
HAL Id: hal-00852203
https://hal.science/hal-00852203

Submitted on 20 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Poisson ratio and excess low-frequency vibrational states
in glasses

Eugène Duval, Thierry Deschamps, Lucien Saviot

To cite this version:
Eugène Duval, Thierry Deschamps, Lucien Saviot. Poisson ratio and excess low-frequency vibrational
states in glasses. Journal of Chemical Physics, 2013, 139, pp.064506. �10.1063/1.4817778�. �hal-
00852203�

https://hal.science/hal-00852203
https://hal.archives-ouvertes.fr


Poisson ratio and excess low-frequency vibrational states in glasses

Eugène Duval,1 Thierry Deschamps,1 and Lucien Saviot2
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In glass, starting from a dependence of the Angell’s fragility on the Poisson ratio

[V. N. Novikov and A. P. Sokolov, Nature 431, 961 (2004)], and a dependence of the

Poisson ratio on the atomic packing density [G. N. Greaves et al., Nat. Mater. 10, 823

(2011)], we propose that the heterogeneities are predominantly density fluctuations

in strong glasses (lower Poisson ratio) and shear elasticity fluctuations in fragile

glasses (higher Poisson ratio). Because the excess of low-frequency vibration modes

in comparison with the Debye regime (boson peak) is strongly connected to these

fluctuations, we propose that they are breathing-like (with change of volume) in strong

glasses and shear-like (without change of volume) in fragile glasses. As a verification,

it is confirmed that the excess modes in the strong silica glass are predominantly

breathing-like. Moreover, it is shown that the excess breathing-like modes in a strong

polymeric glass are replaced by shear-like modes under hydrostatic pressure as the

glass becomes more compact.

PACS numbers: 63.50.Lm, 62.20.dj, 62.65.+k, 81.05.Kf
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I. INTRODUCTION: POISSON RATIO AND FRAGILITY

The Poisson ratio (ν) is the negative quotient of the transverse strain and the axial strain

of a solid under a uniaxial stress. It is related to the bulk modulus K and the shear modulus

G as follows:

ν =
3K − 2G

2 (3K +G)
(1)

From the relation that exists between the elastic moduli and the velocities of the longitudinal

(V`) and transverse (Vt) acoustic waves, one obtains:

ν =

(
V`

Vt

)2
− 2

2
[(

V`

Vt

)2
− 1

] (2)

Because both K and G have positive values, ν can take values in between 1
2

and -1. The

values which are close to 1
2

are obtained for K � G which means that the material is not

very compressible and is more easily strained by a shear stress. It is the contrary for ν close

to 0. In the case of negative values (−1 < ν < 0) the material swells under a tension. Such

a strange behavior is observed for so-called auxetic materials. The mechanical properties

of non-crystalline materials, and especially of glasses, were well described in relation to the

Poisson ratio by Greaves et al. in a recent paper.1 After the early paper of Makishima and

Mackenzie,2 these authors established a relation between the Poisson ratio and the atomic

packing density which is defined as the ratio of the minimum theoretical volume occupied

by the ions to the corresponding effective volume in the glass. A packing ratio close to one

corresponds to ν ≈ 0.5 and a low packing ratio corresponds to ν ≈ 0.

Glass-forming materials are often characterized by the Angell’s fragility which measures

the deviation from the Arrhenius regime of the temperature dependence of the shear viscosity

(η) at the glass transition temperature (Tg). Angell’s fragility is quantified by the index m as

defined in Eq. 3.

m =

[
∂ log η

∂ Tg/T

]
T=Tg

(3)

Novikov et al. evidenced the relation which exists between the Angell’s fragility of the

glass-former and the Poisson ratio of the corresponding glass.3,4 They showed that the fragility
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m is linearly dependent on the ratio K/G. Yannopoulos and Johari5, considering a large

number of glasses, found that this linear dependence is not general and is only valid for a

limited number of glasses. In fact, more generally, m increases with K/G and the slope

of the approximate linear dependence changes from one type of glass to another.1 From

Eq. 1, it means that, considering a type of glass, the Poisson ratio is weaker for glasses

froze-in from strong melts than for glasses frozen-in from fragile melts. Obviously, the

Poisson ratio of the glass is correlated to the Poisson ratio of the melt. Indeed, it was

experimentally demonstrated6 that the Poisson ratio of the considered fragile glass-formers

strongly decreases when the temperature approaches the glass-transition one (Tg), while that

of strong glass-formers does not change very much when the temperature is approaching Tg.

It means that the difference between the Poisson ratios of fragile and strong glass-formers

is even larger than that between the Poisson ratios of the corresponding fragile and strong

glasses. This interesting experimental result justifies that, in the following, glasses with a

low Poisson ratio (typically, ν < 0.2) will be called strong and those with a high Poisson

ratio (typically, ν > 0.25) will be called fragile. From the relation between the Poisson ratio

and the atomic packing density,1 it means that the fragile glasses are more compact than

strong ones.

II. NATURE OF THE VIBRATIONAL MODES IN THE BOSON PEAK

RELATED TO THE POISSON RATIO

It is now generally accepted that the elasticity of glasses at the nanometric scale is

heterogeneous. This was early hypothesized in a simple model relating the frequency of boson

peak to the mean size of the heterogeneities.7 Later theoretical and computational models

confirmed that shear inhomogeneities can account for the boson peak. See the recent paper of

Marruzzo et al.8 and the numerous references therein for more about these inhomogeneities.

The reason for the heterogeneous elasticity (not only for shear) is either the fluctuations of

atomic packing density or the fluctuations of the shear elasticity which is not necessarily

correlated to density fluctuations. One understands that vibrations can at least partially

be localized around the such heterogeneities, whatever their origin. This localization is

responsible for the low-frequency vibrational density of states (VDOS) excess, in comparison

with the Debye regime, that is observed as the so-called boson peak. The VDOS excess
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does not consist of only the localized modes themselves. It is due to the hybridization

between the partially localized modes and the propagating longitudinal or transverse acoustic

modes.9 At the anti-crossing between the dispersive acoustic branches and the non-dispersive

pseudo-optical branches corresponding to the localized modes there is a flattening of the

dispersion curves, that gives rise to pile-ups in the VDOS at the origin of the boson peak.

Two different types of localized vibration modes are distinguished: the modes inducing

a volume change, and the modes without volume change. The first ones are breathing-like

modes or bulk-like modes, and the second ones are shear modes. The frequency of the

bulk-like mode (ωb) is well-approximated by the following equation: ωb = Vb

D
, Vb being the

bulk velocity and D the length scale of heterogeneity. The frequency of the localized shear

mode is ωt ≈ Vt

D
. The bulk velocity is proportional to the square root of the bulk modulus so

that:

V 2
b = V 2

` −
4

3
V 2
t (4)

From these equations, we note that the ratio ωb

ωt
increases with increasing V`

Vt
and therefore

with increasing ν. This is consistent with the fact that the glass becomes more compact

when ν increases. From the above dependencies of the vibration frequencies on velocities,

ωb = ωt for ν = 0.13. A more rigorous calculation for modes localized on a perfectly spherical

heterogeneity10 indicates that ωb = ωt closer to ν = 0. In any case, it follows that for

glasses frozen-in from strong melts (ν ≈ 0.13) ωb is close to ωt. Of course, having the lowest

frequency is not a sufficient criterion to determine the contribution of the modes to the excess

in the VDOS. A more decisive parameter is the strength of the localization and the resulting

hybridization between the localized vibrational modes and the acoustic propagating modes.

The modes are all the more localized when the fluctuations, which cause the localization,

are marked. It was noted before that a weak Poisson ratio (ν ≈ 0.13) is related to the

prevalence of atomic volume (or density) fluctuations . On the other hand, a high Poisson

ratio (ν ≈ 0.35) is linked to the existence of shear fluctuations without change of atomic

volume. From these considerations, we expect that in a strong glass with a weak ν the VDOS

excess is dominated by the breathing-like vibrations (with change of volume). On the other

hand, in a glass with a higher ν, the VDOS excess is dominated by shear vibration modes

(without change of volume).
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A. Excess vibrational states in a polymeric glass. Effect of hydrostatic

pressure

The experimental results on the shift of the boson peak frequency under applied hydrostatic

pressure obtained by Stavrou et al. with a polymeric glass are very interesting. They were

very recently published.11 The polymeric glass considered in this work, Kel-F 800, is a

co-polymer of chlorotrifluoroethylene and vinylidene fluoride in a 3:1 weight ratio. Its glass

transition temperature Tg at ambient pressure is 26◦C. By comparison with the acoustic

velocities also measured by Brillouin scattering as a function of applied hydrostatic pressure

by Stevens et al.,12 it appears (Eq. 2) that ν = 0.166 at ambient pressure and abruptly

increases to 0.37 at 0.3 GPa. This value then remains constant up to pressures higher than

15 GPa. This means that the polymeric strong glass at ambient pressure, becomes fragile

under an applied pressure higher than 0.3 GPa. This change was interpreted by a collapse of

free volumes,12 the glass becoming more compact. Stevens et al. noted that the co-polymer

is in a glassy state at any pressure including ambient.12 Regarding the glassy state, it is

interesting to notice that at P = 0.1 GPa the Poisson ratio (ν = 0.06) is weaker than

at ambient pressure (ν = 0.166). This decrease is due to the increase of Vt from 1225 to

1321 m/sec as the pressure is applied without a significant change of V`.
12 It is very likely

that the increase of Vt comes from the increase of Tg and that the polymeric glass at ambient

pressure is stronger than indicated by its Poisson ratio.

Stavrou et al.11 compared the ratio of the frequency of the boson peak at pressure P to

the frequency of the boson peak at ambient pressure
ωbp(P )

ωbp(0)
to the ratio of the bulk velocities

Vb(P )
Vb(0)

. By doing so, they assumed that the frequency of the boson peak is given by Vb

D
, i.e.,

that the excess modes are the bulk-like modes. From this comparison they deduced that

the length scale D increases with pressure because
ωbp(P )

ωbp(0)
< Vb(P )

Vb(0)
. Such an increase of D

with pressure is very surprising. But their experimental results can be interpreted differently.

Following the previous considerations, at ambient pressure the glass is strong (ν = 0.166) and

the bulk-like modes (with change of volume) are in excess. On the other hand, at a pressure

higher than 0.3 GPa the glass is fragile (ν = 0.37) and the shear modes (without change of

volume) are in excess. As a result,
ωbp(P )

ωbp(0)
should be compared to Vt(P )

Vb(0)
for P > 0.3 GPa. This

is done in Fig. 1 in which we observe a very good agreement for P > 0.3 GPa. Furthermore,

it was remarked that Vt(P )
Vt(0)

was systematically higher than
ωbp(P )

ωbp(0)
. This comparison shows that
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the modes of the boson peak, which are likely bulk-like at ambient pressure, are replaced by

shear modes at a pressure higher than 0.3 GPa. Furthermore, it comes from this comparison

that the length scale D ≈ 1.3 nm of the localized modes hardly changes with pressure. This

means that the shear fluctuations under hydrostatic pressure keep the memory of the density

fluctuations at ambient pressure.
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FIG. 1. Variations with pressure of
ωbp(P )
ωbp(0)

(full circles with error bars, from Stravrou et al.11) and

Vt(P )
Vb(0)

(crosses, from Stevens et al.12 (red online)) for the Kel-F 800 glass.

B. Excess vibrational states in silica glass

Silica is a strong glass at ambient pressure. According to Zha et al.,13 ν = 0.15. On

the other hand, the depolarization ratio of the Raman boson peak is 0.3. If the vibration
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modes involved in the boson peak were the shear modes then the depolarization ratio would

be closer to 0.75.14 The Poisson ratio and the measured depolarization ratio let us assign

the modes of the boson peak to breathing-like modes. Recently Rufflé et al. showed that

the temperature dependence of ωbp for the silica glass scales as that of Vb.
15 This is another

strong indication that the modes of the boson peak are mainly breathing-like.

There are no accurate experimental measurements of the shift of the boson peak frequency

of silica with an applied hydrostatic pressure. However, such a shift was measured by Raman

scattering16 for the GeO2 glass which is also strong and has a similar behavior as SiO2 under

an applied pressure. For GeO2 it is noted that, while the transverse acoustic velocity presents

a minimum at about 1.5 GPa, as with SiO2 at about 3.5 GPa17, the shift of the boson peak

frequency does not show a minimum and monotonically increases between 0 and 4 GPa as

the bulk velocity. The SiO2 glass becomes fragile (ν = 0.33) at about 20 GPa.13 To the best

of our knowledge, the boson peak of silica glass has not been measured at pressures higher

than 20 GPa. Our findings make it possible to theoretically extrapolate the shear character

of the excess VDOS above 20 GPa.

III. DISCUSSION

From this study, it is deduced that strong glasses which have a weak Poisson ratio (ν < 0.2)

and are not compact, are affected mainly by fluctuations of atomic volume or of density. As

a result, localized breathing-like vibration modes can exist. It is then likely that the excess

vibrational states have a breathing character. On the other hand, fragile glasses, which have

a higher Poisson ratio (ν > 0.25) and are more compact, are affected by fluctuations of shear

elasticity without change of volume. Therefore the excess vibrational states have a transverse

character because only such modes can be localized in such a system.

Applying an hydrostatic pressure to a strong glass increases its compactness and therefore

its Poisson ratio.18 As a result, a glass which is strong at ambient pressure may become fragile

at higher pressure. As a consequence, the modes in the boson peak which are breathing-like at

ambient pressure are replaced by shear modes under pressure. However, there are exceptions

to this rule. As an example, the Poisson ratio of the poly(methyl methacrylate) glass (PMMA)

is changed from ν = 0.325 at ambient pressure to ν = 0.125 at P=0.275 GPa.19 This decrease

of ν is likely due to a modification of the macromolecules arrangement becoming locally
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more ordered under pressure. It would be interesting to check if the shear modes at ambient

pressure are replaced by breathing-like modes in the spectral range of the boson peak when

a hydrostatic pressure is applied.

It is interesting to note that there is a correlation between the nature of the excess modes

and that of the relaxation at the glass transition. Buchenau et al.20 showed that in strong

glass formers (low Poisson ratio), the relaxations couple more strongly to density fluctuations.

By contrast, they tend to couple to shear fluctuations in fragile glass-formers (high Poisson

ratio).

It is generally considered that the modes of the boson peak are transverse as claimed by

Shintani et al.21 The examples that we have given show the opposite for strong glasses with

a low Poisson ratio. In that case, the modes in the spectral range of the boson peak can be

predominantly breathing-like. Another argument in favour of the universal transverse nature

of the excess vibrational states comes from simulations.21 Unfortunately, simulations are in

general not performed for very strong glasses with a low Poisson ratio as in this recent paper

by Marruzo et al.8 By comparing a mean-field theory of shear-elastic heterogeneity22 with

a large-scale simulation of a soft-sphere glass, the authors concluded that the origin of the

boson peak is the heterogeneous shear elasticity. The system under consideration was very

fragile as shown by the calculated Poisson ratio which is high (ν ≈ 0.35). This result agrees

with our deduction that the heterogeneities of elasticity and the modes of the boson peak

have a shear character in fragile glasses. However, it isn’t at odds with the modes of the

boson peak in strong glasses being breathing-like, especially in silica glass.

It is remarkable that the VDOS excess clearly increases with the decrease of the Poisson

ratio as shown by Novikov et al.4 From the deductions of our study, this means that VDOS

excess is more related to the amplitude of the fluctuations of density than to that of shear

elasticity and mainly consists of breathing-like vibrational states in strong glasses.

Monaco et al.23 showed that the characteristics of the boson peak (amplitude and frequency)

of a silicate glass (Na2FeSi3O8.5) evolve as a function of densification according to the Debye

regime. Their conclusion was that the glass behaves like a simple elastic medium without

change of the local structure with densification in the range from 2.71 to 2.88 g/cm3. We

note that the glass under consideration was not strong and had a Poisson ratio ν ' 0.25

whatever the considered densities. We then deduce that on the one hand the excess modes

are shear modes whatever the densification, and on the other hand the volume contraction
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after densification by the application of an hydrostatic pressure is homogeneous (no change of

ν). Therefore the obtained experimental result concerning the boson peak is not surprising.

However it does not imply that the shear elasticity is that of a continuous elastic medium,

and that there are not shear elasticity fluctuations. The mere presence of a VDOS excess is

proof of the contrary.

For the same silicate glass, densifying up to 3.25 g/cm3 does not noticeably change

the Poisson ratio and it was shown that the boson peak is equivalent to a van Hove TA

singularity which, after extrapolating to higher densities, reaches that of the crystal of the

same composition.24 This result is in agreement with the hybridization model of the transverse

propagating acoustic states with the shear localized ones.9 If for higher densities the boson

peak eventually turns into the van Hove singularity of the crystal, it could be concluded that

the shear elasticity of the glass prefigures that of the crystal of the same composition. Recently,

Baldi et al.25 compared the inelastic X-ray scattering (IXS) of “polycrystalline” α-quartz

(2.649 g/cm3) to that of silica glass densified to the same density (2.67 g/cm3). They observed

that the vibrations of the densified glass resemble to those of the polycrystal. However it

is pointed out that for a similar densified silica glass (density=2.62 g/cm3), the dispersion

curve shows a cross-over26 (flattening) at an energy E ≈ 9 meV and a momentum-transfer

Q ≈ 2.2 nm−1. Such a wave-vector is much smaller than that of a van Hove singularity of

α-quartz. It corresponds9 to an heterogeneity size D ≈ 1.8 nm which is not far from that

estimated by Baldi et al.25 from the width of the IXS peak.

IV. CONCLUSION

This study evidences that the relevant parameter to take into account when studying the

low-frequency vibrational dynamics of glasses is the Poisson ratio. Strong glasses have a

low Poisson ratio and are not compact. The excess low-frequency vibrational states in such

glasses are predominantly breathing-like, i.e., with volume change. On the other hand, fragile

glasses are more compact and not very compressible. The excess low-frequency vibrational

states are shear-like in these glasses. Under an applied hydrostatic pressure, a strong glass

may become fragile and the excess vibrational states evolve from breathing-like to shear-like.
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