheme still holds in the
denumerable state space case. Therefore, we just express the result omitting the proof.

Theorem 3.1 Let X be a Markov chain with an uniform transition semi-group and generator
A. The chain agg(α,A,B) is a homogeneous Markov chain iff agg(α,U,B) is also homogeneous
Markov chain. So we have

CM
△
= {α ∈ A / agg(α,A,B) is a homogeneous Markov chain } = AM(U).

If α ∈ CM then the Markov chain agg(α,A,B) has a generator, denoted by Â, which is given by
Â = a(Û − I) where Û is the transition probability matrix of agg(α,U,B).

This result allows us to derive the unicity of the generator Â for all aggregated Markov chains
under the assumptions of Theorems 2.5 or 2.9 for the (discrete time) “uniformized” chain (Un)n≥0.
Specifically, if (Un)n≥0 is R-positive then the continuous time Markov chain (Xt)t≥0 is λ-positive
(in the terminology proposed by Kingman (1963)) with λ = a(1 − 1/R) (see Buiculescu (1972).)
Finally, we obtain
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Corollary 3.2 Let X be a Markov chain with an uniform transition semi-group and generator A.

1. Assume that X is irreducible positive-recurrent with invariant probability measure π. If
agg(α,A,B) is a homogeneous Markov chain then it admits the generator Â given by

Â(l,m) =
∑

i∈B(l)

πB(l)(i)A(i, B(m)), ∀l,m ∈ F.

2. Let X be a Markov chain with an irreducible transient class T and all its absorbing states
collapsed in the class B(0) of the partition B. The chain X is assumed to be λ-positive with a
λ-invariant probability measure v. For any initial distribution α such that αT ≤ Cαv, where
Cα is a positive real, if agg(α,A,B) is a homogeneous Markov chain, then its generator Â
is given by

Â(l,m) =
∑

i∈B(l)

vB(l)(i)A(i, B(m)), ∀l ∈ F \ {0}, ∀m ∈ F.

Finally we have

CM(v)
△
= {α ∈ A / αT ≤ Cαv and agg(α,A,B) is a homogeneous Markov chain }

= {α ∈ A / αT ≤ Cαv and agg(α,U,B) is a homogeneous Markov chain }.

We note that Corollary 2.11 can be expressed in the continuous time context. Another remark
is that the first part of the previous corollary, is stated under milder conditions in Ball and Yeo
(1993,Th 2.5). We end the discussion in pointing out that the equivalence between discrete time
and continuous time using the uniformization technique, is also reported in Sumita and Rieders
(1989) for finite ergodic Markov chains. But it is based on an erroneous characterization given
in Sumita and Rieders (1989,page 66) of the weak lumpability property for discrete time Markov
chains. In fact, they characterize the markovian property of the aggregated chain in terms of the
Chapman-Kolmogorov equation associated with. This equivalence is false in general and has been
the purpose of famous counter-examples. For instance, we can take back the irreducible transition
probability matrix P considered in Rosenblatt (1971,Chap 3,Section 1):

P =




1/4 1/2 0 1/4
1/4 1/4 1/4 1/4

1/4 0 1/2 1/4
1/4 1/4 1/4 1/4


 .

with stationary distribution π = (1/4, 1/4, 1/4, 1/4). The partition is composed of B(0) = {1, 2}
and B(1) = {3, 4}. We can verify after some algebra that the condition from Sumita and Rieders
(1989) is satisfied but the chain agg(π, P,B) is not markovian since

IPπ(X2 ∈ B(0), X1 ∈ B(0), X0 ∈ B(0)) =
3

16
6=

25

128
= (π(1) + π(2))(P̂ (0, 0))2

with P̂ (0, 0) = 5/8. Since matrix P is irreducible, no initial distribution can lead to an aggregated
markovian chain by virtue of Theorem 2.5.
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Additional material not to be published
The following sections give some details which can be helpful for Theorem 2.13 and Theorem 3.1.
This materiel consists more or less in adaptations of proofs which will appear in Ledoux and al.
(1994) for the finite space context. Therefore, there are not to be included in the paper. The
other notes concern technical details about the example listed in Subsection 2.4 and a discussion
on the weak lumpability condition proposed in Sumita and Rieders (1989) (Section 3.)

Proof of Theorem 2.13

Denote the function of Definition 2.1 by fP (resp. fP (v)) when related to P (resp. P (v).) In a
similar way, X (resp. X(v)) denotes a Markov chain with transition probability matrix P (resp.
P (v)).

We have to show that AM(P (v)) ⊆ AM. If α ∈ AM(P (v)) 6= ∅, then we have by the charac-
terization of Theorem 2.2 that for any l ∈ F and any β′ = fP (v)(α,B0, . . . , B(l)),

P̂ (v)(l,m) = IPβ′(X
(v)
1 ∈ B(m)) =

∑

i∈B(l)

β′(i)P (v)(i, B(m)), m ∈ F.

The construction of matrix P (v) implies that for any l 6= 0 and β = fP (α,B0, . . . , B(l)), β = β′

and for any m ∈ F

IPβ(X1 ∈ B(m)) =
∑

i∈B(l)

β′(i)P (v)(i, B(m))

= P̂ (v)(l,m) = P̂ (l,m).

The characterization condition of Theorem 2.2 is then satisfied.
Conversely, suppose that α ∈ AT

M(v) 6= ∅. If l = 0, any vector β′ = fP (v)(α,B0, . . . , B(l))
reduces to 1{a}. Therefore, we have

IPβ′(X
(v)
1 ∈ B(m)) =

{
(1{a}P (v))B(m).1

∗ = vB(m).1
∗ if m 6= 0,

0 if m = 0,

and this probability, which depends only on m, is therefore P̂ (v)(0,m).
Suppose that the expression of β′ does not contain the class B(0). In this case, β′ =

fP (α,B0, . . . , B(l)) because only matrix Q appears. We deduce IPβ′(X
(v)
1 ∈ B(m)) = P̂ (l,m).

Finally, suppose that l 6= 0 and that in the definition of vector β′ the set B(0) appears at least
once. This vector can be written as follows:

β′ = fP (v)(α,B0, . . . , Bj−1, B(0), Bj+1, . . . , Bn, B(l))

where j is the largest integer between 0 and n such that the sequence Bj+1, . . . , Bn, B(l) does not
contain B(0) (with the convention that if j = n then the sequence is reduced to B(l).) Using the
recursive definition of f , β′ can also be expressed as

fP (v)

(
fP (v)(α, . . . , Bj−1, B(0))P (v), Bj+1, . . . , Bn, B(l)

)
= fP (v) ((0, v), Bj+1, . . . , Bn, B(l)) .

Therefore, we return to the previous situation and the proof is ended.
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Some details on the example

We compute the transition probability matrix P̂ associated with the aggregated chain agg(α, P,B)
from relation (6)

P̂ =

(
1 0

7/12 5/12

)
.

If we form the irreducible recurrent positive matrix P (v) as in Subsection 2.3, then agg(α, P (v),B)

has transition probability matrix P̂ (v) (with Theorem 2.13)

P̂ (v) =

(
0 1

7/12 5/12

)
.

According to Rubino and Sericola (1991), let us define matrices P̃
(v)
a and P̃

(v)
1 by

P̃
(v)
a =

(
P (v)(a,B(0)) P (v)(a,B(1))

)
= (1 0)

and P̃
(v)
1 =




P (v)(1, B(0)) P (v)(1, B(1))

P (v)(2, B(0)) P (v)(2, B(1))
...

...


 =




0 1
7/8 1/8
...

...


 .

Furthermore, let us form the block diagonal H = diag(Hl) with H0 = P̃
(v)
a − 1∗P̂

(v)
a = 0 and

H1 = P̃
(v)
1 − 1∗P̂

(v)
1 =




−7/12 7/12
7/24 −7/24
...

...


 .

The convex polyhedron A1 is defined by (as in Rubino and Sericola (1991))

A1 = {α ∈ A/ αH = 0}.

The linear system reduces to

A1 = {α ∈ A/ αB(1)H1 = 0}

= {α ∈ A/ − 2α(1) +
∑

i≥2

α(i) = 0}

= {α ∈ A/ 3α(1) = 1− α(0)}.

We check now the P (v)-stability of polyhedron A1, i.e. A1P (v) ⊆ A1. If α ∈ A1 then we can write

(αP (v))(k) =





(7/8)(
∑

i≥2 α(i)) for k = 0,
(1/3)α(0) + (1/6)α(1) + (1/8)(

∑
i≥2 α(i)) for k = 1,

(1/9)(5/6)k−2α(0) + (1/6)(5/6)k−1α(1) for k ≥ 2.

From relation 3α(1) = 1− α(0), it follows that

(αP (v))(k) =

{
(7/4)α(1) for k = 0,
1/3− (7/12)α(1) for k = 1.

Finally 1− (αP (v))(0) = 3(αP (v))(1) and consequently αP (v) ∈ A1. The polyhedron A1 is stable
by P (v) and we have AM(P (v)) = A1 as noted in Subsection 2.1.
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Sketch of proof for Theorem 3.1

Consider a Poisson process N = (Nt)t≥0 with rate a, such that a ≥ sup(−A(i, i), i ∈ E). Assume
that the uniformized Markov chain (Un)n≥0 is independent of N . The process (UNt

)t≥0 has
a transition semi-group given at the beginning of Section 3 and is stochastically equivalent to
X = (Xt)t≥0. Using this property, we prove Theorem 3.1 as follows. For all k ∈ IN, B0, . . . , Bk ∈ B,
0 < t1 < · · · < tk and 0 < n1 < · · · < nk, we define, to simplify the notation,

FX(k) = IPα(Xtk ∈ Bk, . . . , Xt1 ∈ B1, X0 ∈ B0),

FU (k) = IPα(Unk
∈ Bk, . . . , Un1 ∈ B1, U0 ∈ B0),

FN (k) = IP(Ntk = nk, . . . , Nt1 = n1).

Since N is a Poisson process with rate a, we have FN (k) > 0 ∀k ∈ IN and

FN (k) = FN (k − 1) IP(Ntk−tk−1
= nk − nk−1). (9)

Probability FX(k) can be expressed in terms of the equivalent stochastic process UNt
as:

FX(k) = IPα(UNtk
∈ Bk, . . . , UNt1

∈ B1, UNt0
∈ B0) ∀k ≥ 1

=
∑

n1≥0

∑

n2≥n1

· · ·
∑

nk−1≥nk−2

∑

nk≥nk−1

FU (k) FN (k) (10)

(from the independence of U and of N) .

Assume that agg(α,U,B) is Markov homogeneous. This implies

FU (k) = FU (k − 1) IPα(Unk−nk−1
∈ Bk | U0 ∈ Bk−1). (11)

We have to show that

FX(k) = FX(k − 1) IPα(Xtk−tk−1
∈ Bk | X0 ∈ Bk−1).

Replacing FU (k) and FN (k) in (10) by the respective relations (9) and (11), we obtain

FX(k) =
∑

n1≥0

· · ·
∑

nk≥nk−1

FU (k − 1) IPα(Unk−nk−1
∈ Bk | U0 ∈ Bk−1)

×FN (k − 1) IP(Ntk−tk−1
= nk − nk−1)

=
∑

n1≥0

· · ·
∑

nk−1≥nk−2

+∞∑

l=0

FU (k − 1)FN (k − 1)

×IPα(Ul ∈ Bk | U0 ∈ Bk−1) IP(Ntk−tk−1
= l) (12)

=


∑

n1≥0

· · ·
∑

nk−1≥nk−2

FU (k − 1) FN (k − 1)




×
∑

l≥0

IPα(Ul ∈ Bk | U0 ∈ Bk−1) IP(Ntk−tk−1
= l)

= FX(k − 1)
+∞∑

l=0

IPα(Ul ∈ Bk | U0 ∈ Bk−1) IP(Ntk−tk−1
= l),

that is,
FX(k) = FX(k − 1) IPα(Xtk−tk−1

∈ Bk | X0 ∈ Bk−1). (13)
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Conversely assume that agg(α,A,B) is a homogeneous Markov chain. Relation (13) holds, so
relation (12) holds too (since only formula (9) is invoked between these two expressions.) We can
write

FX(k) =
∑

n1≥0

· · ·
∑

nk−1≥nk−2

∑

l≥0

FU (k − 1) FN (k − 1)

×IPα(Ul ∈ Bk | U0 ∈ Bk−1) IP(Ntk−tk−1
= l)

=
∑

n1≥0

· · ·
∑

nk≥nk−1

FU (k − 1) IPα(Unk−nk−1
∈ Bk | U0 ∈ Bk−1)

×FN (k − 1) IP(Ntk−tk−1
= nk − nk−1)

=
∑

n1≥0

· · ·
∑

nk≥nk−1

FU (k − 1) IPα(Unk−nk−1
∈ Bk | U0 ∈ Bk−1) FN (k) with (9).

Using (10), we obtain the following relation:

+∞∑

n1=0

· · ·
+∞∑

nk=nk−1

FN (k)
{
FU (k)− FU (k − 1) IPα(Unk−nk−1

∈ Bk | U0 ∈ Bk−1)
}
= 0.

Therefore, we deduce that for all nk > · · · > n1 > 0,

FU (k) = FU (k − 1) IPα(Unk−nk−1
∈ Bk | U0 ∈ Bk−1),

and so agg(α,U,B) is a homogeneous Markov chain.

Weak lumpability condition given in Sumita and Rieders (1989)

The weak lumpability characterization proposed in Sumita and Rieders (1989,page 66, eq. (2.5))
for finite ergodic discrete time Markov chain is given by

The lumped chain agg(α, P,B) is a homogeneous Markov chain iff there exists a
stochastic matrix P̂ = (P̂ (l,m))l,m∈F such that ∀l,m ∈ F :

αB(l)

αB(l)1∗
(Pn)B(l)B(m)1

∗ = P̂n(l,m) ∀n ≥ 1. (14)

Noting that the left hand side represents the probability IPα(Xn ∈ B(m) | X0 ∈ B(l)), we see in
fact that we require the Chapman-Kolmogorov condition on the transition probability matrix P̂
of the aggregated chain agg(α, P,B). This is generally false. Let us consider the finite aperiodic
irreducible matrix P given at the end of Section 3 (see Rosenblatt (1971,Chap 3,Section 1)):

P =




1/4 1/2 0 1/4
1/4 1/4 1/4 1/4

1/4 0 1/2 1/4
1/4 1/4 1/4 1/4


 .

with stationary distribution π = (1/4, 1/4, 1/4, 1/4). The partition is composed of B(0) = {1, 2}
and B(1) = {3, 4} and the transition probability matrix associated with chain agg(α, P,B) given
by Theorem 2.5 is

P̂ =

(
5/8 3/8
3/8 5/8

)
.
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For all n ≥ 1, we have

P̂n =

(
1/2 + (1/2)(1/4)n 1/2− (1/2)(1/4)n

1/2− (1/2)(1/4)n 1/2 + (1/2)(1/4)n

)
.

and we can verify that

Pn =




1/4 1/4 + (1/4)n 1/4− (1/4)n 1/4
1/4 1/4 1/4 1/4

1/4 1/4− (1/4)n 1/4 + (1/4)n 1/4
1/4 1/4 1/4 1/4


 .

The following quantities are respectively P̂n(0, 0), P̂n(0, 1), P̂n(1, 0), P̂n(1, 1):

IPπ(Xn ∈ B(0) | X0 ∈ B(0)) =
πB(0)

πB(0)1∗
(Pn)B(0)B(0)1

∗ =
1

2
[1 + (1/4)n],

IPπ(Xn ∈ B(1) | X0 ∈ B(0)) =
πB(0)

πB(0)1∗
(Pn)B(0)B(1)1

∗ =
1

2
[1− (1/4)n],

IPπ(Xn ∈ B(0) | X0 ∈ B(1)) =
πB(1)

πB(1)1∗
(Pn)B(1)B(0)1

∗ =
1

2
[1− (1/4)n],

IPπ(Xn ∈ B(1) | X0 ∈ B(1)) =
πB(1)

πB(1)1∗
(Pn)B(1)B(1)1

∗ =
1

2
[1 + (1/4)n].

The condition (14) is satisfied for the initial distribution π.
We compute now

IPπ(X2 ∈ B(0), X1 ∈ B(0), X0 ∈ B(0)) = πB(0)(PB(0)B(0))
2 1∗

=
1

4
(1, 1)

(
1/4 1/2
1/4 1/4

)
(3/4 1/2)∗

= 3/16.

If agg(π, P,B) was a homogeneous Markov chain according to condition (14) then the probability
IPπ(X2 ∈ B(0), X1 ∈ B(0), X0 ∈ B(0)) will be equal to

(πB(0)1
∗)(P̂ (0, 0))2 =

25

128
.

Consequently, the aggregated chain chain agg(π, P,B) can not be markovian and we deduce from
Theorem 2.5 that no initial distribution can lead to an aggregated markovian Markov chain.
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