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THE TOPOLOGICAL DERIVATIVE IN ANISOTROPIC ELASTICITY

MARC BONNETA, GABRIEL DELGADOB,C

ABSTRACT. A comprehensive treatment of the topological derivative for anisotropic elasticity
is presented, with both the background material and the trial small inhomogeneity assumed to
have arbitrary anisotropic elastic properties. A formula for the topological derivative of any cost
functional defined in terms of regular volume or surface densities depending on the displacement is
established, by combining small-inhomogeneity asymptotics and the adjoint solution approach. The
latter feature makes the proposed result simple to implement and computationally efficient. Both
three-dimensional and plane-strain settings are treated; they differ mostly on details in the elastic
moment tensor (EMT). Moreover, the main properties of the EMT, a critical component of the
topological derivative, are studied for the fully anisotropic case. Then, the topological derivative
of strain energy-based quadratic cost functionals is derived, which requires a distinct treatment.
Finally, numerical experiments on the numerical evaluation of the EMT and the topological
derivative of the compliance cost functional are reported.

1. Introduction. The concept of topological derivative appeared in [1] and [2] in the context of
topological optimization of mechanical structures. The topological derivative DJ(z) quantifies the
perturbation induced to a cost functional J by the virtual creation of an object Ba(z) (e.g. a cavity
or an inhomogeneity) of vanishingly small characteristic radius a at a prescribed location z inside the
solid. In structural optimization, computing the field DJ(z) directs the algorithm towards optimal
topologies by indicating where creating new holes is most profitable from the featured cost functional
viewpoint, an approach used by e.g. [3], and also [4] in conjunction with the shape derivative, while
applications to shape optimization problems include [5]. Moreover, the topological derivative has been
found to be also very useful as a means of defining a defect indicator function in flaw identification
problems, see e.g. [6, 7, 8, 9]. Such optimization or inverse problems usually feature cost functionals
that involve volume or surface integrals of densities that depend on the displacement solving (in the
present context) an elastostatic equilibrium problem on the reference solid. Moreover, constitutive or
flaw identification problems are sometimes formulated in terms of energy cost functionals (e.g. of the
Kohn-Vogelius type [10] or error in constitutive equation functionals [11, 12]), whose densities depend
on displacement gradients.

To establish the expression of the topological sensitivity for a given cost functional and a chosen set of
underlying geometrical and physical assumptions, one needs information about the asymptotic behavior as
a→ 0 of the perturbation induced to the physical field variable (e.g. displacement) by the virtual creation
of Ba(z). An abundant literature is available on such asymptotic analyses, see e.g. [13, 14, 15, 16, 17].
A key component for computationally efficient topological derivative formulations is the adjoint solution
method which, like with other types of sensitivity analysis, provides a valuable computational shortcut by
replacing the computation of many sensitivity fields (in the present context, one sensitivity field for each
virtual nucleation site z used in the computation) by that of just one adjoint solution. Adjoint solutions for
topological sensitivity appeared in [18, 19] and thence found more widespread use, see e.g. [20, 21, 7, 9].
Another important component of topological derivative formulas is the elastic moment tensor (EMT),
whose definition and properties are extensively studied in e.g. [22] for the isotropic case and [23, 24] for
the anisotropic case.

Within the present framework of linear elasticity, results available for small-inhomogeneity asymptotic
expansions, as well as their application to the concept of topological derivative, often assume isotropic
elasticity, see e.g. [25, 26, 18, 27, 20]. Comparatively scarce material is available for the topological
derivative in the more-general case of anisotropic elasticity. It includes the formulation of the elasto-
dynamic topological derivative for arbitrary surface-integral cost functionals [28, 29] and that of small-
inhomogeneity solution asymptotics for anisotropic materials [30, 31, 23, 24]. Moreover, the topological
derivative of energy-based cost functionals has also been sparsely addressed so far (notably in [21] for
Stokes flows).
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The main purpose of this paper is to present a comprehensive treatment of the topological derivative
for anisotropic elasticity, with the background material and the small trial inhomogeneity both allowed
to have anisotropic properties. A formula for the topological derivative of any cost functional defined in
terms of regular volume or surface densities depending on the displacement is established, by combining
small-inhomogeneity asymptotics and the adjoint solution approach. The latter feature makes the
proposed result simple to implement and computationally efficient. Both three-dimensional and plane-
strain settings are covered; they differ mostly on details pertaining to the EMT. This result directly
generalizes previously-known formulations for isotropic elasticity to the fully anisotropic case. Moreover,
the topological derivative of strain energy-based cost functionals, which depend on the displacement
gradient, is also established. This case, seldom addressed so far, requires a specific, and separate,
treatment, due to the fact that the strain perturbation in Ba does not vanish in the limit a→ 0 (whereas
the displacement itself does vanish). The practical computation of the EMT for general anisotropy, which
is necessary in practical applications of the topological derivative, is also addressed. Actual or potential
applications of the results presented in this article include topology optimization of composite structures,
a topic currently pursued by the second author of this article, or flaw identification using experimental
data from nondestructive testing. Both types of problems may be cast as minimization problems, in
which case the spatial locations where negative values of the topological derivative occur are selected for
material modification or as the likeliest locations of flaws to be detected, depending on the objective.

This article is organised as follows. Section 2 introduces notation and collects background material on
the elastic transmission problem, elastic moment tenors, cost functionals and the concept of topological
derivative. The small-inhomogeneity asymptotics for the solution and the featured class of cost functionals
are obtained in Secs. 3 and 4, respectively. Then, the specific treatment needed for deriving the small-
inhomogeneity asymptotics of energy-based cost functionals is presented in Sec. 5. Finally, numerical
experiments on the topological derivative of the compliance cost functional, the numerical evaluation of
the EMT and a flaw identification problem are presented in Sec. 6.

2. Elastic transmission problem, cost functional and topological derivative.

2.1. Notation, elastic transmission problem. Consider an elastic body occupying a smooth bounded
domain Ω ⊂ R3. The anisotropic elastic properties of the background material (against which the effect of
small inhomogeneities will be considered), assumed to be homogeneous, are characterized by the fourth-
order elasticity tensor C. The boundary ∂Ω is split according to ∂Ω = ΓD ∪ ΓN (where ΓD ∩ ΓN = ∅
and |ΓD| 6= 0), so that a given force density g ∈ L2(ΓN;R3) is applied on ΓN while a given displacement
ū∈H1/2(ΓD;R3) is prescribed on ΓD. Additionally, a body force density f ∈L2(Ω;R3) is applied to Ω.

The background solution, i.e. the displacement field arising in the reference solid due to the prescribed
excitations (f , g, ū), is defined as the solution to

div(C :ε[u]) + f = 0 in Ω, t[u] = g on ΓN, u = ū on ΓD (1)

where ε[w] and t[w] denote the linearized strain tensor and the traction vector associated with a given
displacement w, respectively defined by

(a) ε[u] = 1
2 (∇u+ ∇uT), (b) t[u] = (C :ε[u])·n (2)

(with n the unit outward normal to Ω). In (2b) and hereinafter, symbols ’·’ and ’ : ’ denote single and
double inner products, e.g. (E ·x)i = Eijxj and (C : E)ij = Cijk`Ek`, with Einstein’s convention of
summation over repeated indices implicitly used throughout.

Alternatively, the background displacement is governed by the weak formulation

Find u ∈W (ū), 〈u,w〉CΩ = F (w), ∀w ∈W0, (3)

where 〈u,w〉CD denotes the bilinear elastic energy form associated to given domain D⊂R3 and elasticity
tensor C, i.e.:

〈u,w〉CD :=

∫
D

ε[u] :C :ε[w] dV =

∫
D

∇u :C :∇w dV (4)
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(with the second equality holding by virtue of the well-known major symmetry of C), the linear form F
associated to the loading is defined by

F (w) =

∫
Ω

f ·w dV +

∫
ΓN

g ·w dS, (5)

and having introduced, for given ū ∈ H1/2(ΓD;R3), the spaces W (ū) and W0 of displacement fields
that are kinematically admissible with respect to arbitrary and homogeneous prescribed Dirichlet data,
respectively, i.e.:

W (ū) :=
{
v ∈H1(Ω;R3), v= ū on ΓD

}
, W0 := W (0). (6)

The assumption f ∈L2(Ω;R3) implies that the solution u of problem (3) has in fact H2
loc(Ω;R3) interior

regularity (see e.g. [32], Thm. 6.3-6 and p. 298), and hence that u ∈ C0(D) for any subset D b Ω by
the Sobolev embedding theorem.

Well-known properties of elasticity tensors are now recalled for convenience. For general anisotropic
materials, the elasticity tensor C is positive definite (in the sense that E : C : E > 0 for any
symmetric second-order tensor E ∈ R3,3

sym, E 6= 0 and has the major and minor symmetries (i.e.
Cijk` = Ck`ij = Cjik` = Cij`k); it may thus involve up to 21 independent elastic constants. For isotropic
materials characterized by their bulk modulus κ and shear modulus µ, C is given by

C = 3κJ + 2µK, (7)

where J ,K are fourth-order tensors respectively defined by J = (1/3)I⊗I and K = I −J (with I and
I denoting the second-order identity and the fourth-order identity for symmetric tensors, respectively),
so that E = J :E+K :E is the decomposition of a symmetric second-order tensor E ∈ R3,3

sym into its
spherical and deviatoric parts.

2.2. Transmission problem for a small trial inhomogeneity. Now, consider a single small elastic
inhomogeneity located at z ∈Ω, of characteristic linear size a, occupying the domain

Ba = z + aB,
where B is a bounded smooth domain of R3 and a is small enough so that B̄a b Ω. The inhomogeneity is
endowed with anisotropic elastic properties characterized by the elasticity tensor C?, so that the elastic
properties of the whole solid are defined by the tensor-valued field Ca such that

Ca = (1− χ(Ba))C + χ(Ba)C? = C + χ(Ba)∆C, (8)

χ(D) being the characteristic function of the domain D and ∆C := C?−C denoting the elastic tensor
perturbation.

The displacement field ua ∈W (ū) arising in the solid containing the small inhomogeneity due to the
prescribed excitations (f , g, ū) solves the transmission problem

div(Ca :ε[ua]) + f = 0 in Ω, t[ua] = g on ΓN, u = ūa on ΓD (9)

or, equivalently, the weak formulation

Find ua ∈W (ū), 〈ua,w〉CaΩ = F (w), ∀w ∈W0. (10)

Either formulation (9) or (10) implicitly enforces the perfect-bonding relations ua|+ = ua|− and
t[ua]|+ = t?[ua]|− on ∂Ba, where the ± subscripts indicate limiting values from outside and inside
Ba, respectively, and with the traction operator w 7→ t?[w] defined by (2b) with C replaced with C?
(both t[·] and t?[·] being conventionally associated with the unit outward normal vector to Ba). The
solution ua of (10) a priori belongs to H2

loc

(
(Ω\ B̄a)∪Ba ;R3

)
, and therefore to C0(D) for any subset

D b
(

(Ω\ B̄a)∪Ba
)
. To later permit Taylor expansions of displacements or strains about z, the body

force density f is in fact assumed to have local C0,β(V ) regularity for some β > 0 in a neighbourhood
V of z, ensuring (e.g. from the properties of elastic volume potentials, see [33], Thm. 10.4) that u is in
C2,β(D) for any subset D b V .
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One notes for later reference that the potential energy Epot of the solution ua to (10) is given by

Epot(Ca) = Epot(ua) = 1
2 〈ua,ua〉

Ca
Ω − F (ua) = − 1

2F (ua) (11)

where the second equality exploits (10) and holds provided that ua ∈ W0, i.e. only for problems with
homogeneous Dirichlet data ū= 0 on ΓD.

It will be convenient for our purposes to exploit a formulation of the transmision problem (10) in terms
of the displacement perturbation va := ua−u rather than the total displacement ua. The following
governing weak formulation for va is easily obtained by subtracting (3) from (10):

Find va ∈W0, 〈va,w〉CaΩ = −〈u,w〉∆CBa
, ∀w ∈W0. (12)

Free-space transmission problem (FSTP).. The auxiliary problem of a perfectly-bonded inhomo-
geneity (B,C?) embedded in an infinite elastic medium Ω = R3 subjected to a uniform remote stress
will play an important role in the sequel and is thus given now for later reference together with some
additional useful notation. For an arbitrary constant second-order tensor E ∈R3,3, let ϕ[E] denote the
linear vector-valued function defined by

ϕ[E](ξ) :=E ·ξ. (13)

Let the background solution u be chosen as u = ϕ[E], noting that div(C : ∇ϕ[E]) = 0. The FSTP
consists in finding the displacement field uB[E] such that

div(CB :∇uB[E]) = 0 in R3, uB[E](ξ)−ϕ[E](ξ) = O(|ξ|−2) (|ξ| → ∞) (14)

where
CB = (1− χ(B))C + χ(B)C? = C + χ(B)∆C

The FSTP (14) is analytically solved for an ellipsoidal inhomogeneity in Eshelby’s landmark paper [34].
It can be recast into the following weak formulation for the displacement perturbation vB[E] :=
uB[E]−ϕ[E]:

Find vB[E]∈W∞, 〈vB[E],w〉CBR3 = −〈ϕ[E],w〉∆CB , ∀w ∈W∞, (15)

with the function space W∞ defined by W∞ =
{
w ∈ L2

loc(R3;R3),∇w ∈ L2(R3;R3,3)
}

. Note that

〈ϕ[E],w〉∆CB = 〈ϕ[ET],w〉∆CB , implying that vB[E] solving (15) depends only on the symmetric part
Esym := 1

2 (E+ET) ∈ R3,3
sym of E.

2.3. Cost functional and topological derivative. Now, cost functionals J(Ca) of the form

J(Ca) = J(ua) with J(w) :=

∫
Ω

ψΩ(x,w) dV (x) +

∫
∂Ω

ψΓ(x,w) dS(x) (16)

are considered, where the density functions ψΩ, ψΓ : (R3×R3)→ R are twice differentiable with respect
to their second argument and are assumed to obey the growth conditions

|ψΩ(x,w)| ≤ C(1+ |w|2), |ψ′Ω(x,w)| ≤ C(1+ |w|) |ψ′′Ω(x,w)| ≤ C
|ψΓ(x,w)| ≤ C(1+ |w|2), |ψ′Γ(x,w)| ≤ C(1+ |w|) |ψ′′Γ(x,w)| ≤ C

(17)

(with ψ′ and ψ′′ denoting the gradient and Hessian, respectively, of ψ with respect to its second argument
and C being some positive constant), so as to ensure that J and its first and second-order directional
derivatives are defined for any w ∈ H1(Ω;R3). Typical examples of cost functionals include the elastic
potential energy Epot, with

ψΩ(ξ,w) = − 1
2w·f(ξ), ψΓ(ξ,w) = − 1

2w·g(ξ),

(if ū = 0, and using (11) in that case) and weighted least-squares misfit functionals used for e.g. flaw
identification problems, with

ψΩ(ξ,w) = 0, ψΓ(ξ,w) = 1
2χ(Sobs)(w−uobs(ξ))T ·W (ξ)·(w−uobs(ξ)).
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and where ξ 7→W (ξ) is a positive-definite matrix-valued function, Sobs⊂ΓN is the measurement surface
and uobs the measured value of u on Sobs.

Definition 1 (topological derivative). Assume that J(Ca) can be expanded in the form

J(Ca) = J(C) + δ(a)DJ(z) + o(δ(a)) (18)

where δ(a) is assumed to vanish as a→ 0 and characterizes the small-inhomogeneity asymptotic behavior
of J(Ca). Then, the coefficient DJ(z), which also depends a priori on the shape B and the moduli C,C?,
is called the topological derivative of J at z ∈Ω.

Remark 1. Terminology for the concept of topological derivative varies, with “gradient” or “sensitivity”
used instead of “derivative” in some publications.

2.4. Elastic moment tensor. The elastic moment tensor, which will be seen to play a central role in
the small-inhomogeneity asymptotics of J(Ca), is now defined.

Definition 2 (elastic moment tensor). Let vB[E] denote the solution to the FSTP (15) for given E ∈R3,3.
The (fourth-order) elastic moment tensor (EMT) A is defined by

A :E =

∫
B

∆C :∇uB[E] dV =

∫
B

∆C : (E + ∇vB[E]) dV ∀E ∈R3,3. (19)

Remark 2. In [22, 17], the EMT is defined, for isotropic materials, in terms of the densities of two
elastic layer potentials that are used there to formulate the FSTP (14). That definition in fact coincides
with the present definition (19). To see this, integrating (19) by parts, one finds

E′ : A : E =

∫
∂B

[
E′ : (C? − C) · n

]
· uB[E] dS =

∫
∂B

(
t?
[
ϕ[E′]

]
− t

[
ϕ[E′]

])
· uB[E] dS.

This identity coincides (upon adaptation to the present notations) with the left and right contraction of
eq. (10.12) in Lemma 10.3 of [17] by two tensors E,E′ ∈R3,3.

Properties of the elastic moment tensor. The main known properties of the EMT are now collected.

Proposition 1 (symmetry). The elastic moment tensor A has major and minor symmetries: for any
pair of second-order tensors E,E′ ∈R3,3, one has the major symmetry

E′ :A :E = E :A :E′ (20)

and the minor symmetries

(i) E′ :A :E = E′ :A :ET, (ii) E′ :A :E = E′T :A :E. (21)

Proof. First, taking the left inner product of Eq. (19) by E′, one obtains

E′ :A :E = E′ :
{∫
B

∆C :∇vB[E] dV
}

+E′ :
{∫
B

∆C dV
}

:E (22)

The second term of the above right-hand side is clearly symmetric in E,E′ due to the major symmetry
of ∆C =C?−C, so the symmetry of the first term remains to be proved. To this aim, one starts by noting
that, by virtue of definition (4) of 〈·, ·〉∆CB , one has

E′ :
{∫
B

∆C :∇vB[E] dV
}

= 〈ϕ[E′],vB[E]〉∆CB . (23)
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Then, using variational formulation (15) for vB[E] with w== vB[E′], one has

−〈ϕ[E′],vB[E]〉∆CB = 〈vB[E′],vB[E]〉CBR3

= 〈vB[E],vB[E′]〉CBR3 = −〈ϕ[E],vB[E′]〉∆CB
(using the symmetry of 〈·, ·〉CBR3 ) which, combined with (23) written for E,E′ and E′,E, yields the desired
remaining symmetry

E′ :
{∫
B

∆C :∇vB[E] dV
}

= E :
{∫
B

∆C :∇vB[E′] dV
}

(24)

The major symmetry (20) follows from (22), (24) and the known major symmetry of ∆C.

Moreover, the minor symmetry (21i) follows immediately from the corresponding minor symmetry of
∆C. Finally, (20) and (21i) imply (21ii). �

Proposition 2 (scaling). Let B0 have the same shape as B and unit volume (i.e. B0 = |B|−1/3B), and
assume that the contrast ∆C is uniform. Then, one has

A(B,C,C?) = |B|A(B0,C,C?) (25)

Proof. Denote by vB0
the solution to problem (14) for the inhomogeneity B0, and let λ = |B|1/3 be

the linear scaling parameter such that B= λB0. Then, on setting (ξ̄, x̄) = λ(ξ̄0, x̄0) in (35), invoking the
homogeneity of ∇G∞ and essentially repeating arguments already used in the asymptotic analysis of
Sec. 3.3, one easily finds that vB(ξ̄) = λvB0

(ξ̄0), and hence ∇vB(ξ̄) = ∇vB0
(ξ̄0). Exploiting this remark,

and setting ξ̄= λξ̄0, in (19) then yields the desired result (25). �

The next important property of A to consider is its sign-definiteness. It can conveniently be formulated
in terms of the generalized eigenvalue problem

(C? − ΛC) :E = 0 (E ∈R3,3
sym), (26)

which admits six real and strictly positive eigenvalues Λ1, . . . ,Λ6 and associated eigentensors E1, . . .E6 ∈
R3,3

sym, by virtue of C? and C defining positive-definite quadratic forms over the six-dimensional vector space

R3,3
sym (i.e. (26) could be recast as a generalized eigenvalue problem for two symmetric positive definite

6×6 matrices, see [35]). Moreover, the EI are C-orthogonal, and can be chosen as C-orthonormal.

Proposition 3 (sign-definiteness). The elastic moment tensor A is positive definite if ΛI > 1 (1≤ I ≤ 6),
and negative definite if ΛI < 1 (1≤ I ≤ 6). Moreover, if ΛI = 1 for some I, then A :EI = 0, i.e. EI is in
the null space of A.

Remark 3 (isotropic materials). If both matrix and inhomogeneity materials are isotropic, C and C?
are of the form (7) with respective moduli pairs κ, µ and κ?, µ?. The generalized eigenvalue problem (26)
then reads [

3(κ? − Λκ)J + 2(µ? − Λµ)K
]
:E = 0

or, using the relations J :J = J , K :K = K and J :K = 0 verified by J and K,

(κ? − Λκ)J :E = 0 or (µ? − Λµ)K :E = 0.

Hence there are two distinct eigenvalues: (i) Λ1 = κ?/κ (multiplicity 1) with eigentensor E1 = I since
J :E = (1/3)tr(E)I for any E ∈R3,3

sym, and (ii) Λ2 = µ?/µ (multiplicity 5). Proposition 3 for this case
essentially correspond to Theorem 5.4 of [22].

Remark 4. Proposition 1, together with the inequalities

E :C :C?−1 :∆C :E ≤ E :A :E ≤ E :∆C :E ∀E ∈R3,3
sym
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which imply Proposition 3, constitute Proposition 1 of [24]. Moreover, it is shown in [23] that (i) positive
definiteness of C − C? implies that of −A (Theorem 2.7) and (ii) positive definiteness of C−1 − C?−1

implies that of A (Theorem 2.8). One easily check that cases (i) and (ii) are respectively equivalent to
the condition ΛI > 1 (1≤ I ≤ 6) or ΛI < 1 (1≤ I ≤ 6) of proposition 3.

A proof of Proposition 3, essentially a concise and self-contained version of the approach used in [23]
for proving Theorems 2.7 and 2.8 therein, is given for completeness in Appendix A.

3. Asymptotic behavior of the displacement. Finding δ(a) and the topological derivative DJ(z)
requires some preliminary results on the small-inhomogeneity asymptotic behavior of ua. To facilitate
this task, the transmission problem (12) is first reformulated as a domain integral equation involving a
domain integral operator whose support is the small inhomogeneity Ba.

3.1. Elastostatic Green’s tensor. Let the elastostatic Green’s tensor G(ξ,x) be defined by

div
(
C :ε[G(·,x)]

)
+ δ(·−x)I = 0 in Ω,

G(·,x) = 0 on ΓD, t[G(·,x)] = 0 on ΓN (x∈Ω), (27)

i.e. G(·,x) = ek⊗Gk(·,x) gathers the three linearly independent elastostatic displacement fields Gk(·,x)
resulting from unit point forces δ(·−x)ek applied at x∈Ω along each coordinate direction k and fulfilling
the homogeneous boundary conditions on ∂Ω implied by the definition of W0.

Moreover, the ensuing analysis will be facilitated by splitting the elastostatic Green’s tensor according
to

G(ξ,x) = G∞(ξ−x) +GC(ξ,x) (28)

where G∞(r) is the (singular) elastostatic full-space Green’s tensor, such that

div
(
C :ε[G∞]

)
+ δI = 0 (in R3), |G∞(r)| → 0 (|r| → ∞), (29)

and the complementary Green’s tensor GC is bounded at ξ=x (and in fact is C∞ for ξ,x ∈ Ω by virtue
of being the solution of an elastostatic boundary-value problem with regular boundary data and zero
body force density). The full-space Green’s tensor is given by the inverse Fourier integral [36]

G∞(r) =
1

(2π)3

∫
R3

exp(iη ·r)N(η) dV (η) (r ∈R3 \{0}), (30)

where, for given η ∈ R3, the second-order tensor N(η) is given by N(η) = K−1(η) in terms of the
acoustic tensor K(η), defined by Kik(η) = Cijk`ηjη` (K(η) is invertible for any η 6= 0 and positive
definite elasticity tensor C). Moreover, G∞ has the following homogeneity property, which plays an
important role in the sequel:

Lemma 1. G∞ is a positively homogeneous tensor-valued function of degree -1. Hence, for any
r ∈R3 \{0} and λ∈R\{0}, G∞ and ∇G∞ verify

G∞(λr) = |λ|−1G∞(r), ∇G∞(λr) = |λ|−3λ∇G∞(r) (31)

Proof. Replacing r with λr and performing the change of variable η= λ−1η′ in (30), the homogeneity
property of G∞ follows from using (i) N(η) = λ2N(η′) by virtue of K being homogeneous of degree 2
in η (and hence N being homogeneous of degree -2), and (ii) dV (η) = |λ|−3 dV (η′). �

3.2. Domain integral equation formulation. Lemma 1 implies that both G(·,x) and ∇G(·,x) have
an integrable singularity at x. By virtue of decomposition (28) and the known C∞ regularity of G∞
away from the origin, G(·,x) hence belongs to W 1,1(Ω). On applying equations (27) in the sense of
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distributions for a trial displacement w ∈W0∩C1(ω) (where ω is a neighbourhood of x) and integrating
by parts the resulting first term over Ω, the Green’s tensor is found to verify the identity

〈G(·,x),w〉CΩ = w(x) x∈Ω, ∀w ∈C1
c (Ω), (32)

whose left-hand side is well-defined. Now, setting w = G(·,x) in (12) (noting that the bilinear strain
energy integral remains well-defined by virtue of u and va having C1 regularity near x if x ∈ Ba∪(Ω\B̄a))
and using identity (32) with w = va, the displacement perturbation va is found to satisfy

Find va ∈W0, La[va](x) = −〈u,G(·,x)〉∆CBa
, ∀x ∈ Ba∪ (Ω\ B̄a) (33)

where the linear integral operator La is defined by

La[v](x) = v(x) + 〈v,G(·,x)〉∆CBa
(34)

Equation (33) is readily recognized as a compactly-written form of the Lippmann-Schwinger domain
integral equation governing the elastostatic inhomogeneity problem. If x ∈ Ba, (33) can be solved for
va inside Ba. Then, if x ∈ Ω \ B̄a, (33) becomes a representation formula, expressing va outside of Ba
explicitly knowing va inside Ba.

Domain integral equation formulation for the FSTP.. In a similar fashion, the free-space trans-
mission problem (14) can be recast as a domain integral equation by setting w =G∞(· − x) in (15), to
obtain

Find vB ∈W∞, LB
[
vB[E]

]
(x) = −〈ϕ[E],G∞(· − x)〉∆CB , ∀x ∈ B∪ (R3 \B̄) (35)

with the linear integral operator LB defined by

LB[v](x) = v(x) + 〈v,G∞(·−x)〉∆CB . (36)

The EMT (Sec. 2.4) then manifests itself naturally when considering the far-field behavior of vB[E].
Indeed, from (35), vB[E](x̄) is given, for x̄ 6∈ B̄, by the representation formula

vB[E](x̄) = −
∫
B
∇G∞(· − x̄) :∆C : (E + ∇vB[E]) dV (37)

(having used ∇ϕ[E] = E). Applying a Taylor expansion to ∇G∞(ξ̄− x̄) about ξ̄ = 0 and invoking the
homogeneity property (31) yields ∇G∞(ξ̄ − x̄) = −∇G∞(x̄) + O(|x|−3) (|x| → +∞). Consequently,
the far-field behavior of vB[E](x) as given by (37) is obtained as

vB[E](x) = −∇G∞(x) :A :E +O(|x|−3) (|x| → +∞) (38)

3.3. Asymptotic behavior of va. The leading asymptotic behavior of va is now investigated, which
naturally leads to seek the limiting form for a→ 0 of integral equation (33). Moreover, since equation (33)
involves integrals over the vanishing inhomogeneity Ba, it is convenient to rescale points ξ,x ∈Ba, and
consequently the differential volume element, according to:

(a) (ξ,x) = z + a(ξ̄, x̄), (b) dVξ = a3 dV̄ξ̄ (ξ ∈Ba, ξ̄ ∈B). (39)

This scaling is then introduced into (33). Invoking the decomposition (28) of G(ξ,x), the homogeneity
property (31) and the boundedness of GC in Ba, one has

∇1G(ξ,x) = a−2∇G∞(ξ̄− x̄) + ∇1GC(z, z) + o(1) (40)

Moreover, introducing the rescaled coordinates (39a) into va and u and setting v̄a(ξ̄) := va(z+aξ̄), one
obtains ∇va(ξ) = a−1∇v̄a(ξ̄) and ∇u(ξ) = ∇u(z) +O(a). Using these expansions, together with (40)
and (39b), in both sides of equation (33) then yields the expansions

La[va](x) = v̄a(x̄) + 〈v̄a,G∞(·, x̄)〉∆CB +O
(
a2‖∇v̄a‖L2(B)

)
+ o(‖∇v̄a‖L2(B))

= LB[v̄a](x̄) + o(‖∇v̄a‖L2(B))

〈u,G(·,x)〉∆CBa
= a〈ϕ[∇u(z)],G∞(·, x̄)〉∆CB + o(a).
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By virtue of the above expansions, the integral equation resulting from retaining only the contributions of
lowest order in a in (33) is thus found to coincide with the integral equation (35) governing the free-space
transmission problem with E = a∇u(z). This suggests setting va in the form

va(x) = avB[∇u(z)]
(x−z

a

)
+ δa(x) x∈Ba

The function avB[∇u(z)]
(
(x − z)/a

)
indeed defines the leading contribution to the so-called inner

expansion of va, with the remainder δa only contributing higher order terms in the limit a → 0, as
stated in the following Proposition, whose proof is deferred to Appendix 4.

Proposition 4 (asymptotic behavior of va). Let the inner approximation ṽa to va be defined by

ṽa(x) = avB[∇u(z)]
(x−z

a

)
, x∈Ba (41)

where vB[∇u(z)] solves the FSTP (15) with E = ∇u(z). Moreover, for any cut-off function θ ∈ C∞c (Ω)
such that θ ≡ 1 in a neighborhood D of z, let δa ∈ H1(Ω;R3) be defined by

va = θṽa + δa (42)

Assume also that f has C0,β regularity for some β > 0 in a neighbourhood of z. Then there exists a
constant C > 0 independent of a such that

‖δa‖H1(Ω) ≤ Ca5/2. (43)

Moreover
‖ṽa‖L2(Ω) ≤ Ca5/2 and ‖∇ṽa‖L2(Ω) ≤ Ca3/2. (44)

Remark 5. The formulation and proof of Proposition 4, in particular regarding the introduction of δa as
defined by (42), follow the approach of [37]. As also remarked in [37], ṽa provides the leading contribution
to the inner expansion of va in the sense that (i) θ = 1 in Ba and can be made to vanish outside of an
arbitrarily small neighbourhood of Ba and (ii) ‖∇δa‖L2(Ω) = O(a5/2) while ‖∇ṽa‖L2(Ω) = O(a3/2).

Remark 6. Proposition 4, established assuming C to be constant (homogeneous background material),
is expected to also hold for heterogeneous elastic properties that are smooth in a fixed neighbourhood of
z (with the EMT then defined in terms of C(z)). Both [13] for the electrostatic case and [24] for the
elastic case assume smooth heterogeneous background properties in Ω, the former emphasizing that the
assumption may be significantly weakened.

Remark 7. Expansion (42) is the specialization to diametrically-small inhomogeneities of expansions
obtained by [24] for more general classes of anisotropic inhomogeneities with vanishing measure |Ba|
(e.g. thin or elongated inhomogeneities).

4. Topological expansion of cost functionals.

4.1. Small inhomogeneity of arbitrary shape. To establish an expansion of the form (18) of J(Ca)
with the help of Proposition 4, the first step exploits a first-order Taylor expansion of the densities ψΩ, ψΓ

of (16), to obtain
J(Ca) = J(C) + J′(u;va) + JR(u;va) (45)

where J′(u;w) is the directional derivative of J at u in the direction w ∈W0, i.e.

J′(u;w) =

∫
Ω

ψ′Ω(·,u)·w dV +

∫
ΓN

ψ′Γ(·,u)·w dS (46)

and the remainder JR(u;va) can be expressed in the form

JR(u;va) = 1
2

∫
Ω

va ·ψ′′Ω(·,u+ tΩva)·va dV +

∫
ΓN

va ·ψ′′Γ(·,u+ tΓva)·va dS (47)
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for some tΩ, tΓ ∈ [0, 1]. Since va ∈W0 for any a, the support of the boundary integrals in (46) and (47) is
reduced to ΓN. The topological derivative of J(Ca) is the leading contribution as a→ 0 of expansion (45),
and will be found by estimating the directional derivative (46) and the remainder (47).

First, by virtue of the growth conditions (17) on ψΩ and ψΓ, the remainder (47) can be bounded, for
some positive constant C, as

JR(u;va) ≤ C
[
‖va‖2L2(Ω) + ‖va‖2L2(ΓN)

]
Invoking estimates (43) and (44), one has

‖va‖2L2(Ω) ≤ ‖va‖2H1(Ω) = ‖θṽa + δa‖2H1(Ω) ≤ Ca5,

while, since va = δa on ΓN, one also has (again invoking (43))

‖va‖2L2(ΓN) = ‖δa‖2L2(ΓN) ≤ ‖δa‖2H1(Ω) ≤ Ca5.

(in fact, one can show from (33) used for x ∈ ΓN that ‖va‖2L2(ΓN)≤Ca6). As a result, one obtains

JR(u;va) ≤ Ca5 (48)

The directional derivative J′(u;va) remains to be evaluated. To this aim, it is convenient to introduce
the adjoint solution p defined by the weak formulation

Find p ∈W0, 〈p,w〉CΩ = J′(u;w), ∀w ∈W0, (49)

Then, on setting w = p in (12) and w = va in (49), combining the resulting identities and exploiting the
symmetry of the energy bilinear form, one obtains

J′(u;va) = −〈p,u〉∆CBa
− 〈p,va〉∆CBa

= −〈p,ua〉∆CBa
(50)

The above equation shows that the asymptotic behavior of J′(u;va) as a→ 0 can be determined from
the inner asymptotic behavior of va, which is given by (42). This is achieved by the following lemma:

Lemma 2. For any vector field w ∈C2(D;R3), where D⊂Ω is a neighbourhood of Ba, one has

〈w,ua〉∆CBa
= a3∇w(z) :A :∇u(z) + o(a3) (51)

where A is the elastic moment tensor defined by (19).

Proof. See proof of Proposition 5 below. �

Under the requirements made on ψΩ in Sec. 2.3 and the additional assumption that ψ′Ω(·,u) have
C0,β(V ) regularity for some β > 0 in a neighbourhood V of z, the solution p of (49) is in C2(V ;R3).
Application of Lemma 2 with w=p to (50) gives

J′(u;va) = −a3∇p(z) :A :∇u(z) + o(a3). (52)

On using estimates (48) and (52) in (45) and comparing the resulting expansion with (18), the
asymptotic behavior δ(a) and the topological derivative DJ(z) of J are as stated next:

Proposition 5 (topological derivative of J). Assume that ψΩ satisfies the requirements made in Sec. 2.3,
and that ψ′Ω(·,u) have C0,β regularity for some β > 0 in a neighbourhood of z. The topological derivative
DJ(z) of J(Ca) at z and its asymptotic behavior δ(a) are given by

DJ(z) = −∇u(z) :A :∇p(z), δ(a) = a3, (53)

where the background field u and the adjoint field p solve (3) and (49), respectively, and A is the elastic
moment tensor defined by (2.4).
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Proof. The proposition only requires a proof for Lemma 2. To this aim, one notes that the following
expansion is available for ∇w:

∇w(ξ) = ∇w(z) +O(|ξ−z|) = ∇w(z) +O(a|ξ̄|) (ξ ∈Ba).

Moreover, a similar expansion is available for u, while (42) yields

∇va(ξ) = ∇vB[∇u(z)](ξ̄) + ∇δa(ξ) (ξ ∈Ba, ξ̄ ∈B).

Using the above expansions and rescaling (39), one obtains

〈w,ua〉∆CBa
= a3∇w(z) :

{∫
B

∆C :
(
∇u(z) + ∇vB[∇u(z)](ξ̄)

)
dV̄ξ̄

}
+ 〈w, δa〉∆CBa

+O(a4)

= a3∇w(z) :A :∇u(z) + 〈w, δa〉∆CBa
+O(a4)

using definition (19) of the EMT. Finally, the estimate

〈w, δa〉∆CBa
≤ C‖ε[w]‖L2(Ba)‖ε[δa]‖L2(Ba) ≤ Ca3/2‖δa‖H1(Ω) ≤ Ca3/2a5/2 = Ca4 = o(a3)

holds for some constant C by virtue of (43). This completes the proof. �

Remark 8. The analysis leading to Proposition 5 does not apply in the case of small inhomogeneities
nucleating at the boundary, i.e. if z ∈ ∂Ω. To address this case, the free-space transmission problem
should be replaced with a half-space transmission problem for a normalized inhomogeneity intersecting the
traction-free planar surface; likewise G∞ has to be replaced with the fundamental solution for the half-
space. Available references on asymptotic methods for small surface-breaking defects are much scarcer
than for internal defects, see e.g. [38, 39, 40].

Remark 9. The foregoing analysis, and in particular Proposition 5, still holds if the cost functional
format (16) is extended to also allow integrals of the form∫

S

ψS(ξ,w) dS(ξ)

where S ⊂ Ω̄ is an arbitrary surface, provided DJ(z) is evaluated at points z 6∈S

Remark 10 (topological derivative of potential energy). For the special case of the potential energy (11)
with ū= 0, one has J′(u,w) = −(1/2)F (w). Hence, p = −(1/2)u and (53) yields

DJpot(z) = 1
2∇u(z) :A :∇u(z). (54)

4.2. Small inhomogeneity of ellipsoidal shape. The practical evaluation of DJ requires that of the
elastic moment tensor, which is given for an arbitrary inhomogeneity shape B by (19) in terms of six
FSTP solutions (15).

When B is an ellipsoid, problem (15) has a known analytical solution vB[E] whose strain is uniform
inside B [34]. This solution can be established by means of the equivalent inclusion method [36], briefly
recalled in Appendix C, to obtain:

ε[vB[E]] = −S : (C+∆C :S)−1 :∆C :E. (55)

In (55), S = S(B,C) denotes the (fourth-order) Eshelby tensor, which depends only on B and C. Its
Cartesian components in an orthonormal frame (e1, e2, e3) aligned with the principal directions of B are
given in the general anisotropic case by ([36], eq. (17.19))

Sijk` =
1

8π
Cmnk`

∫
Σ

[
ηjNim

(
η
)

+ ηiNjm
(
η
)]
ηn dΣ(η̂), (56)

where Σ := {η̂ ∈ R3, |η̂| = 1} is the unit sphere, η := a−1
1 η̂1e1 + a−1

2 η̂2e2 + a−1
3 η̂3e3 (where a1, a2, a3

are the principal semiaxes of B) and N(η) is defined as in (30). Note that (56) has been expressed as
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an integral over the unit sphere by effecting on eq. (17.19) of [36] the transformation u = cosφ with
φ∈ [0, π].

For an arbitrary anisotropic background, evaluation of (56) requires numerical quadrature (see Sec. 6,
and also the more complete treatment of [41]), while analytical formulae involving elliptic integrals are
available for isotropic background materials [36]. The latter reduce to the following elementary closed-
form expression when B is a ball:

S = S1J + S2K, with S1 :=
1+ν

3(1−ν)
, S2 :=

8−10ν

15(1−ν)
, (57)

where J and K are defined as in (7) and ν := (3κ− 2µ)/(6κ+ 2µ) is Poisson’s ratio. The Eshelby
tensor S has the minor symmetries Sijk` = Sjik` = Sij`k, as is evident from (56). The major symmetry
Sijk` = Sk`ij holds for the special case (57) but is not true in general.

With the help of (55), the value of A is then found as follows:

Proposition 6 (elastic moment tensor for an ellipsoidal inhomogeneity). The elastic moment tensor A
associated with an ellipsoidal inhomogeneity (B,C+∆C) embedded in a medium with elasticity tensor C
is given by

A = |B|C : (C+∆C :S)−1 :∆C (58)

Proof. On using expression (55) of ε[vB] in (19) and using the fact that the integrand in the resulting
formula is constant, one obtains

E′ :A :E = |B|
(
E′ :∆C :E −E′ :∆C :S : (C+∆C :S)−1 :∆C :E

)
Then, since the above equality holds for any constant tensors E′,E, the sought expression (58) is readily
obtained by invoking the identity ∆C :S : (C+∆C :S)−1 = I − C : (C+∆C :S)−1. �

Spherical isotropic inhomogeneity, isotropic background. In this case, A admits a quite simple
explicit expression. Using that C and C? are of the form (7) with respective moduli pairs κ, µ and κ?, µ?

and S is given by (57), invoking the relations J : J = J , K : K = K and J : K = 0 verified by J
and K and noting in particular that (AJ +BK)−1 = A−1J +B−1K for any (A,B) 6= (0, 0), one easily
evaluates (58) to obtain

A =
4π

3

[
3κ

Λ1−1

1+S1(Λ1−1)
J + 2µ

Λ2−1

1+S2(Λ2−1)
K
]

(59)

(with Λ1 := κ?/κ, Λ2 := µ?/µ). For 0 ≤ ν ≤ 0.5 one has 1/3 ≤ S1 ≤ 1 and 8/15 ≥ S2 ≥ 2/5; combined
with Λ1,2 ≥ 0. This implies that both denominators in (59) are strictly positive, ensuring in particular
the invertibility of C+∆C :S upon which (59) depends, except for the special case ν = 0.5, κ? = 0.

4.3. The plane strain case. The derivation of DJ(z) under two-dimensional, plane strain, conditions
repeats that of Secs. 3 and 4.1, the main modifications being that (i) in (30), N(η) is now defined in terms
of the two-dimensional version of K(η) (i.e. Kik = Cijk`ηjη` with 1≤ i, j, k, `≤ 2) and the multiplicative
factor in front of the integral becomes (2π)−2, and (ii) volume scaling (39b) becomes dVξ = a2 dV̄ξ̄. In
particular, ∇G∞(r) is now homogeneous of degree -1 in r.

As a result, the form (42) of the inner expansion of va is still valid, the asymptotic behavior of J(Ca)
in (18) is now given by δ(a) = a2, and DJ(z) remains given by (53).

Of course, the normalized inhomogeneity shape B involved in the FSTP solution entering definition (19)
of A is now two-dimensional. When B is an ellipse, expression (58) requires the plane-strain counterpart
of the Eshelby tensor S, which is given by

Sijk` =
1

4π
Cmnk`

∫ 2π

0

[
αi(θ)Njm

(
α(θ)

)
+ αj(θ)Nim

(
α(θ)

)]
αn(θ) dθ (60)

with α(θ) defined by
α(θ) = a−1

1 cos θ e1 + a−1
2 sin θ e2
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Formula (60) is established by considering, in the three-dimensional expression (56), the limiting case
a3 → ∞ where the ellipsoid B approaches a cylinder of axis e3 and elliptic cross-section in the (e1, e2)-
plane. In that case, setting (cos θ, sin θ) := (η̂2

1 + η̂2
2)−1/2(η̂1, η̂2), one has η = (η̂2

1 + η̂2
2)1/2α(θ) +O(a−1

3 ),
which (due to η 7−→N(η) being homogeneous of degree −2) implies that

η⊗N
(
η
)
⊗η = α(θ)⊗N

(
α(θ)

)
⊗α(θ) + o(1) (a3 →∞)

Setting dΣ = sinφ dφdθ in (56), the integration w.r.t. φ ∈ [0, π] becomes trivial, with (56) reducing
to (60) as a result.

Remark 11. The existence of plane strain deformations in anisotropic elastic solids is subject to
restrictions on C, see e.g. [42]. All materials having x3 = 0 as material symmetry plane (known as
monoclinic materials, and featuring up to 13 independent elastic moduli) permit plane strain states in the
(x1, x2) plane.

Isotropic inhomogeneity and background. For this case, analytical evaluation of (60) yields the
following explicit expression of S, which coincides with formulae (11.22) of [36] given for the ellipsoid
infinitely elongated along the x3 direction:

S1111 = A(1−m)(3+γ+m) S1122 = A(1−m)(1−γ−m)

S2211 = A(1+m)(3+γ−m) S1122 = A(1+m)(1−γ+m) (61)

S1212 = A(1+m2 +γ) S1112 = S2212 = S1211 = S1222 = 0

with A = [8(1− ν)]−1, γ = 2(1−2ν) and m = (a1−a2)/(a1 +a2). Then, substituting the above result
into (58) and using therein the plane-strain versions C = κ̄J̄ + µK̄ and ∆C = ∆κ̄J + ∆µK of the
isotropic elastic constitutive relation (where κ̄ := κ+µ/3 is the plane-strain bulk modulus, J̄ := I⊗I/2
and K̄ := I − J̄ ), exact algebraic formulae are obtained for the components of A, which have been
checked to coincide with the corresponding result of [43] (Theorem 3.2), established using a different
method.

5. Energy-based functionals. Another important class of functionals are those acting on the
displacement gradient, or the linearized strain tensor, rather than the displacement. They include energy-
like quantities such as the strain energy or energy-based error functionals.

To highlight issues specific to this kind of functional, let

E(Ca) = E(ua) with E(w) =

∫
Ω

Ψ(∇w) dV (62)

(where the density X ∈ R3,3 7→ Ψ(X) is twice differentiable) and consider the first-order term arising
from a pointwise Taylor expansion of Ψ(∇ua) about ∇u:

E1(Ca) := E′(u;va) =

∫
Ω

Ψ′(∇u) :∇va dV

Defining an adjoint solution q by the weak formulation

〈q,w〉CΩ = E′(u;w) ∀w ∈W0 (63)

one then obtains (following the derivation (50) and invoking Lemma 2)

E1(Ca) = 〈q,va〉CΩ = −〈q,ua〉∆CBa
= O(a3), (64)

hence the contribution arising from the first-order Taylor expansion of Ψ(∇ua) is again of order O(a3).
However, (43) and (44) also imply that the second-order contribution from Ψ(∇ua) yields

E2(Ca) :=

∫
Ω

∇va :Ψ′′(∇u) :∇va dV = O(a3)
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Since E1(Ca) and E2(Ca) are both of order O(a3) as a → 0, the leading contribution of E(Ca) − E(C)
as a→ 0 clearly does not coincide with that of E1(Ca), unlike for the previously-considered class (16) of
functionals. The derivation (64) does not yield the topological derivative of E(Ca), which also incorporates
higher-order contributions from Ψ(∇ua) and must be established by means of a distinct treatment.

In the remainder of this section, the topological derivative is established for two energy-based
functionals that depend quadratically on ∇ua. In addition to being of a physically natural and commonly
encountered format, such functionals have exact expansions of the form E(Ca) = E(C)+E1(Ca)+E2(Ca).

5.1. Two examples of energy-based functionals. The first kind of energy functional measures the
error in strain energy between ua and a given vector field u0 ∈ H1(Ω;R3), and is defined by

E1(Ca) = E1(ua,Ca) = 1
2 〈ua−u0,ua−u0〉CaΩ (65)

The particular case of the strain energy of ua corresponds to setting u0 = 0 in (65).

The second kind of energy functional is the elastic counterpart of the functional used in [10] for electric
impedance tomography. It is used for e.g. material or flaw identification from overdetermined boundary
data. Let ΓN = Γo∪Γno, assuming that a measurement uobs of the displacement induced in the solid by
the excitation (f , g, ū) defined in Sec. 1 is available on Γo. One can then define ’Neumann’ and ’Dirichlet’
displacement fields that differ only by their boundary data on Γo, on which either forces or displacements
may be prescribed (the remaining data being as in Sec 1). The ’Neumann’ and ’Dirichlet’ fields coincide
for perfect measurement uobs and a flawless solid with correctly known material characteristics, whereas
a discrepancy between them reveals that the model for the reference solid is incorrect, e.g. due to the
presence of a hidden defect. The ’Neumann’ and ’Dirichlet’ background fields uN and uD are defined by
the following weak formulations:

Find uN ∈WN(ū), 〈uN,w〉CΩ = F (w), ∀w ∈WN

0 . (66a)

Find uD ∈WD(ū), 〈uD,w〉CΩ = F (w), ∀w ∈WD

0 . (66b)

having set WD(ū) =
{
v ∈ H1(Ω;R3), v = ū on ΓD, v = uobs on Γo

}
, WD

0 := WD(0) and WN(ū) =
W (ū), WN

0 = W0 in terms of definition (6). Moreover, the ’Neumann’ and ’Dirichlet’ fields uN
a and uD

a

for a small trial inhomogeneity Ba located at z are defined by the following weak formulations for the
perturbations vN

a := uN
a−uN and vD

a := uD
a −uD:

Find vN

a ∈WN

0 , 〈vN

a ,w〉CΩ + 〈vN

a ,w〉∆CBa
= −〈uN,w〉∆CBa

, ∀w ∈WN

0 . (67a)

Find vD

a ∈WD

0 , 〈vD

a ,w〉CΩ + 〈vD

a ,w〉∆CBa
= −〈uD,w〉∆CBa

, ∀w ∈WD

0 . (67b)

The energy functional E2(Ca) is then defined so as to evaluate the ’Neumann’–’Dirichlet’ discrepancy
through the strain energy of the difference uN

a−uD
a defined in terms of the perturbed material Ca, i.e.:

E2(Ca) = E2(uN

a ,u
D

a ,Ca) = 1
2 〈uN

a−uD

a ,u
N

a−uD

a 〉CaΩ (68)

5.2. Topological derivative of functionals E1, E2.

Proposition 7. The topological derivative of the energy functional E1(Ca) is given by

DE1(z) =
|B|
2
ε[u0](z) :∆C :ε[u0](z)− 1

2
ε[u](z) :A :ε[u+2q](z) (69)

where the adjoint solution q is defined by the weak formulation

Find q ∈W (γD(u0−u)), 〈q,w〉CΩ = 0, ∀w ∈W0, (70)

(with γD(w) denoting the trace on ΓD of w ∈H1(Ω;R3)).

The topological derivative of the energy functional E2(Ca) is given by

DE2(z) =
1

2
ε[uD](z) :A :ε[uD](z)− 1

2
ε[uN](z) :A :ε[uN](z) (71)

In both (69) and (71), A denotes again the elastic moment tensor (19).
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Proof. The functional E1(Ca) depends quadratically on va. Expanding E1(Ca) into terms of order 0,
1 and 2 in va, one obtains the following, exact, expression:

2E1(Ca)− 2E1(C) = 〈u−u0,u−u0〉∆CBa
+ 2〈u−u0,va〉CaΩ + 〈va,va〉CaΩ (72)

The definition (70) of the adjoint field q implies that q+u−u0 ∈W0. Hence, one may set w = q+u−u0

in (12), to obtain after some manipulation:

〈u−u0,va〉CΩ = 〈q+u−u0,va〉CΩ = −〈q+u−u0,ua〉∆CBa

(where the first equality exploits (70) with w= va ∈W0)), and thus

〈u−u0,va〉CaΩ = 〈u−u0,va〉∆CBa
− 〈q+u−u0,ua〉∆CBa

= −〈u−u0,u〉∆CBa
− 〈q,ua〉∆CBa

Next, weak formulation (12) with w = va yields

〈va,va〉CaΩ = −〈u,va〉∆CBa

Finally, inserting the last two equalities into (72) and rearranging terms, one finds

2E1(Ca)− 2E1(C) = −〈u−u0,u+u0〉∆CBa
− 2〈q,ua〉∆CBa

− 〈u,va〉∆CBa

= 〈u0,u0〉∆CBa
− 〈u+2q,ua〉∆CBa

,

with the desired result (69) following by applying Lemma (51) for the last term of the right-hand side.

The functional E2(Ca) depending quadratically on vD
a ,v

N
a , one obtains the alternative expression:

2E2(Ca)− 2E2(C) = 〈uN−uD,uN−uD〉∆CBa

+ 2〈uN−uD,vN

a −vD

a 〉CaΩ + 〈vN

a −vD

a ,v
N

a −vD

a 〉CaΩ (73)

Now, using weak formulation (12) with (va,w) replaced in succession by (vN
a ,v

N
a )∈WN

0 ×WN
0 , (vD

a ,v
D
a )∈

WD
0 ×WD

0 and (vN
a ,v

D
a ) ∈ WN

0 ×WN
0 (noting for the last case that vD

a ∈ WD
0 ⊂ WN

0 ), one obtains the
identities

〈vN

a ,v
N

a 〉CaΩ = −〈uN,vN

a 〉∆CBa
, 〈vD

a ,v
D

a 〉CaΩ = −〈uD,vD

a 〉∆CBa
, 〈vN

a ,v
D

a 〉CaΩ = −〈uN,vD

a 〉∆CBa
,

and hence
〈vN

a −vD

a ,v
N

a −vD

a 〉CaΩ = −〈uN,vN

a 〉∆CBa
− 〈uD−2uN,vD

a 〉∆CBa
(74)

Next, using again weak formulation (12), this time with (va,w) replaced by (vN
a ,u

N−uD)∈WN
0 ×WN

0 ,
one has

〈uN−uD,vN

a 〉CaΩ = −〈uN,uN−uD〉∆CBa

while invoking weak formulations (66a) and (66b) with w= vD
a ∈WD

0 ⊂WN
0 yields

〈uN−uD,vD

a 〉CΩ = 0

Combining the last two identities, one obtains

〈uN−uD,vN

a −vD

a 〉CaΩ = −〈uN−uD,vD

a 〉∆CBa
− 〈uN,uN−uD〉∆CBa

(75)

Substituting (74) and (75) into (73) and rearranging terms yields

2E2(Ca)− 2E2(C) = 〈uD,uD〉∆CBa
− 〈uN,uN〉∆CBa

+ 〈uD,vD

a 〉∆CBa
− 〈uN,vN

a 〉∆CBa

= 〈uD,uD

a 〉∆CBa
− 〈uN,uN

a〉∆CBa
.

The sought result (71) finally stems from applying (51) to each term of the right-hand side in the above
equality. �

6. Numerical results. This section presents three kinds of numerical results. First, in view of the
essential role of the EMT A in the evaluation of DJ , its computation is examined in Sec. 6.1 for ellipsoidal
(or spherical) inhomogeneities, corresponding to the most often used form of topological derivative. In
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this case, (58) shows that an accurate evaluation of A mainly hinges on that of S, which is thus the main
focus of Sec. 6.1. Then, a numerical validation of expression (53) for DJ , performed in 2D conditions by
comparing J(Ca) evaluated either numerically or using expansion (18), is presented in Sec. 6.2. Finally,
Sec. 6.3 illustrates flaw identification using the topological derivative of the energy functional E1.

6.1. Numerical evaluation of the EMT for ellipsoidal inhomogeneities. Considering an ellip-
soidal inhomogeneity shape B, the computation of A using (58) is straightforward once S is known.
Evaluating the latter usually requires a numerical quadrature of integral (56). A set of high-accuracy
quadrature rules specially designed for integrals over Σ, proposed in [44], are used here for this purpose.
Each such rule is based on a set of NL points η̂q ∈ Σ and weights wq, determined so as to integrate exactly
spherical harmonics of order up to L (they are freely available, as a Matlab file getLebedevSphere.m,
from e.g. www.mathworks.com). Formula (56) then becomes

Sijk` =
1

8π
Cmnk`

NL∑
q=1

wq
[
ηq,jNim

(
ηq
)

+ ηq,iNjm
(
ηq
)]
ηq,n(θ) + ε(NL) (76)

(where ε(NL) denotes the quadrature error). In this section, the accuracy of the numerical computation

of S is quantified in terms of the relative L∞ discrepancy between S and a reference value Sref, denoted
e(S) and defined by

e(S) :=
|S − Sref|∞
|Sref|∞

=
maxi,j,k,` |Sijk` − Sref

ijk`|
maxi,j,k,` |Sref

ijk`|
, (77)

First, three cases with available analytical exact solutions Sref are considered, namely (a) a spherical
inclusion (a1 = a2 = a3), (b) a penny-shaped thin inclusion (a1 = a2, a3 → 0) and (c) a cylindrical
inclusion with elliptical cross-section (a3 → ∞). An isotropic background material with a Poisson ratio
ν = 0.3 is assumed for all three cases. Numerical quadrature for cases (b) and (c) used a3 = 10−40 and
a3 = 1040, respectively. In cases (a) and (b), (76) achieves an exact evaluation (within double-precision
accuracy) with N5 = 14 and N3 = 6 quadrature points, respectively. Case (c) corresponds to an elliptical

inclusion under two-dimensional plane-strain conditions, with the exact solution Sref given by (61), but
the numerical quadrature was still done using the three-dimensional formula (76), treating the inclusion
as an extremely elongated ellipsoid (a3 = 1040) so as to test the numerical quadrature under more severe
conditions. Relative errors e(S) achieved for various values of NL and the aspect ratio a2/a1 of the cross-
section are shown in Fig. 1. Clearly, due to the very high aspect ratio a3/a1 used, sufficient accuracy (say
e(S) ≤ 10−2) requires hundreds to thousands of quadrature points depending on the aspect ratio a2/a1.
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Figure 1. Cylindrical inclusion with elliptical cross-section: relative error e(S) as a function of
quadrature order NL for various values of aspect ratio a2/a1.
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Figure 2. Quadrature order NL needed to achieve target accuracy e(S) = 10−5 for (a) isotropic
background material and varying values of aspect ratio a2/a1 or (b) varying values of anisotropy index
AU of background material.

Next, the influence of either geometrical or material distortion on the quadrature order NL required
to achieve a fixed target accuracy e(S) = 10−5 in (76) is investigated. In Fig. 2a, an ellipsoidal inclusion
with semiaxes (a1, a2, a1) in an isotropic background material is considered, with the aspect ratio a2/a1

varying over the range [1, 30], while Fig. 2b corresponds to the case of a spherical inclusion in various
anisotropic material, with the anisotropy index AU [45] varying between 0 (isotropic) to about 150
(highly anisotropic). The definition and evaluation methodology of AU are recalled for completeness
in Appendix D. Clearly, suitable values of the quadrature order NL are strongly influenced by both
geometrical and material distortion. The latter effect is relevant in e.g. combined topology/material
structural optimization, where the ability to accurately compute DJ(z) for arbitrary trial materials
spanning wide ranges of anisotropy is important.

6.2. Numerical assessment of the topological derivative. In this section, a simple cantilever
structure featuring an anisotropic elliptic inhomogeneity Ba is considered, under plane-strain two-
dimensional conditions (Fig. 3). The structure is clamped along its left side and loaded on its right
side by g = (0,−1). No body forces are applied (f = 0), and the remaining part of the boundary is
traction-free. Two cases are considered for the constitutive properties: (a) a fully isotropic case with

C =

1.34 0.57 0.
0.57 1.34 0.
0. 0. 0.38

 , C? = 10−9C

(using the Voigt matrix notation, which reduces to 3×3 matrices for the plane-strain case), i.e. with a
very soft inhomogeneity close to a void, and (b) a fully anisotropic case with

C =

 1. 0.5 0.
0.5 2. 0.
0. 0. 0.04

 , C? =

 3. 0.4 0.
0.4 1.5 0.
0. 0. 0.03


A specific objective function was considered, namely the potential energy

J(Ca) = Epot(ua) := −1

2

∫
ΓN

ua ·g ds = −1

2

∫
ΓN

ua,2 ds,
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Ba
Ω

gΓD

ΓN

L = 2

H = 1

O

z = (1/3, 2/3)

h = 0.5

l = 1

Figure 3. 2D Test case and the nested mesh structure of the inhomogeneities.
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Figure 4. 2D Test case with nested inhomogeneities

whose topological derivative is given by (54). Finite element analyses for cases (a) and (b) with various
(small) values of a were made using FreeFem++ [46], while the computation of DJ(z) relied on a
Gauss-Legendre quadrature formula for the numerical evaluation of S by means of (60).

The discrepancy e(a) between J(Ca) evaluated either numerically or using expansion (18), defined by

e(a) :=
|∆J − a2DJ(z)|
|a2DJ(z)| , with ∆J := J(Ca)− J(C)

is plotted against a in Fig. 4, for an elliptic inhomogeneity with aspect ratio a1/a2 = 1 (disk) or 2
and (in the latter case) orientations α = 0 or π/4. A numerical test of correctness of the evaluation of
DJ(z) then consists in checking that e(a) = o(a) for small a. This desired trend is clearly visible for
all considered cases in Fig. 4. The results there moreover suggest that e(a) = O(a2), even though one
would a priori have expected a linear behavior. This empirical remark is consistent with higher-order
topological expansions obtained in other situations [47] where for 2D problems the O(a3) contribution to
the objective function expansion is found to vanish whenever the shape B has central symmetry, which
is the case of an elliptic inhomogeneity.

Remark 12. This asymptotic validation is here limited to the 2D case because accurate numerical results
require a very fine mesh of the inhomogeneity and its vicinity.



THE TOPOLOGICAL DERIVATIVE IN ANISOTROPIC ELASTICITY 19

6.3. Flaw identification using an energy cost functional. To illustrate the usefulness of the topo-
logical derivative of energy-based cost functionals, the detection of three circular anisotropic inhomo-
geneities Bk = Ba(zk) (k = 1, 2, 3) having the same radius a and embedded in an anisotropic reference
material is considered, again under two-dimensional plane-strain conditions (with geometry and back-
ground elastic properties C as shown in Fig. 5). B1 and B3 are softer than the background (C? = 0.5C),
while B2 is harder (C? = 2C). The solid is clamped on its bottom and lateral sides, while a uniform
normal pressure g= 1 is applied on its top side. The displacement response u0 of the flawed solid is com-
puted using finite elements. The identification problem then consists of identifying the inclusions knowing
the kinematic response u0, which may in practice be available from full-field measurement techniques
such as digital image correlation. Here, the identification problem may be formulated as minimizing the
functional E1 defined by (65). Figure 6 shows the topological derivative DE1(z) (more precisely, the
normalized and thresholded quantity z 7→ Min

(
DE1(z), 0

)
/
[
−Min

(
DE1(z)

)]
), where the EMT is de-

fined using either C? = 0.5C or C? = 2C. According to the choice of EMT, the topological derivative field
DE1(z) is seen to reveal correctly, through locations at which DE1(z) is most negative, the locations of
the softer and stiffer flaws. This is consistent with similar findings made in [28] for the elastodynamic
case and using least-squares output cost functionals. Similar results have been obtained on this example
for cases where C? is not proportional to C.

Appendix A. Proof of Proposition 3. From definition (19), for any E ∈R3,3, one has E :A :E =
|B|E :∆C :E + 〈ϕ[E],vB[E]〉∆CB . This proof now exploits two different reformulations of E :A :E. For a

first reformulation, setting w= vB in (15), one has 〈ϕ[E],vB[E]〉∆CB = −〈vB[E],vB[E]〉CBB , and hence

E :A :E = |B|E :∆C :E − 〈vB[E],vB[E]〉CBB . (A.1)
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x

y

z1 = (0.3,−0.35)

z2 = (1, 0.65)

z3 = (1, 7.65)

g = 1

B1

B2

B3

(a2 = 0.003)

C =

1. 3. 0.
3. 10. 0.
0. 0. 0.03



Figure 5. Flaw identification using an energy cost functional: setting and notations.

Figure 6. Flaw identification using an energy cost functional: topological derivative DE1(z).
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For a second reformulation of E :A :E, let Z :=C?−1 :∆C :E ∈R3,3
sym, so that 〈ϕ[Z],w〉CBB = 〈ϕ[E],w〉∆CB

holds for any w ∈H1(B;R3), and define v̂B[E] := vB[E]+ϕ[Z] in B. Then:

〈ϕ[E],vB[E]〉∆CB = 〈ϕ[Z],vB[E]〉CBB
= 〈v̂B[E]−vB[E],vB[E]〉CBB
= 〈v̂B[E], v̂B[E]〉CBB − 〈v̂B[E],ϕ[Z]〉CBB − 〈vB[E],vB[E]〉CBB (A.2)

Now, setting again w= vB in (15), one obtains

〈vB[E],vB[E]〉CBB = −〈vB[E],vB[E]〉CBR3\B − 〈ϕ[E],vB[E]〉∆CB .

Inserting this identity in the last equality of (A.2), using 〈v̂B[E],ϕ[Z]〉CBB = 〈v̂B[E],ϕ[E]〉∆CB and noting
that |B|E :∆C :E = 〈ϕ[E],ϕ[E]〉∆CB , the sought reformulation is finally:

E :A :E = 〈v̂B[E], v̂B[E]〉CBB + 〈vB[E],vB[E]〉CBR3\B + 〈ϕ[E],ϕ[E−Z]〉CBB (A.3)

Let now E be an eigentensor associated vith eigenvalue Λ for problem (26).

First, (26) then implies E : ∆C :E = (Λ−1)E :C :E; moreover, the last term in the right-hand side
of (A.1) is non-positive. Therefore, E :A :E< 0 for any eigenvalue Λ< 1.

Then, to exploit the second reformulation (A.3), a simple derivation yields

〈ϕ[E],ϕ[E−Z]〉CBB = |B|E :∆C :C?−1 :C :E = |B|(Λ−1)E :C :C?−1 :C :E.

The above quantity is positive for Λ > 1 while the other terms in the right-hand side of (A.3) are
non-negative. Therefore, E :A :E> 0 for any eigenvalue Λ> 1.

Finally, the proof of Proposition 3 is completed by noting that if Λ = 1, an eigenvector E verifies
∆C :E= 0. This implies that E :A :E = |B|E :∆C :E + 〈ϕ[E],vB[E]〉∆CB = 0.

Appendix B. Proof of Proposition 4. Estimates (44) of ṽa are found first by rescaling (for a small
enough)

‖ṽa‖2L2(Ω) = a2

∫
Ω

∣∣∣vB[∇u(z)]
(ξ−z

a

) ∣∣∣2 dVξ = a5

∫
(Ω−z)/a

|vB[∇u(z)](ξ̄)|2 dV̄ξ̄

≤ a5

∫
R3

|vB[∇u(z)](ξ̄)|2 dV̄ξ̄ = Ca5

(since the far-field behavior (38) implies that vB is square-integrable). Similarly,

‖∇ṽa‖2L2(Ω) = a2

∫
Ω

∣∣∣∇ξvB[∇u(z)]
(ξ−z

a

) ∣∣∣2 dVξ ≤ a3

∫
R3

|∇vB[∇u(z)](ξ̄)|2 dV̄ξ̄ = Ca3

Furthermore, since vB = O(|x|−2) and ∇vB = O(|x|−3) at infinity by virtue of (38), one also deduces
by rescaling that

‖ṽa‖L∞(Ω\D) ≤ Ca3 and ‖∇ṽa‖L∞(Ω\D) ≤ Ca3. (B.1)

Attention is now directed towards the estimate (43) on δa. Combining (12) and a rescaled version
of (15), the weak formulation satisfied by δa is found as

Find δa ∈W0, 〈δa,w〉CaΩ = −〈u−ϕ[∇u(z)],w〉∆CBa
−G(w), ∀w ∈W0

where G(w) is defined as

G(w) = 〈θṽa,w〉CaΩ + 〈ϕ[∇u(z)], θw〉∆CBa

(having used that θ = 0 in R3\Ω and θ = 1 in Ba). Taking w = δa, one then has the following estimate:

C‖ε[δa]‖2L2(Ω) ≤ |〈δa, δa〉CaΩ | ≤ |〈u−ϕ[∇u(z)], δa〉∆CBa
|+ |G(δa)|. (B.2)

The local smoothness assumption on f implies that u is C2 at z. Applying the mean value theorem, one
then has

|ε[u](x)− ε[u](z)| ≤ Ca in Ba,
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so the first term in the right-hand side of (B.2) can be bounded as

| 〈u−ϕ[∇u(z)], δa〉∆CBa
| ≤ Ca5/2‖ε[δa]‖L2(Ω).

Moreover, one has

G(δa) = 〈θṽa, δa〉CaΩ − 〈ṽa, θδa〉CaΩ =

∫
Ω

{
ε[δa] :Ca : (ṽa⊗∇θ)s − ε[ṽa] :Ca : (δa⊗∇θ)s)

}
dV,

where the superscript ’s’ signifies the symmetric part. Hence, since ∇θ vanishes in a neighborhood D of
Ba, by Korn’s inequality and the estimates (B.1), it follows that

|G(δa)| ≤ C
[
‖ṽa‖L∞(Ω\D) + ‖ε[ṽa]‖L∞(Ω\D)

]
‖∇θ‖L2(Ω\D)‖ε[δa]‖L2(Ω)

≤ Ca3‖ε[δa]‖L2(Ω).

Finally, from (B.2), the following global estimate holds:

‖ε[δa]‖L2(Ω) ≤ C(a3 + a5/2) ≤ Ca5/2,

completing the proof by Korn and Poincaré inequalities.

Appendix C. The equivalent inclusion approach. The concept of Eshelby tensor arises from
considering a constant eigenstrain E? ∈R3,3

sym applied over an ellipsoidal part B of an unbounded elastic

medium Ω = R3 endowed with homogeneous elastic properties C [36]. The displacement field v?B thus
created is given explicitly by the representation formula

v?B(x) = 〈ϕ[E?],G∞(·−x)〉CB, x∈R3 (C.1)

When B is an ellipsoid and E? ∈R3,3
sym is uniform, the above representation can be analytically evaluated,

revealing that v?B depends linearly on x inside B. The Eshelby tensor S of B is then defined by setting

ε[v?B](x) = S :E? (x∈B). (C.2)

Formula (56) for the components of S stems from analytically evaluating (C.1) and interpreting the result
according to definition (C.2).

Then, the equivalent inclusion method consists in finding an eigenstrain E?? such that the solution
vB of integral equation (35) has the form

vB[E] = ϕ[S :E??] in B (C.3)

Inserting the above ansatz in (35) and comparing with (C.1), the equivalent-inclusion analogy is found
to be achieved by setting

E?? = −(C+∆C :S)−1 :∆C :E (C.4)

Appendix D. Anisotropy index. The universal elastic anisotropy index, introduced in [45], is
defined as

AU = 5
µV

µR
+
κV

κR
− 6 ≥ 0, (D.1)

where CV = 3κVJ + 2µVK and CR = 1/(3κR)J + 1/(2µR)K are the Voigt estimate of C and the
Reuss estimate of C−1, respectively. Both estimates are defined from averaging over all possible spatial
orientations, and are hence isotropic. They are given by CV = H(C) and CR = H(C−1), where H is the
Haar measure over the set of rotations of R3, defined by

H(E) =
1

8π2

∫ 2π

0

∫ 2π

0

∫ π

0

Q(θ, φ, ψ) :E :QT(θ, φ, ψ) sin θ dθ dφdψ (D.2)

(θ, φ, ψ denoting the Euler angles). In (D.2), the fourth-order rotation tensor Q is defined (see [48, 35]) by
Q := 1/2(QikQj`+Qi`Qjk)ei⊗ej⊗ek⊗e` in terms of the rotation matrixQ := Qz(ψ)Qx(θ)Qz(φ) ∈ R3,3,
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where

Qz(α) =

cosα − sinα 0
sinα cosα 0

0 0 1

 , Qx(α) =

1 0 0
0 cosα − sinα
0 sinα cosα

 .
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