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Summary
A comprehensive treatment of the topological derivative for anisotropic elasticity
is presented, with both the background material and the trial small inhomogeneity
assumed to have arbitrary anisotropic elastic properties. A formula for the topological
derivative of any cost functional defined in terms of regular volume or surface densities
depending on the displacement is established, by combining small-inhomogeneity
asymptotics and the adjoint solution approach. The latter feature makes the proposed
result simple to implement and computationally efficient. Both three-dimensional and
plane-strain settings are treated; they differ mostly on details in the elastic moment
tensor (EMT). Moreover, the main properties of the EMT, a critical component of the
topological derivative, are studied for the fully anisotropic case. Then, the topological
derivative of strain energy-based quadratic cost functionals is derived, which requires
a distinct treatment. Finally, numerical experiments on the numerical evaluation of
the EMT and the topological derivative of the compliance cost functional are reported.

1. Introduction

The concept of topological derivative appeared in (1) and (2) in the context of topological
optimization of mechanical structures. The topological derivative DJ(z) quantifies the
perturbation induced to a cost functional J by the virtual creation of an object Ba(z) (e.g.
a cavity or an inhomogeneity) of vanishingly small characteristic radius a at a prescribed
location z inside the solid. In structural optimization, computing the field DJ(z) directs
the algorithm towards optimal topologies by indicating where creating new holes is most
profitable from the featured cost functional viewpoint, an approach used by e.g. (3), and
also (4) in conjunction with the shape derivative, while applications to shape optimization
problems include (5). Moreover, the topological derivative has been found to be also very
useful as a means of defining a defect indicator function in flaw identification problems, see
e.g. (6, 7, 8, 9). Such optimization or inverse problems usually feature cost functionals that
involve volume or surface integrals of densities that depend on the displacement solving (in
the present context) an elastostatic equilibrium problem on the reference solid. Moreover,
constitutive or flaw identification problems are sometimes formulated in terms of energy
cost functionals (e.g. of the Kohn-Vogelius type (10) or error in constitutive equation
functionals (11, 12)), whose densities depend on displacement gradients.
To establish the expression of the topological sensitivity for a given cost functional and
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a chosen set of underlying geometrical and physical assumptions, one needs information
about the asymptotic behavior as a → 0 of the perturbation induced to the physical field
variable (e.g. displacement) by the virtual creation of Ba(z). An abundant literature is
available on such asymptotic analyses, see e.g. (13, 14, 15, 16, 17). A key component for
computationally efficient topological derivative formulations is the adjoint solution method
which, like with other types of sensitivity analysis, provides a valuable computational
shortcut by replacing the computation of many sensitivity fields (in the present context, one
sensitivity field for each virtual nucleation site z used in the computation) by that of just
one adjoint solution. Adjoint solutions for topological sensitivity appeared in (18, 19) and
thence found more widespread use, see e.g. (20, 21, 7, 9). Another important component
of topological derivative formulas is the elastic moment tensor (EMT), whose definition and
properties are extensively studied in e.g. (22) for the isotropic case and (23, 24) for the
anisotropic case.
Within the present framework of linear elasticity, results available for small-inhomogeneity

asymptotic expansions, as well as their application to the concept of topological derivative,
often assume isotropic elasticity, see e.g. (25, 26, 18, 27, 20). Comparatively scarce material
is available for the topological derivative in the more-general case of anisotropic elasticity.
It includes the formulation of the elastodynamic topological derivative for arbitrary surface-
integral cost functionals (28, 29) and that of small-inhomogeneity solution asymptotics for
anisotropic materials (30, 31, 23, 24). Moreover, the topological derivative of energy-based
cost functionals has also been sparsely addressed so far (notably in (21) for Stokes flows).
The main purpose of this paper is to present a comprehensive treatment of the

topological derivative for anisotropic elasticity, with the background material and the
small trial inhomogeneity both allowed to have anisotropic properties. A formula for the
topological derivative of any cost functional defined in terms of regular volume or surface
densities depending on the displacement is established, by combining small-inhomogeneity
asymptotics and the adjoint solution approach. The latter feature makes the proposed
result simple to implement and computationally efficient. Both three-dimensional and
plane-strain settings are covered; they differ mostly on details pertaining to the EMT.
This result directly generalizes previously-known formulations for isotropic elasticity to
the fully anisotropic case. Moreover, the topological derivative of strain energy-based cost
functionals, which depend on the displacement gradient, is also established. This case,
seldom addressed so far, requires a specific, and separate, treatment, due to the fact that
the strain perturbation in Ba does not vanish in the limit a→ 0 (whereas the displacement
itself does vanish). The practical computation of the EMT for general anisotropy, which is
necessary in practical applications of the topological derivative, is also addressed. Actual or
potential applications of the results presented in this article include topology optimization
of composite structures, a topic currently pursued by the second author of this article,
or flaw identification using experimental data from nondestructive testing. Both types of
problems may be cast as minimization problems, in which case the spatial locations where
negative values of the topological derivative occur are selected for material modification or
as the likeliest locations of flaws to be detected, depending on the objective.
This article is organised as follows. Section 2 introduces notation and collects background

material on the elastic transmission problem, elastic moment tenors, cost functionals and the
concept of topological derivative. The small-inhomogeneity asymptotics for the solution and
the featured class of cost functionals are obtained in Secs. 3 and 4, respectively. Then, the
specific treatment needed for deriving the small-inhomogeneity asymptotics of energy-based
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cost functionals is presented in Sec. 5. Finally, numerical experiments on the topological
derivative of the compliance cost functional, the numerical evaluation of the EMT and a
flaw identification problem are presented in Sec. 6.

2. Elastic transmission problem, cost functional and topological derivative

2.1 Notation, elastic transmission problem

Consider an elastic body occupying a smooth bounded domain Ω ⊂ R3. The
anisotropic elastic properties of the background material (against which the effect of small
inhomogeneities will be considered), assumed to be homogeneous, are characterized by the
fourth-order elasticity tensor C. The boundary ∂Ω is split according to ∂Ω = ΓD ∪ ΓN

(where ΓD ∩ ΓN = ∅ and |ΓD| 6= 0), so that a given force density g ∈ L2(ΓN;R
3) is applied

on ΓN while a given displacement ū ∈ H1/2(ΓD;R
3) is prescribed on ΓD. Additionally, a

body force density f ∈L2(Ω;R3) is applied to Ω.
The background solution, i.e. the displacement field arising in the reference solid due to

the prescribed excitations (f , g, ū), is defined as the solution to

div(C :ε[u]) + f = 0 in Ω, t[u] = g on ΓN, u = ū on ΓD (1)

where ε[w] and t[w] denote the linearized strain tensor and the traction vector associated
with a given displacement w, respectively defined by

(a) ε[u] = 1
2 (∇u+∇uT), (b) t[u] = (C :ε[u])·n (2)

(with n the unit outward normal to Ω). In (2b) and hereinafter, symbols ’·’ and ’ : ’ denote
single and double inner products, e.g. (E ·x)i = Eijxj and (C : E)ij = CijkℓEkℓ, with
Einstein’s convention of summation over repeated indices implicitly used throughout.
Alternatively, the background displacement is governed by the weak formulation

Find u ∈W (ū), 〈u,w〉CΩ = F (w), ∀w ∈W0, (3)

where 〈u,w〉CD denotes the bilinear elastic energy form associated to given domain D⊂R3

and elasticity tensor C, i.e.:

〈u,w〉CD :=

∫

D

ε[u] :C :ε[w] dV =

∫

D

∇u :C :∇w dV (4)

(with the second equality holding by virtue of the well-known major symmetry of C), the
linear form F associated to the loading is defined by

F (w) =

∫

Ω

f ·w dV +

∫

ΓN

g ·w dS, (5)

and having introduced, for given ū∈H1/2(ΓD;R
3), the spacesW (ū) andW0 of displacement

fields that are kinematically admissible with respect to arbitrary and homogeneous
prescribed Dirichlet data, respectively, i.e.:

W (ū) :=
{

v ∈H1(Ω;R3), v= ū on ΓD

}

, W0 :=W (0). (6)

The assumption f ∈ L2(Ω;R3) implies that the solution u of problem (3) has in fact
H2

loc(Ω;R
3) interior regularity (see e.g. (32), Thm. 6.3-6 and p. 298), and hence that

u∈C0(D) for any subset D ⋐ Ω by the Sobolev embedding theorem.
Well-known properties of elasticity tensors are now recalled for convenience. For general

anisotropic materials, the elasticity tensor C is positive definite (in the sense thatE :C :E> 0
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for any symmetric second-order tensor E ∈ R3,3
sym, E 6= 0 and has the major and minor

symmetries (i.e. Cijkℓ = Ckℓij = Cjikℓ = Cijℓk); it may thus involve up to 21 independent
elastic constants. For isotropic materials characterized by their bulk modulus κ and shear
modulus µ, C is given by

C = 3κJ + 2µK, (7)

where J ,K are fourth-order tensors respectively defined by J = (1/3)I⊗I and K = I−J

(with I and I denoting the second-order identity and the fourth-order identity for symmetric
tensors, respectively), so that E = J : E +K : E is the decomposition of a symmetric
second-order tensor E ∈R3,3

sym into its spherical and deviatoric parts.

2.2 Transmission problem for a small trial inhomogeneity

Now, consider a single small elastic inhomogeneity located at z ∈Ω, of characteristic linear
size a, occupying the domain

Ba = z + aB,

where B is a bounded smooth domain of R3 and a is small enough so that B̄a ⋐ Ω. The
inhomogeneity is endowed with anisotropic elastic properties characterized by the elasticity
tensor C⋆, so that the elastic properties of the whole solid are defined by the tensor-valued
field Ca such that

Ca = (1− χ(Ba))C + χ(Ba)C
⋆ = C + χ(Ba)∆C, (8)

χ(D) being the characteristic function of the domain D and ∆C := C⋆ −C denoting the
elastic tensor perturbation.

The displacement field ua ∈W (ū) arising in the solid containing the small inhomogeneity
due to the prescribed excitations (f , g, ū) solves the transmission problem

div(Ca :ε[ua]) + f = 0 in Ω, t[ua] = g on ΓN, u = ūa on ΓD (9)

or, equivalently, the weak formulation

Find ua ∈W (ū), 〈ua,w〉Ca

Ω = F (w), ∀w ∈W0. (10)

Either formulation (9) or (10) implicitly enforces the perfect-bonding relations ua|+ =ua|−
and t[ua]|+ = t⋆[ua]|− on ∂Ba, where the ± subscripts indicate limiting values from outside
and inside Ba, respectively, and with the traction operator w 7→ t⋆[w] defined by (2b) with
C replaced with C⋆ (both t[·] and t⋆[·] being conventionally associated with the unit outward
normal vector to Ba). The solution ua of (10) a priori belongs to H2

loc

(

(Ω\B̄a)∪Ba ;R
3
)

,

and therefore to C0(D) for any subset D ⋐

(

(Ω \ B̄a) ∪Ba

)

. To later permit Taylor
expansions of displacements or strains about z, the body force density f is in fact assumed
to have local C0,β(V ) regularity for some β > 0 in a neighbourhood V of z, ensuring (e.g.
from the properties of elastic volume potentials, see (33), Thm. 10.4) that u is in C2,β(D)
for any subset D ⋐ V .
One notes for later reference that the potential energy Epot of the solution ua to (10) is

given by
Epot(Ca) = Epot(ua) =

1
2 〈ua,ua〉

Ca

Ω − F (ua) = − 1
2F (ua) (11)

where the second equality exploits (10) and holds provided that ua ∈ W0, i.e. only for
problems with homogeneous Dirichlet data ū= 0 on ΓD.

It will be convenient for our purposes to exploit a formulation of the transmision
problem (10) in terms of the displacement perturbation va := ua − u rather than the



the topological derivative in anisotropic elasticity 5

total displacement ua. The following governing weak formulation for va is easily obtained
by subtracting (3) from (10):

Find va ∈W0, 〈va,w〉Ca

Ω = −〈u,w〉∆C
Ba
, ∀w ∈W0. (12)

Free-space transmission problem (FSTP). The auxiliary problem of a perfectly-bonded
inhomogeneity (B,C⋆) embedded in an infinite elastic medium Ω=R3 subjected to a uniform
remote stress will play an important role in the sequel and is thus given now for later
reference together with some additional useful notation. For an arbitrary constant second-
order tensor E ∈R3,3, let ϕ[E] denote the linear vector-valued function defined by

ϕ[E](ξ) :=E ·ξ. (13)

Let the background solution u be chosen as u=ϕ[E], noting that div(C :∇ϕ[E]) = 0. The
FSTP consists in finding the displacement field uB[E] such that

div(CB :∇uB[E]) = 0 in R
3, uB[E](ξ)−ϕ[E](ξ) = O(|ξ|−2) (|ξ| → ∞) (14)

where
CB = (1− χ(B))C + χ(B)C⋆ = C + χ(B)∆C

The FSTP (14) is analytically solved for an ellipsoidal inhomogeneity in Eshelby’s landmark
paper (34). It can be recast into the following weak formulation for the displacement
perturbation vB[E] := uB[E]−ϕ[E]:

Find vB[E]∈W∞, 〈vB[E],w〉CB

R3 = −〈ϕ[E],w〉∆C
B , ∀w ∈W∞, (15)

with the function space W∞ defined by W∞ =
{

w ∈ L2
loc(R

3;R3),∇w ∈ L2(R3;R3,3)
}

.
Note that 〈ϕ[E],w〉∆C

B = 〈ϕ[ET],w〉∆C
B , implying that vB[E] solving (15) depends only on

the symmetric part Esym := 1
2 (E+ET) ∈ R3,3

sym of E.

2.3 Cost functional and topological derivative

Now, cost functionals J(Ca) of the form

J(Ca) = J(ua) with J(w) :=

∫

Ω

ψΩ(x,w) dV (x) +

∫

∂Ω

ψΓ(x,w) dS(x) (16)

are considered, where the density functions ψΩ, ψΓ : (R3×R3) → R are twice differentiable
with respect to their second argument and are assumed to obey the growth conditions

|ψΩ(x,w)| ≤ C(1+ |w|2), |ψ′
Ω(x,w)| ≤ C(1+ |w|) |ψ′′

Ω(x,w)| ≤ C

|ψΓ(x,w)| ≤ C(1+ |w|2), |ψ′
Γ(x,w)| ≤ C(1+ |w|) |ψ′′

Γ(x,w)| ≤ C
(17)

(with ψ′ and ψ′′ denoting the gradient and Hessian, respectively, of ψ with respect to its
second argument and C being some positive constant), so as to ensure that J and its first and
second-order directional derivatives are defined for any w ∈ H1(Ω;R3). Typical examples
of cost functionals include the elastic potential energy Epot, with

ψΩ(ξ,w) = − 1
2w ·f(ξ), ψΓ(ξ,w) = − 1

2w ·g(ξ),

(if ū = 0, and using (11) in that case) and weighted least-squares misfit functionals used
for e.g. flaw identification problems, with

ψΩ(ξ,w) = 0, ψΓ(ξ,w) = 1
2χ(Sobs)(w−uobs(ξ))

T ·W (ξ)·(w−uobs(ξ)).

and where ξ 7→ W (ξ) is a positive-definite matrix-valued function, Sobs ⊂ ΓN is the
measurement surface and uobs the measured value of u on Sobs.
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Definition 1 (topological derivative). Assume that J(Ca) can be expanded in the form

J(Ca) = J(C) + δ(a)DJ(z) + o(δ(a)) (18)

where δ(a) is assumed to vanish as a → 0 and characterizes the small-inhomogeneity
asymptotic behavior of J(Ca). Then, the coefficient DJ(z), which also depends a priori on
the shape B and the moduli C,C⋆, is called the topological derivative of J at z ∈Ω.

Remark 1. Terminology for the concept of topological derivative varies, with “gradient”
or “sensitivity” used instead of “derivative” in some publications.

2.4 Elastic moment tensor

The elastic moment tensor, which will be seen to play a central role in the small-
inhomogeneity asymptotics of J(Ca), is now defined.

Definition 2 (elastic moment tensor). Let vB[E] denote the solution to the FSTP (15) for
given E ∈R3,3. The (fourth-order) elastic moment tensor (EMT) A is defined by

A :E =

∫

B

∆C :∇uB[E] dV =

∫

B

∆C : (E +∇vB[E]) dV ∀E ∈R
3,3. (19)

Remark 2. In (22, 17), the EMT is defined, for isotropic materials, in terms of the densities
of two elastic layer potentials that are used there to formulate the FSTP (14). That
definition in fact coincides with the present definition (19). To see this, integrating (19) by
parts, one finds

E′ :A :E =

∫

∂B

[

E′ : (C⋆ − C) ·n
]

·uB[E] dS =

∫

∂B

(

t⋆
[

ϕ[E′]
]

− t
[

ϕ[E′]
])

·uB[E] dS.

This identity coincides (upon adaptation to the present notations) with the left and right
contraction of eq. (10.12) in Lemma 10.3 of (17) by two tensors E,E′ ∈R3,3.

Properties of the elastic moment tensor. The main known properties of the EMT are now
collected.

Proposition 1 (symmetry). The elastic moment tensor A has major and minor
symmetries: for any pair of second-order tensors E,E′ ∈R3,3, one has the major symmetry

E′ :A :E = E :A :E′ (20)

and the minor symmetries

(i) E′ :A :E = E′ :A :ET, (ii) E′ :A :E = E′T :A :E. (21)

Proof. First, taking the left inner product of Eq. (19) by E′, one obtains

E′ :A :E = E′ :
{

∫

B

∆C :∇vB[E] dV
}

+E′ :
{

∫

B

∆C dV
}

:E (22)

The second term of the above right-hand side is clearly symmetric in E,E′ due to the major
symmetry of ∆C=C⋆−C, so the symmetry of the first term remains to be proved. To this
aim, one starts by noting that, by virtue of definition (4) of 〈·, ·〉∆C

B , one has

E′ :
{

∫

B

∆C :∇vB[E] dV
}

= 〈ϕ[E′],vB[E]〉∆C
B . (23)
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Then, using variational formulation (15) for vB[E] with w== vB[E
′], one has

−〈ϕ[E′],vB[E]〉∆C
B = 〈vB[E

′],vB[E]〉CB

R3

= 〈vB[E],vB[E
′]〉CB

R3 = −〈ϕ[E],vB[E
′]〉∆C

B

(using the symmetry of 〈·, ·〉CB

R3 ) which, combined with (23) written for E,E′ and E′,E,
yields the desired remaining symmetry

E′ :
{

∫

B

∆C :∇vB[E] dV
}

= E :
{

∫

B

∆C :∇vB[E
′] dV

}

(24)

The major symmetry (20) follows from (22), (24) and the known major symmetry of ∆C.
Moreover, the minor symmetry (21i) follows immediately from the corresponding minor

symmetry of ∆C. Finally, (20) and (21i) imply (21ii).

Proposition 2 (scaling). Let B0 have the same shape as B and unit volume (i.e. B0 =
|B|−1/3B), and assume that the contrast ∆C is uniform. Then, one has

A(B,C,C⋆) = |B|A(B0,C,C
⋆) (25)

Proof. Denote by vB0
the solution to problem (14) for the inhomogeneity B0, and let λ=

|B|1/3 be the linear scaling parameter such that B= λB0. Then, on setting (ξ̄, x̄) = λ(ξ̄0, x̄0)
in (35), invoking the homogeneity of∇G∞ and essentially repeating arguments already used
in the asymptotic analysis of Sec. 3.3, one easily finds that vB(ξ̄) = λvB0

(ξ̄0), and hence
∇vB(ξ̄) = ∇vB0

(ξ̄0). Exploiting this remark, and setting ξ̄ = λξ̄0, in (19) then yields the
desired result (25).

The next important property of A to consider is its sign-definiteness. It can conveniently
be formulated in terms of the generalized eigenvalue problem

(C⋆ − ΛC) :E = 0 (E ∈R
3,3
sym), (26)

which admits six real and strictly positive eigenvalues Λ1, . . . ,Λ6 and associated eigentensors
E1, . . .E6 ∈ R3,3

sym, by virtue of C⋆ and C defining positive-definite quadratic forms over the
six-dimensional vector space R3,3

sym (i.e. (26) could be recast as a generalized eigenvalue
problem for two symmetric positive definite 6×6 matrices, see (35)). Moreover, the EI are
C-orthogonal, and can be chosen as C-orthonormal.

Proposition 3 (sign-definiteness). The elastic moment tensor A is positive definite if ΛI >
1 (1≤ I ≤ 6), and negative definite if ΛI < 1 (1≤ I ≤ 6). Moreover, if ΛI = 1 for some I,
then A :EI = 0, i.e. EI is in the null space of A.

Remark 3 (isotropic materials). If both matrix and inhomogeneity materials are isotropic,
C and C⋆ are of the form (7) with respective moduli pairs κ, µ and κ⋆, µ⋆. The generalized
eigenvalue problem (26) then reads

[

3(κ⋆ − Λκ)J + 2(µ⋆ − Λµ)K
]

:E = 0

or, using the relations J :J = J , K :K = K and J :K = 0 verified by J and K,

(κ⋆ − Λκ)J :E = 0 or (µ⋆ − Λµ)K :E = 0.

Hence there are two distinct eigenvalues: (i) Λ1 = κ⋆/κ (multiplicity 1) with eigentensor
E1 = I since J :E = (1/3)tr(E)I for any E ∈ R3,3

sym, and (ii) Λ2 = µ⋆/µ (multiplicity 5).
Proposition 3 for this case essentially correspond to Theorem 5.4 of (22).
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Remark 4. Proposition 1, together with the inequalities

E :C :C⋆−1 :∆C :E ≤ E :A :E ≤ E :∆C :E ∀E ∈R
3,3
sym

which imply Proposition 3, constitute Proposition 1 of (24). Moreover, it is shown in (23)
that (i) positive definiteness of C − C⋆ implies that of −A (Theorem 2.7) and (ii) positive
definiteness of C−1−C⋆−1 implies that of A (Theorem 2.8). One easily check that cases (i)
and (ii) are respectively equivalent to the condition ΛI > 1 (1≤ I ≤ 6) or ΛI < 1 (1≤ I ≤ 6)
of proposition 3.

A proof of Proposition 3, essentially a concise and self-contained version of the
approach used in (23) for proving Theorems 2.7 and 2.8 therein, is given for completeness
in Appendix A.

3. Asymptotic behavior of the displacement

Finding δ(a) and the topological derivative DJ(z) requires some preliminary results on the
small-inhomogeneity asymptotic behavior of ua. To facilitate this task, the transmission
problem (12) is first reformulated as a domain integral equation involving a domain integral
operator whose support is the small inhomogeneity Ba.

3.1 Elastostatic Green’s tensor

Let the elastostatic Green’s tensor G(ξ,x) be defined by

div
(

C :ε[G(·,x)]
)

+ δ(·−x)I = 0 in Ω,

G(·,x) = 0 on ΓD, t[G(·,x)] = 0 on ΓN (x∈Ω), (27)

i.e. G(·,x) = ek⊗Gk(·,x) gathers the three linearly independent elastostatic displacement
fields Gk(·,x) resulting from unit point forces δ(· − x)ek applied at x ∈ Ω along each
coordinate direction k and fulfilling the homogeneous boundary conditions on ∂Ω implied
by the definition of W0.

Moreover, the ensuing analysis will be facilitated by splitting the elastostatic Green’s
tensor according to

G(ξ,x) = G∞(ξ−x) +GC(ξ,x) (28)

where G∞(r) is the (singular) elastostatic full-space Green’s tensor, such that

div
(

C :ε[G∞]
)

+ δI = 0 (in R
3), |G∞(r)| → 0 (|r| → ∞), (29)

and the complementary Green’s tensor GC is bounded at ξ = x (and in fact is C∞ for
ξ,x ∈ Ω by virtue of being the solution of an elastostatic boundary-value problem with
regular boundary data and zero body force density). The full-space Green’s tensor is given
by the inverse Fourier integral (36)

G∞(r) =
1

(2π)3

∫

R3

exp(iη ·r)N(η) dV (η) (r ∈R
3 \{0}), (30)

where, for given η ∈ R3, the second-order tensor N(η) is given by N(η) = K−1(η) in
terms of the acoustic tensor K(η), defined by Kik(η) = Cijkℓηjηℓ (K(η) is invertible for
any η 6= 0 and positive definite elasticity tensor C). Moreover, G∞ has the following
homogeneity property, which plays an important role in the sequel:
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Lemma 1. G∞ is a positively homogeneous tensor-valued function of degree -1. Hence, for
any r ∈R3 \{0} and λ∈R\{0}, G∞ and ∇G∞ verify

G∞(λr) = |λ|−1G∞(r), ∇G∞(λr) = |λ|−3λ∇G∞(r) (31)

Proof. Replacing r with λr and performing the change of variable η = λ−1η′ in (30), the
homogeneity property of G∞ follows from using (i) N(η) = λ2N(η′) by virtue of K being
homogeneous of degree 2 in η (and hence N being homogeneous of degree -2), and (ii)
dV (η) = |λ|−3 dV (η′).

3.2 Domain integral equation formulation

Lemma 1 implies that both G(·,x) and ∇G(·,x) have an integrable singularity at x. By
virtue of decomposition (28) and the known C∞ regularity of G∞ away from the origin,
G(·,x) hence belongs to W 1,1(Ω). On applying equations (27) in the sense of distributions
for a trial displacement w ∈W0∩C

1(ω) (where ω is a neighbourhood of x) and integrating
by parts the resulting first term over Ω, the Green’s tensor is found to verify the identity

〈G(·,x),w〉CΩ = w(x) x∈Ω, ∀w ∈C1
c (Ω), (32)

whose left-hand side is well-defined. Now, setting w = G(·,x) in (12) (noting that the
bilinear strain energy integral remains well-defined by virtue of u and va having C1

regularity near x if x ∈ Ba∪(Ω\B̄a)) and using identity (32) with w = va, the displacement
perturbation va is found to satisfy

Find va ∈W0, La[va](x) = −〈u,G(·,x)〉∆C
Ba
, ∀x ∈ Ba∪ (Ω\ B̄a) (33)

where the linear integral operator La is defined by

La[v](x) = v(x) + 〈v,G(·,x)〉∆C
Ba

(34)

Equation (33) is readily recognized as a compactly-written form of the Lippmann-Schwinger
domain integral equation governing the elastostatic inhomogeneity problem. If x∈Ba, (33)
can be solved for va inside Ba. Then, if x∈Ω\B̄a, (33) becomes a representation formula,
expressing va outside of Ba explicitly knowing va inside Ba.

Domain integral equation formulation for the FSTP. In a similar fashion, the free-space
transmission problem (14) can be recast as a domain integral equation by setting w =
G∞(· − x) in (15), to obtain

Find vB ∈W∞, LB

[

vB[E]
]

(x) = −〈ϕ[E],G∞(· − x)〉∆C
B , ∀x ∈ B∪ (R3 \B̄) (35)

with the linear integral operator LB defined by

LB[v](x) = v(x) + 〈v,G∞(·−x)〉∆C
B . (36)

The EMT (Sec. 2.4) then manifests itself naturally when considering the far-field behavior
of vB[E]. Indeed, from (35), vB[E](x̄) is given, for x̄ 6∈ B̄, by the representation formula

vB[E](x̄) = −

∫

B

∇G∞(· − x̄) :∆C : (E +∇vB[E]) dV (37)

(having used ∇ϕ[E] = E). Applying a Taylor expansion to ∇G∞(ξ̄− x̄) about ξ̄ = 0 and
invoking the homogeneity property (31) yields∇G∞(ξ̄−x̄) = −∇G∞(x̄)+O(|x|−3) (|x| →
+∞). Consequently, the far-field behavior of vB[E](x) as given by (37) is obtained as

vB[E](x) = −∇G∞(x) :A :E +O(|x|−3) (|x| → +∞) (38)
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3.3 Asymptotic behavior of va

The leading asymptotic behavior of va is now investigated, which naturally leads to seek
the limiting form for a→ 0 of integral equation (33). Moreover, since equation (33) involves
integrals over the vanishing inhomogeneity Ba, it is convenient to rescale points ξ,x∈Ba,
and consequently the differential volume element, according to:

(a) (ξ,x) = z + a(ξ̄, x̄), (b) dVξ = a3 dV̄ξ̄ (ξ ∈Ba, ξ̄ ∈B). (39)

This scaling is then introduced into (33). Invoking the decomposition (28) of G(ξ,x), the
homogeneity property (31) and the boundedness of GC in Ba, one has

∇1G(ξ,x) = a−2∇G∞(ξ̄− x̄) +∇1GC(z, z) + o(1) (40)

Moreover, introducing the rescaled coordinates (39a) into va and u and setting v̄a(ξ̄) :=
va(z+aξ̄), one obtains ∇va(ξ) = a−1∇v̄a(ξ̄) and ∇u(ξ) = ∇u(z) + O(a). Using these
expansions, together with (40) and (39b), in both sides of equation (33) then yields the
expansions

La[va](x) = v̄a(x̄) + 〈v̄a,G∞(·, x̄)〉∆C
B +O

(

a2‖∇v̄a‖L2(B)

)

+ o(‖∇v̄a‖L2(B))

= LB[v̄a](x̄) + o(‖∇v̄a‖L2(B))

〈u,G(·,x)〉∆C
Ba

= a〈ϕ[∇u(z)],G∞(·, x̄)〉∆C
B + o(a).

By virtue of the above expansions, the integral equation resulting from retaining only
the contributions of lowest order in a in (33) is thus found to coincide with the integral
equation (35) governing the free-space transmission problem with E = a∇u(z). This
suggests setting va in the form

va(x) = avB[∇u(z)]
(x−z

a

)

+ δa(x) x∈Ba

The function avB[∇u(z)]
(

(x−z)/a
)

indeed defines the leading contribution to the so-called
inner expansion of va, with the remainder δa only contributing higher order terms in the
limit a→ 0, as stated in the following Proposition, whose proof is deferred to Appendix 4.

Proposition 4 (asymptotic behavior of va). Let the inner approximation ṽa to va be
defined by

ṽa(x) = avB[∇u(z)]
(x−z

a

)

, x∈Ba (41)

where vB[∇u(z)] solves the FSTP (15) with E = ∇u(z). Moreover, for any cut-off function
θ ∈ C∞

c (Ω) such that θ ≡ 1 in a neighborhood D of z, let δa ∈ H1(Ω;R3) be defined by

va = θṽa + δa (42)

Assume also that f has C0,β regularity for some β > 0 in a neighbourhood of z. Then there
exists a constant C > 0 independent of a such that

‖δa‖H1(Ω) ≤ Ca5/2. (43)

Moreover
‖ṽa‖L2(Ω) ≤ Ca5/2 and ‖∇ṽa‖L2(Ω) ≤ Ca3/2. (44)
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Remark 5. The formulation and proof of Proposition 4, in particular regarding the
introduction of δa as defined by (42), follow the approach of (37). As also remarked in (37),
ṽa provides the leading contribution to the inner expansion of va in the sense that (i) θ = 1
in Ba and can be made to vanish outside of an arbitrarily small neighbourhood of Ba and
(ii) ‖∇δa‖L2(Ω) = O(a5/2) while ‖∇ṽa‖L2(Ω) = O(a3/2).

Remark 6. Proposition 4, established assuming C to be constant (homogeneous background
material), is expected to also hold for heterogeneous elastic properties that are smooth in a
fixed neighbourhood of z (with the EMT then defined in terms of C(z)). Both (13) for the
electrostatic case and (24) for the elastic case assume smooth heterogeneous background
properties in Ω, the former emphasizing that the assumption may be significantly weakened.

Remark 7. Expansion (42) is the specialization to diametrically-small inhomogeneities of
expansions obtained by (24) for more general classes of anisotropic inhomogeneities with
vanishing measure |Ba| (e.g. thin or elongated inhomogeneities).

4. Topological expansion of cost functionals

4.1 Small inhomogeneity of arbitrary shape

To establish an expansion of the form (18) of J(Ca) with the help of Proposition 4, the first
step exploits a first-order Taylor expansion of the densities ψΩ, ψΓ of (16), to obtain

J(Ca) = J(C) + J
′(u;va) + JR(u;va) (45)

where J′(u;w) is the directional derivative of J at u in the direction w ∈W0, i.e.

J
′(u;w) =

∫

Ω

ψ′
Ω(·,u)·w dV +

∫

ΓN

ψ′
Γ(·,u)·w dS (46)

and the remainder JR(u;va) can be expressed in the form

JR(u;va) =
1
2

∫

Ω

va ·ψ
′′
Ω(·,u+ tΩva)·va dV +

∫

ΓN

va ·ψ
′′
Γ(·,u+ tΓva)·va dS (47)

for some tΩ, tΓ ∈ [0, 1]. Since va ∈W0 for any a, the support of the boundary integrals in (46)
and (47) is reduced to ΓN. The topological derivative of J(Ca) is the leading contribution
as a→ 0 of expansion (45), and will be found by estimating the directional derivative (46)
and the remainder (47).
First, by virtue of the growth conditions (17) on ψΩ and ψΓ, the remainder (47) can be

bounded, for some positive constant C, as

JR(u;va) ≤ C
[

‖va‖
2
L2(Ω) + ‖va‖

2
L2(ΓN)

]

Invoking estimates (43) and (44), one has

‖va‖
2
L2(Ω) ≤ ‖va‖

2
H1(Ω) = ‖θṽa + δa‖

2
H1(Ω) ≤ Ca5,

while, since va = δa on ΓN, one also has (again invoking (43))

‖va‖
2
L2(ΓN) = ‖δa‖

2
L2(ΓN) ≤ ‖δa‖

2
H1(Ω) ≤ Ca5.

(in fact, one can show from (33) used for x ∈ ΓN that ‖va‖
2
L2(ΓN) ≤Ca6). As a result, one

obtains
JR(u;va) ≤ Ca5 (48)
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The directional derivative J′(u;va) remains to be evaluated. To this aim, it is convenient
to introduce the adjoint solution p defined by the weak formulation

Find p ∈W0, 〈p,w〉CΩ = J
′(u;w), ∀w ∈W0, (49)

Then, on setting w = p in (12) and w = va in (49), combining the resulting identities and
exploiting the symmetry of the energy bilinear form, one obtains

J
′(u;va) = −〈p,u〉∆C

Ba
− 〈p,va〉

∆C
Ba

= −〈p,ua〉
∆C
Ba

(50)

The above equation shows that the asymptotic behavior of J′(u;va) as a → 0 can be
determined from the inner asymptotic behavior of va, which is given by (42). This is
achieved by the following lemma:

Lemma 2. For any vector field w ∈C2(D;R3), where D⊂Ω is a neighbourhood of Ba, one
has

〈w,ua〉
∆C
Ba

= a3∇w(z) :A :∇u(z) + o(a3) (51)

where A is the elastic moment tensor defined by (19).

Proof. See proof of Proposition 5 below.

Under the requirements made on ψΩ in Sec. 2.3 and the additional assumption that
ψ′
Ω(·,u) have C

0,β(V ) regularity for some β > 0 in a neighbourhood V of z, the solution p

of (49) is in C2(V ;R3). Application of Lemma 2 with w=p to (50) gives

J
′(u;va) = −a3∇p(z) :A :∇u(z) + o(a3). (52)

On using estimates (48) and (52) in (45) and comparing the resulting expansion with (18),
the asymptotic behavior δ(a) and the topological derivative DJ(z) of J are as stated next:

Proposition 5 (topological derivative of J). Assume that ψΩ satisfies the requirements
made in Sec. 2.3, and that ψ′

Ω(·,u) have C
0,β regularity for some β > 0 in a neighbourhood

of z. The topological derivative DJ(z) of J(Ca) at z and its asymptotic behavior δ(a) are
given by

DJ(z) = −∇u(z) :A :∇p(z), δ(a) = a3, (53)

where the background field u and the adjoint field p solve (3) and (49), respectively, and
A is the elastic moment tensor defined by (2.4).

Proof. The proposition only requires a proof for Lemma 2. To this aim, one notes that the
following expansion is available for ∇w:

∇w(ξ) = ∇w(z) +O(|ξ−z|) = ∇w(z) +O(a|ξ̄|) (ξ ∈Ba).

Moreover, a similar expansion is available for u, while (42) yields

∇va(ξ) = ∇vB[∇u(z)](ξ̄) +∇δa(ξ) (ξ ∈Ba, ξ̄ ∈B).

Using the above expansions and rescaling (39), one obtains

〈w,ua〉
∆C
Ba

= a3∇w(z) :
{

∫

B

∆C :
(

∇u(z) +∇vB[∇u(z)](ξ̄)
)

dV̄ξ̄

}

+ 〈w, δa〉
∆C
Ba

+O(a4)

= a3∇w(z) :A :∇u(z) + 〈w, δa〉
∆C
Ba

+O(a4)
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using definition (19) of the EMT. Finally, the estimate

〈w, δa〉
∆C
Ba

≤ C‖ε[w]‖L2(Ba)‖ε[δa]‖L2(Ba) ≤ Ca3/2‖δa‖H1(Ω) ≤ Ca3/2a5/2 = Ca4 = o(a3)

holds for some constant C by virtue of (43). This completes the proof.

Remark 8. The analysis leading to Proposition 5 does not apply in the case of small
inhomogeneities nucleating at the boundary, i.e. if z ∈ ∂Ω. To address this case, the free-
space transmission problem should be replaced with a half-space transmission problem for
a normalized inhomogeneity intersecting the traction-free planar surface; likewise G∞ has
to be replaced with the fundamental solution for the half-space. Available references on
asymptotic methods for small surface-breaking defects are much scarcer than for internal
defects, see e.g. (38, 39, 40).

Remark 9. The foregoing analysis, and in particular Proposition 5, still holds if the cost
functional format (16) is extended to also allow integrals of the form

∫

S

ψS(ξ,w) dS(ξ)

where S ⊂ Ω̄ is an arbitrary surface, provided DJ(z) is evaluated at points z 6∈S

Remark 10 (topological derivative of potential energy). For the special case of the potential
energy (11) with ū = 0, one has J′(u,w) = −(1/2)F (w). Hence, p = −(1/2)u and (53)
yields

DJpot(z) =
1
2∇u(z) :A :∇u(z). (54)

4.2 Small inhomogeneity of ellipsoidal shape

The practical evaluation of DJ requires that of the elastic moment tensor, which is given
for an arbitrary inhomogeneity shape B by (19) in terms of six FSTP solutions (15).
When B is an ellipsoid, problem (15) has a known analytical solution vB[E] whose strain

is uniform inside B (34). This solution can be established by means of the equivalent
inclusion method (36), briefly recalled in Appendix C, to obtain:

ε[vB[E]] = −S : (C+∆C :S)−1 :∆C :E. (55)

In (55), S = S(B,C) denotes the (fourth-order) Eshelby tensor, which depends only on
B and C. Its Cartesian components in an orthonormal frame (e1, e2, e3) aligned with the
principal directions of B are given in the general anisotropic case by ((36), eq. (17.19))

Sijkℓ =
1

8π
Cmnkℓ

∫

Σ

[

ηjNim

(

η
)

+ ηiNjm

(

η
)]

ηn dΣ(η̂), (56)

where Σ := {η̂ ∈R3, |η̂|= 1} is the unit sphere, η := a−1
1 η̂1e1+a

−1
2 η̂2e2+a

−1
3 η̂3e3 (where

a1, a2, a3 are the principal semiaxes of B) and N(η) is defined as in (30). Note that (56)
has been expressed as an integral over the unit sphere by effecting on eq. (17.19) of (36)
the transformation u = cosφ with φ∈ [0, π].
For an arbitrary anisotropic background, evaluation of (56) requires numerical quadrature

(see Sec. 6, and also the more complete treatment of (41)), while analytical formulae
involving elliptic integrals are available for isotropic background materials (36). The latter
reduce to the following elementary closed-form expression when B is a ball:

S = S1J + S2K, with S1 :=
1+ν

3(1−ν)
, S2 :=

8−10ν

15(1−ν)
, (57)
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where J and K are defined as in (7) and ν := (3κ−2µ)/(6κ+2µ) is Poisson’s ratio. The
Eshelby tensor S has the minor symmetries Sijkℓ = Sjikℓ = Sijℓk, as is evident from (56).
The major symmetry Sijkℓ = Skℓij holds for the special case (57) but is not true in general.

With the help of (55), the value of A is then found as follows:

Proposition 6 (elastic moment tensor for an ellipsoidal inhomogeneity). The elastic
moment tensor A associated with an ellipsoidal inhomogeneity (B,C+∆C) embedded in a
medium with elasticity tensor C is given by

A = |B|C : (C+∆C :S)−1 :∆C (58)

Proof. On using expression (55) of ε[vB] in (19) and using the fact that the integrand in
the resulting formula is constant, one obtains

E′ :A :E = |B|
(

E′ :∆C :E −E′ :∆C :S : (C+∆C :S)−1 :∆C :E
)

Then, since the above equality holds for any constant tensors E′,E, the sought
expression (58) is readily obtained by invoking the identity ∆C : S : (C +∆C : S)−1 =
I − C : (C+∆C :S)−1.

Spherical isotropic inhomogeneity, isotropic background. In this case, A admits a quite
simple explicit expression. Using that C and C⋆ are of the form (7) with respective moduli
pairs κ, µ and κ⋆, µ⋆ and S is given by (57), invoking the relationsJ :J = J ,K :K = K and
J :K = 0 verified by J and K and noting in particular that (AJ+BK)−1 = A−1J+B−1K

for any (A,B) 6= (0, 0), one easily evaluates (58) to obtain

A =
4π

3

[

3κ
Λ1−1

1+S1(Λ1−1)
J + 2µ

Λ2−1

1+S2(Λ2−1)
K

]

(59)

(with Λ1 := κ⋆/κ, Λ2 := µ⋆/µ). For 0≤ ν ≤ 0.5 one has 1/3≤ S1 ≤ 1 and 8/15≥ S2 ≥ 2/5;
combined with Λ1,2 ≥ 0. This implies that both denominators in (59) are strictly positive,
ensuring in particular the invertibility of C+∆C :S upon which (59) depends, except for
the special case ν =0.5, κ⋆ =0.

4.3 The plane strain case

The derivation of DJ(z) under two-dimensional, plane strain, conditions repeats that of
Secs. 3 and 4.1, the main modifications being that (i) in (30), N(η) is now defined in terms
of the two-dimensional version of K(η) (i.e. Kik = Cijkℓηjηℓ with 1≤ i, j, k, ℓ≤ 2) and the
multiplicative factor in front of the integral becomes (2π)−2, and (ii) volume scaling (39b)
becomes dVξ = a2 dV̄ξ̄. In particular, ∇G∞(r) is now homogeneous of degree -1 in r.

As a result, the form (42) of the inner expansion of va is still valid, the asymptotic
behavior of J(Ca) in (18) is now given by δ(a) = a2, and DJ(z) remains given by (53).

Of course, the normalized inhomogeneity shape B involved in the FSTP solution entering
definition (19) of A is now two-dimensional. When B is an ellipse, expression (58) requires
the plane-strain counterpart of the Eshelby tensor S, which is given by

Sijkℓ =
1

4π
Cmnkℓ

∫ 2π

0

[

αi(θ)Njm

(

α(θ)
)

+ αj(θ)Nim

(

α(θ)
)]

αn(θ) dθ (60)

with α(θ) defined by
α(θ) = a−1

1 cos θ e1 + a−1
2 sin θ e2

Formula (60) is established by considering, in the three-dimensional expression (56), the
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limiting case a3 → ∞ where the ellipsoid B approaches a cylinder of axis e3 and elliptic
cross-section in the (e1, e2)-plane. In that case, setting (cos θ, sin θ) := (η̂21+η̂

2
2)

−1/2(η̂1, η̂2),
one has η = (η̂21 + η̂

2
2)

1/2α(θ) + O(a−1
3 ), which (due to η 7−→ N(η) being homogeneous of

degree −2) implies that

η⊗N
(

η
)

⊗η = α(θ)⊗N
(

α(θ)
)

⊗α(θ) + o(1) (a3 → ∞)

Setting dΣ = sinφ dφ dθ in (56), the integration w.r.t. φ∈ [0, π] becomes trivial, with (56)
reducing to (60) as a result.

Remark 11. The existence of plane strain deformations in anisotropic elastic solids is
subject to restrictions on C, see e.g. (42). All materials having x3 = 0 as material symmetry
plane (known as monoclinic materials, and featuring up to 13 independent elastic moduli)
permit plane strain states in the (x1, x2) plane.

Isotropic inhomogeneity and background. For this case, analytical evaluation of (60) yields
the following explicit expression of S, which coincides with formulae (11.22) of (36) given
for the ellipsoid infinitely elongated along the x3 direction:

S1111 = A(1−m)(3+γ+m) S1122 = A(1−m)(1−γ−m)

S2211 = A(1+m)(3+γ−m) S1122 = A(1+m)(1+γ−m) (61)

S1212 = A(1+m2+γ) S1112 = S2212 = S1211 = S1222 = 0

with A = [8(1−ν)]−1, γ = 2(1−2ν) and m = (a1−a2)/(a1+a2). Then, substituting the
above result into (58) and using therein the plane-strain versions C = κ̄J̄ + µK̄ and ∆C =
∆κ̄J +∆µK of the isotropic elastic constitutive relation (where κ̄ := κ+µ/3 is the plane-
strain bulk modulus, J̄ := I⊗I/2 and K̄ := I−J̄ ), exact algebraic formulae are obtained
for the components of A, which have been checked to coincide with the corresponding result
of (43) (Theorem 3.2), established using a different method.

5. Energy-based functionals

Another important class of functionals are those acting on the displacement gradient, or the
linearized strain tensor, rather than the displacement. They include energy-like quantities
such as the strain energy or energy-based error functionals.
To highlight issues specific to this kind of functional, let

E(Ca) = E(ua) with E(w) =

∫

Ω

Ψ(∇w) dV (62)

(where the density X ∈ R3,3 7→ Ψ(X) is twice differentiable) and consider the first-order
term arising from a pointwise Taylor expansion of Ψ(∇ua) about ∇u:

E1(Ca) := E
′(u;va) =

∫

Ω

Ψ′(∇u) :∇va dV

Defining an adjoint solution q by the weak formulation

〈q,w〉CΩ = E
′(u;w) ∀w ∈W0 (63)

one then obtains (following the derivation (50) and invoking Lemma 2)

E1(Ca) = 〈q,va〉
C
Ω = −〈q,ua〉

∆C
Ba

= O(a3), (64)
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hence the contribution arising from the first-order Taylor expansion of Ψ(∇ua) is again of
order O(a3). However, (43) and (44) also imply that the second-order contribution from
Ψ(∇ua) yields

E2(Ca) :=

∫

Ω

∇va :Ψ
′′(∇u) :∇va dV = O(a3)

Since E1(Ca) and E2(Ca) are both of order O(a3) as a → 0, the leading contribution
of E(Ca) − E(C) as a → 0 clearly does not coincide with that of E1(Ca), unlike for the
previously-considered class (16) of functionals. The derivation (64) does not yield the
topological derivative of E(Ca), which also incorporates higher-order contributions from
Ψ(∇ua) and must be established by means of a distinct treatment.
In the remainder of this section, the topological derivative is established for two energy-

based functionals that depend quadratically on ∇ua. In addition to being of a physically
natural and commonly encountered format, such functionals have exact expansions of the
form E(Ca) = E(C) + E1(Ca) + E2(Ca).

5.1 Two examples of energy-based functionals

The first kind of energy functional measures the error in strain energy between ua and a
given vector field u0 ∈ H1(Ω;R3), and is defined by

E1(Ca) = E1(ua,Ca) =
1
2 〈ua−u0,ua−u0〉

Ca

Ω (65)

The particular case of the strain energy of ua corresponds to setting u0 = 0 in (65).
The second kind of energy functional is the elastic counterpart of the functional used

in (10) for electric impedance tomography. It is used for e.g. material or flaw identification
from overdetermined boundary data. Let ΓN = Γo ∪Γno, assuming that a measurement
uobs of the displacement induced in the solid by the excitation (f , g, ū) defined in Sec. 1
is available on Γo. One can then define ’Neumann’ and ’Dirichlet’ displacement fields that
differ only by their boundary data on Γo, on which either forces or displacements may be
prescribed (the remaining data being as in Sec 1). The ’Neumann’ and ’Dirichlet’ fields
coincide for perfect measurement uobs and a flawless solid with correctly known material
characteristics, whereas a discrepancy between them reveals that the model for the reference
solid is incorrect, e.g. due to the presence of a hidden defect. The ’Neumann’ and ’Dirichlet’
background fields uN and uD are defined by the following weak formulations:

Find uN ∈WN(ū), 〈uN,w〉CΩ = F (w), ∀w ∈WN

0 . (66a)

Find uD ∈WD(ū), 〈uD,w〉CΩ = F (w), ∀w ∈WD

0 . (66b)

having set WD(ū) =
{

v ∈ H1(Ω;R3), v = ū on ΓD, v = uobs on Γo

}

, WD

0 := WD(0)
and WN(ū) = W (ū), WN

0 = W0 in terms of definition (6). Moreover, the ’Neumann’ and
’Dirichlet’ fields uN

a and uD

a for a small trial inhomogeneity Ba located at z are defined by
the following weak formulations for the perturbations vN

a := uN

a −uN and vD

a := uD

a −uD:

Find vN

a ∈WN

0 , 〈vN

a ,w〉CΩ + 〈vN

a ,w〉∆C
Ba

= −〈uN,w〉∆C
Ba
, ∀w ∈WN

0 . (67a)

Find vD

a ∈WD

0 , 〈vD

a ,w〉CΩ + 〈vD

a ,w〉∆C
Ba

= −〈uD,w〉∆C
Ba
, ∀w ∈WD

0 . (67b)

The energy functional E2(Ca) is then defined so as to evaluate the ’Neumann’–’Dirichlet’
discrepancy through the strain energy of the difference uN

a −uD

a defined in terms of the
perturbed material Ca, i.e.:

E2(Ca) = E2(u
N

a ,u
D

a ,Ca) =
1
2 〈u

N

a −uD

a ,u
N

a −uD

a 〉
Ca

Ω (68)
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5.2 Topological derivative of functionals E1, E2

Proposition 7. The topological derivative of the energy functional E1(Ca) is given by

DE1(z) =
|B|

2
ε[u0](z) :∆C :ε[u0](z)−

1

2
ε[u](z) :A :ε[u+2q](z) (69)

where the adjoint solution q is defined by the weak formulation

Find q ∈W (γD(u0−u)), 〈q,w〉CΩ = 0, ∀w ∈W0, (70)

(with γD(w) denoting the trace on ΓD of w ∈H1(Ω;R3)).
The topological derivative of the energy functional E2(Ca) is given by

DE2(z) =
1

2
ε[uD](z) :A :ε[uD](z)−

1

2
ε[uN](z) :A :ε[uN](z) (71)

In both (69) and (71), A denotes again the elastic moment tensor (19).

Proof. The functional E1(Ca) depends quadratically on va. Expanding E1(Ca) into terms
of order 0, 1 and 2 in va, one obtains the following, exact, expression:

2E1(Ca)− 2E1(C) = 〈u−u0,u−u0〉
∆C
Ba

+ 2〈u−u0,va〉
Ca

Ω + 〈va,va〉
Ca

Ω (72)

The definition (70) of the adjoint field q implies that q+u−u0 ∈W0. Hence, one may set
w = q+u−u0 in (12), to obtain after some manipulation:

〈u−u0,va〉
C
Ω = 〈q+u−u0,va〉

C
Ω = −〈q+u−u0,ua〉

∆C
Ba

(where the first equality exploits (70) with w= va ∈W0)), and thus

〈u−u0,va〉
Ca

Ω = 〈u−u0,va〉
∆C
Ba

− 〈q+u−u0,ua〉
∆C
Ba

= −〈u−u0,u〉
∆C
Ba

− 〈q,ua〉
∆C
Ba

Next, weak formulation (12) with w = va yields

〈va,va〉
Ca

Ω = −〈u,va〉
∆C
Ba

Finally, inserting the last two equalities into (72) and rearranging terms, one finds

2E1(Ca)− 2E1(C) = −〈u−u0,u+u0〉
∆C
Ba

− 2〈q,ua〉
∆C
Ba

− 〈u,va〉
∆C
Ba

= 〈u0,u0〉
∆C
Ba

− 〈u+2q,ua〉
∆C
Ba
,

with the desired result (69) following by applying Lemma (51) for the last term of the
right-hand side.
The functional E2(Ca) depending quadratically on vD

a ,v
N

a , one obtains the alternative
expression:

2E2(Ca)− 2E2(C) = 〈uN−uD,uN−uD〉∆C
Ba

+ 2〈uN−uD,vN

a −vD

a 〉
Ca

Ω + 〈vN

a −vD

a ,v
N

a −vD

a 〉
Ca

Ω (73)

Now, using weak formulation (12) with (va,w) replaced in succession by (vN

a ,v
N

a )∈W
N

0×W
N

0 ,
(vD

a ,v
D

a )∈W
D

0 ×WD

0 and (vN

a ,v
D

a )∈W
N

0 ×W
N

0 (noting for the last case that vD

a ∈WD

0 ⊂WN

0 ),
one obtains the identities

〈vN

a ,v
N

a 〉
Ca

Ω = −〈uN,vN

a 〉
∆C
Ba
, 〈vD

a ,v
D

a 〉
Ca

Ω = −〈uD,vD

a 〉
∆C
Ba
, 〈vN

a ,v
D

a 〉
Ca

Ω = −〈uN,vD

a 〉
∆C
Ba
,

and hence
〈vN

a −vD

a ,v
N

a −vD

a 〉
Ca

Ω = −〈uN,vN

a 〉
∆C
Ba

− 〈uD−2uN,vD

a 〉
∆C
Ba

(74)
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Next, using again weak formulation (12), this time with (va,w) replaced by (vN

a ,u
N−uD)∈

WN

0 ×WN

0 , one has
〈uN−uD,vN

a 〉
Ca

Ω = −〈uN,uN−uD〉∆C
Ba

while invoking weak formulations (66a) and (66b) with w= vD

a ∈WD

0 ⊂WN

0 yields

〈uN−uD,vD

a 〉
C
Ω = 0

Combining the last two identities, one obtains

〈uN−uD,vN

a −vD

a 〉
Ca

Ω = −〈uN−uD,vD

a 〉
∆C
Ba

− 〈uN,uN−uD〉∆C
Ba

(75)

Substituting (74) and (75) into (73) and rearranging terms yields

2E2(Ca)− 2E2(C) = 〈uD,uD〉∆C
Ba

− 〈uN,uN〉∆C
Ba

+ 〈uD,vD

a 〉
∆C
Ba

− 〈uN,vN

a 〉
∆C
Ba

= 〈uD,uD

a 〉
∆C
Ba

− 〈uN,uN

a〉
∆C
Ba
.

The sought result (71) finally stems from applying (51) to each term of the right-hand side
in the above equality.

6. Numerical results

This section presents three kinds of numerical results. First, in view of the essential role of
the EMT A in the evaluation of DJ , its computation is examined in Sec. 6.1 for ellipsoidal
(or spherical) inhomogeneities, corresponding to the most often used form of topological
derivative. In this case, (58) shows that an accurate evaluation of A mainly hinges on that
of S, which is thus the main focus of Sec. 6.1. Then, a numerical validation of expression (53)
for DJ , performed in 2D conditions by comparing J(Ca) evaluated either numerically or
using expansion (18), is presented in Sec. 6.2. Finally, Sec. 6.3 illustrates flaw identification
using the topological derivative of the energy functional E1.

6.1 Numerical evaluation of the EMT for ellipsoidal inhomogeneities

Considering an ellipsoidal inhomogeneity shape B, the computation of A using (58) is
straightforward once S is known. Evaluating the latter usually requires a numerical
quadrature of integral (56). A set of high-accuracy quadrature rules specially designed for
integrals over Σ, proposed in (44), are used here for this purpose. Each such rule is based
on a set of NL points η̂q ∈ Σ and weights wq, determined so as to integrate exactly spherical
harmonics of order up to L (they are freely available, as a Matlab file getLebedevSphere.m,
from e.g. www.mathworks.com). Formula (56) then becomes

Sijkℓ =
1

8π
Cmnkℓ

NL
∑

q=1

wq

[

ηq,jNim

(

ηq

)

+ ηq,iNjm

(

ηq

)]

ηq,n(θ) + ǫ(NL) (76)

(where ǫ(NL) denotes the quadrature error). In this section, the accuracy of the numerical
computation of S is quantified in terms of the relative L∞ discrepancy between S and a
reference value Sref, denoted e(S) and defined by

e(S) :=
|S − Sref|∞

|Sref|∞
=

maxi,j,k,ℓ |Sijkℓ − Sref
ijkℓ|

maxi,j,k,ℓ |Sref
ijkℓ|

, (77)
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Fig. 1 Cylindrical inclusion with elliptical cross-section: relative error e(S) as a function of
quadrature order NL for various values of aspect ratio a2/a1.

First, three cases with available analytical exact solutions Sref are considered, namely (a)
a spherical inclusion (a1 = a2 = a3), (b) a penny-shaped thin inclusion (a1 = a2, a3 → 0) and
(c) a cylindrical inclusion with elliptical cross-section (a3 → ∞). An isotropic background
material with a Poisson ratio ν = 0.3 is assumed for all three cases. Numerical quadrature
for cases (b) and (c) used a3 = 10−40 and a3 = 1040, respectively. In cases (a) and (b), (76)
achieves an exact evaluation (within double-precision accuracy) with N5 = 14 and N3 = 6
quadrature points, respectively. Case (c) corresponds to an elliptical inclusion under two-
dimensional plane-strain conditions, with the exact solution Sref given by (61), but the
numerical quadrature was still done using the three-dimensional formula (76), treating
the inclusion as an extremely elongated ellipsoid (a3 = 1040) so as to test the numerical
quadrature under more severe conditions. Relative errors e(S) achieved for various values
of NL and the aspect ratio a2/a1 of the cross-section are shown in Fig. 1. Clearly, due to the
very high aspect ratio a3/a1 used, sufficient accuracy (say e(S) ≤ 10−2) requires hundreds
to thousands of quadrature points depending on the aspect ratio a2/a1.

Next, the influence of either geometrical or material distortion on the quadrature order
NL required to achieve a fixed target accuracy e(S) = 10−5 in (76) is investigated.
In Fig. 2a, an ellipsoidal inclusion with semiaxes (a1, a2, a1) in an isotropic background
material is considered, with the aspect ratio a2/a1 varying over the range [1, 30], while
Fig. 2b corresponds to the case of a spherical inclusion in various anisotropic material,
with the anisotropy index AU (45) varying between 0 (isotropic) to about 150 (highly
anisotropic). The definition and evaluation methodology of AU are recalled for completeness
in Appendix D. Clearly, suitable values of the quadrature order NL are strongly influenced
by both geometrical and material distortion. The latter effect is relevant in e.g. combined
topology/material structural optimization, where the ability to accurately compute DJ(z)
for arbitrary trial materials spanning wide ranges of anisotropy is important.
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Fig. 2 Quadrature order NL needed to achieve target accuracy e(S) = 10−5 for (a) isotropic
background material and varying values of aspect ratio a2/a1 or (b) varying values of anisotropy
index AU of background material.

6.2 Numerical assessment of the topological derivative

In this section, a simple cantilever structure featuring an anisotropic elliptic inhomogeneity
Ba is considered, under plane-strain two-dimensional conditions (Fig. 3). The structure is
clamped along its left side and loaded on its right side by g = (0,−1). No body forces are
applied (f = 0), and the remaining part of the boundary is traction-free. Two cases are
considered for the constitutive properties: (a) a fully isotropic case with

C =





1.34 0.57 0.
0.57 1.34 0.
0. 0. 0.38



 , C⋆ = 10−9C

(using the Voigt matrix notation, which reduces to 3×3 matrices for the plane-strain case),
i.e. with a very soft inhomogeneity close to a void, and (b) a fully anisotropic case with

C =





1. 0.5 0.
0.5 2. 0.
0. 0. 0.04



 , C⋆ =





3. 0.4 0.
0.4 1.5 0.
0. 0. 0.03





A specific objective function was considered, namely the potential energy

J(Ca) = Epot(ua) := −
1

2

∫

ΓN

ua ·g ds = −
1

2

∫

ΓN

ua,2 ds,

whose topological derivative is given by (54). Finite element analyses for cases (a) and (b)
with various (small) values of a were made using FreeFem++ (46), while the computation
of DJ(z) relied on a Gauss-Legendre quadrature formula for the numerical evaluation of S
by means of (60).
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Fig. 3 2D Test case and the nested mesh structure of the inhomogeneities.
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Fig. 4 2D Test case with nested inhomogeneities

The discrepancy e(a) between J(Ca) evaluated either numerically or using expansion (18),
defined by

e(a) :=
|∆J − a2DJ(z)|

|a2DJ(z)|
, with ∆J := J(Ca)− J(C)

is plotted against a in Fig. 4, for an elliptic inhomogeneity with aspect ratio a1/a2 = 1 (disk)
or 2 and (in the latter case) orientations α = 0 or π/4. A numerical test of correctness of
the evaluation of DJ(z) then consists in checking that e(a) = o(a) for small a. This desired
trend is clearly visible for all considered cases in Fig. 4. The results there moreover suggest
that e(a) = O(a2), even though one would a priori have expected a linear behavior. This
empirical remark is consistent with higher-order topological expansions obtained in other
situations (47) where for 2D problems the O(a3) contribution to the objective function
expansion is found to vanish whenever the shape B has central symmetry, which is the case
of an elliptic inhomogeneity.

Remark 12. This asymptotic validation is here limited to the 2D case because accurate
numerical results require a very fine mesh of the inhomogeneity and its vicinity.
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6.3 Flaw identification using an energy cost functional

To illustrate the usefulness of the topological derivative of energy-based cost functionals, the
detection of three circular anisotropic inhomogeneities Bk =Ba(zk) (k=1, 2, 3) having the
same radius a and embedded in an anisotropic reference material is considered, again under
two-dimensional plane-strain conditions (with geometry and background elastic properties
C as shown in Fig. 5). B1 and B3 are softer than the background (C⋆ = 0.5C), while B2

is harder (C⋆ = 2C). The solid is clamped on its bottom and lateral sides, while a uniform
normal pressure g = 1 is applied on its top side. The displacement response u0 of the
flawed solid is computed using finite elements. The identification problem then consists
of identifying the inclusions knowing the kinematic response u0, which may in practice be
available from full-field measurement techniques such as digital image correlation. Here,
the identification problem may be formulated as minimizing the functional E1 defined
by (65). Figure 6 shows the topological derivative DE1(z) (more precisely, the normalized
and thresholded quantity z 7→ Min

(

DE1(z), 0
)

/
[

− Min
(

DE1(z)
)]

), where the EMT is
defined using either C⋆ =0.5C or C⋆ =2C. According to the choice of EMT, the topological
derivative fieldDE1(z) is seen to reveal correctly, through locations at whichDE1(z) is most
negative, the locations of the softer and stiffer flaws. This is consistent with similar findings
made in (28) for the elastodynamic case and using least-squares output cost functionals.
Similar results have been obtained on this example for cases where C⋆ is not proportional
to C.

L = 2

H = 1

x

y

z1 = (0.3,−0.35)

z2 = (1, 0.65)

z3 = (1, 7.65)

g = 1

B1

B2

B3

(a2 = 0.003)

C =





1. 3. 0.
3. 10. 0.
0. 0. 0.03





Fig. 5 Flaw identification using an energy cost functional: setting and notations.

Fig. 6 Flaw identification using an energy cost functional: topological derivative DE1(z).
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Appendix A. Proof of Proposition 3

From definition (19), for any E ∈R3,3, one has E :A :E = |B|E :∆C :E+ 〈ϕ[E],vB[E]〉∆C
B .

This proof now exploits two different reformulations of E :A :E. For a first reformulation,
setting w= vB in (15), one has 〈ϕ[E],vB[E]〉∆C

B = −〈vB[E],vB[E]〉CB

B , and hence

E :A :E = |B|E :∆C :E − 〈vB[E],vB[E]〉CB

B . (A.1)

For a second reformulation of E :A :E, let Z :=C⋆−1 :∆C :E ∈R3,3
sym, so that 〈ϕ[Z],w〉CB

B =

〈ϕ[E],w〉∆C
B holds for any w ∈H1(B;R3), and define v̂B[E] := vB[E]+ϕ[Z] in B. Then:

〈ϕ[E],vB[E]〉∆C
B = 〈ϕ[Z],vB[E]〉CB

B

= 〈v̂B[E]−vB[E],vB[E]〉CB

B

= 〈v̂B[E], v̂B[E]〉CB

B − 〈v̂B[E],ϕ[Z]〉CB

B − 〈vB[E],vB[E]〉CB

B (A.2)

Now, setting again w= vB in (15), one obtains

〈vB[E],vB[E]〉CB

B = −〈vB[E],vB[E]〉CB

R3\B − 〈ϕ[E],vB[E]〉∆C
B .

Inserting this identity in the last equality of (A.2), using 〈v̂B[E],ϕ[Z]〉CB

B = 〈v̂B[E],ϕ[E]〉∆C
B

and noting that |B|E :∆C :E = 〈ϕ[E],ϕ[E]〉∆C
B , the sought reformulation is finally:

E :A :E = 〈v̂B[E], v̂B[E]〉CB

B + 〈vB[E],vB[E]〉CB

R3\B + 〈ϕ[E],ϕ[E−Z]〉CB

B (A.3)

Let now E be an eigentensor associated vith eigenvalue Λ for problem (26).
First, (26) then implies E : ∆C : E = (Λ− 1)E : C : E; moreover, the last term in the

right-hand side of (A.1) is non-positive. Therefore, E :A :E< 0 for any eigenvalue Λ< 1.
Then, to exploit the second reformulation (A.3), a simple derivation yields

〈ϕ[E],ϕ[E−Z]〉CB

B = |B|E :∆C :C⋆−1 :C :E = |B|(Λ−1)E :C :C⋆−1 :C :E.

The above quantity is positive for Λ> 1 while the other terms in the right-hand side of (A.3)
are non-negative. Therefore, E :A :E> 0 for any eigenvalue Λ> 1.
Finally, the proof of Proposition 3 is completed by noting that if Λ= 1, an eigenvector E

verifies ∆C :E= 0. This implies that E :A :E = |B|E :∆C :E + 〈ϕ[E],vB[E]〉∆C
B = 0.

Appendix B. Proof of Proposition 4

Estimates (44) of ṽa are found first by rescaling (for a small enough)

‖ṽa‖
2
L2(Ω) = a2

∫

Ω

∣

∣

∣vB[∇u(z)]
(ξ−z

a

) ∣

∣

∣

2

dVξ = a5
∫

(Ω−z)/a

|vB[∇u(z)](ξ̄)|2 dV̄ξ̄

≤ a5
∫

R3

|vB[∇u(z)](ξ̄)|2 dV̄ξ̄ = Ca5

(since the far-field behavior (38) implies that vB is square-integrable). Similarly,

‖∇ṽa‖
2
L2(Ω) = a2

∫

Ω

∣

∣

∣
∇ξvB[∇u(z)]

(ξ−z

a

) ∣

∣

∣

2

dVξ ≤ a3
∫

R3

|∇vB[∇u(z)](ξ̄)|2 dV̄ξ̄ = Ca3

Furthermore, since vB = O(|x|−2) and ∇vB = O(|x|−3) at infinity by virtue of (38), one
also deduces by rescaling that

‖ṽa‖L∞(Ω\D) ≤ Ca3 and ‖∇ṽa‖L∞(Ω\D) ≤ Ca3. (B.1)
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Attention is now directed towards the estimate (43) on δa. Combining (12) and a rescaled
version of (15), the weak formulation satisfied by δa is found as

Find δa ∈W0, 〈δa,w〉Ca

Ω = −〈u−ϕ[∇u(z)],w〉∆C
Ba

−G(w), ∀w ∈W0

where G(w) is defined as

G(w) = 〈θṽa,w〉Ca

Ω + 〈ϕ[∇u(z)], θw〉∆C
Ba

(having used that θ = 0 in R3 \Ω and θ = 1 in Ba). Taking w = δa, one then has the
following estimate:

C‖ε[δa]‖
2
L2(Ω) ≤ |〈δa, δa〉

Ca

Ω | ≤ |〈u−ϕ[∇u(z)], δa〉
∆C
Ba

|+ |G(δa)|. (B.2)

The local smoothness assumption on f implies that u is C2 at z. Applying the mean value
theorem, one then has

|ε[u](x)− ε[u](z)| ≤ Ca in Ba,

so the first term in the right-hand side of (B.2) can be bounded as

| 〈u−ϕ[∇u(z)], δa〉
∆C
Ba

| ≤ Ca5/2‖ε[δa]‖L2(Ω).

Moreover, one has

G(δa) = 〈θṽa, δa〉
Ca

Ω − 〈ṽa, θδa〉
Ca

Ω =

∫

Ω

{

ε[δa] :Ca : (ṽa⊗∇θ)s − ε[ṽa] :Ca : (δa⊗∇θ)s)
}

dV,

where the superscript ’s’ signifies the symmetric part. Hence, since ∇θ vanishes in a
neighborhood D of Ba, by Korn’s inequality and the estimates (B.1), it follows that

|G(δa)| ≤ C
[

‖ṽa‖L∞(Ω\D) + ‖ε[ṽa]‖L∞(Ω\D)

]

‖∇θ‖L2(Ω\D)‖ε[δa]‖L2(Ω)

≤ Ca3‖ε[δa]‖L2(Ω).

Finally, from (B.2), the following global estimate holds:

‖ε[δa]‖L2(Ω) ≤ C(a3 + a5/2) ≤ Ca5/2,

completing the proof by Korn and Poincaré inequalities.

Appendix C. The equivalent inclusion approach

The concept of Eshelby tensor arises from considering a constant eigenstrain E⋆ ∈ R3,3
sym

applied over an ellipsoidal part B of an unbounded elastic medium Ω = R3 endowed with
homogeneous elastic properties C (36). The displacement field v⋆

B thus created is given
explicitly by the representation formula

v⋆
B(x) = 〈ϕ[E⋆],G∞(·−x)〉CB, x∈R

3 (C.1)

When B is an ellipsoid and E⋆ ∈ R3,3
sym is uniform, the above representation can be

analytically evaluated, revealing that v⋆
B depends linearly on x inside B. The Eshelby

tensor S of B is then defined by setting

ε[v⋆
B](x) = S :E⋆ (x∈B). (C.2)

Formula (56) for the components of S stems from analytically evaluating (C.1) and
interpreting the result according to definition (C.2).
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Then, the equivalent inclusion method consists in finding an eigenstrain E⋆⋆ such that
the solution vB of integral equation (35) has the form

vB[E] = ϕ[S :E⋆⋆] in B (C.3)

Inserting the above ansatz in (35) and comparing with (C.1), the equivalent-inclusion
analogy is found to be achieved by setting

E⋆⋆ = −(C+∆C :S)−1 :∆C :E (C.4)

Appendix D. Anisotropy index

The universal elastic anisotropy index, introduced in (45), is defined as

AU = 5
µV

µR
+
κV
κR

− 6 ≥ 0, (D.1)

where CV = 3κVJ + 2µVK and CR = 1/(3κR)J + 1/(2µR)K are the Voigt estimate of
C and the Reuss estimate of C−1, respectively. Both estimates are defined from averaging
over all possible spatial orientations, and are hence isotropic. They are given by CV = H(C)
and CR = H(C−1), where H is the Haar measure over the set of rotations of R3, defined by

H(E) =
1

8π2

∫ 2π

0

∫ 2π

0

∫ π

0

Q(θ, φ, ψ) :E :QT(θ, φ, ψ) sin θ dθ dφ dψ (D.2)

(θ, φ, ψ denoting the Euler angles). In (D.2), the fourth-order rotation tensor Q is defined
(see (48, 35)) by Q := 1/2(QikQjℓ+QiℓQjk)ei⊗ej⊗ek⊗eℓ in terms of the rotation matrix
Q := Qz(ψ)Qx(θ)Qz(φ) ∈ R3,3, where

Qz(α) =





cosα − sinα 0
sinα cosα 0
0 0 1



 , Qx(α) =





1 0 0
0 cosα − sinα
0 sinα cosα



 .
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