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ABSTRACT
This paper represents a part of our efforts to generalize po-
larimetric incoherent target decomposition to the level of
BSS techniques by introducing the ICA method instead of
the conventional eigenvector decomposition. We compare,
in the frame of polarimetric incoherent target decomposition,
several criteria for the estimation of complex independent
components [1, 2]. This is done by parametrising the ob-
tained dominant and mutually independent target vectors
using the TSVM [3] and representing them on the corre-
sponding Poincaré sphere. We demonstrate notably good
performances of the proposed method applied on the RAM-
SES POLSAR X-band image, by precisely identifying the
class of trihedral reflectors present in the scene. Logarithm
and square root nonlinearities - two of the three proposed
criteria for complex IC derivation prove to be very efficient.
The best discrimination between the a priori defined classes
appears to be achieved with the principal kurtosis criterion.
Finally, the algorithm using the former two functions leads to
very interesting entropy estimation.

Index Terms— Polarimetric ICTD, Complex Fast-ICA,
TVSM, Poincaré sphere, non-gaussianity

1. INTRODUCTION

Conventional algebraic incoherent target decompositions are
based on the Hermitian nature of the coherence (or covari-
ance) matrix [4]. Eigenvector decomposition of the space av-
eraged coherence matrix results in a set of mutually orthog-
onal target vectors, representing the dominant scatterers in a
scene. Accompanying eigenvalues define the corresponding
scatterers contribution to the total scattering. The two mostly
used algebraic decompositions are the H/α decomposition,
proposed by Cloude and Pottier [5] and the Touzi decompo-
sition [3]. They differ in terms of target vector parametriza-
tion: the first one uses α/β model, while the second uses
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the Target Scattering Vector Model (TSVM), which ensures
roll-invariance in case of both symmetric and non-symmetric
targets.

The Independent Component Analysis (ICA) is a blind
source separation technique (BSS) aiming to recover indepen-
dent source signals without having any physical knowledge
of the mixing process [6]. Unlike the Principal Component
Analysis (PCA), which is limited to the second order statis-
tics of the observations and therefore results in statistically
uncorrelated sources, ICA is rather based on the higher order
statistics.

It can be shown that the eigenvector decomposition of the
scattering coherence matrix, under certain constraints, pro-
vides the same results as the Principal Component Analysis
(PCA) of the corresponding representative target vector [7].
The idea is to propose a generalization of the polarimetric
decomposition to the level of blind source separation tech-
niques by introducing several different ICA methods instead
of the eigenvector decomposition. The principal motivation
is the possibility to exploit higher order statistics of the non-
Gaussian target vector in order to recover a set of independent
dominant scatterers. The recovered linearly independent scat-
tering target vectors are not necessarily orthogonal. They are
parametrised using the TSVM, allowing the Poincaré sphere
representation with direct physical interpretation [8].

In this paper we compare, in the framework of ICTD,
different criteria used in the derivation of complex indepen-
dent components, by applying Complex NC-FastICA algo-
rithm [2]. The analysis is done by investigating the efficiency
in: the identification of elementary reflectors in the scene, the
discrimination between different targets and the entropy esti-
mation.

2. METHOD

The first step is the statistical classification of the POLSAR
image [9]. After initialization by H/α unsupervised classi-
fication, we compute the barycenters of the classes using the
Riemannian distance in covariance space. Finally, pixels are
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Fig. 1. RAMSES POLSAR X-band, Brétigny, France: (a)
Pauli RGB coded image; (b) Statistical classification per-
formed in the first step.

assigned using the Wishart criterion.
In this phase we obtain the set of representative target vec-

tors Kc for each of the classes c (Fig. 1). Those vector sets
represent the observation data for the BSS (eq. 1), while the
selection method assures method relevance in the case of in-
coherent targets.

The core of the ICA based decomposition is the estima-
tion of the mixing matrix A (Eq. 1). There are several criteria
for determining the elements of A in order to ensure the mu-
tual independence of the sources in s. The common factor
for all the applied methods is the assumption which proves
to be reasonable in case of high resolution polarimetric SAR
images [10] - at most one of the sources is Gaussian [6].

kc(i, j) =

Ac11 Ac12 Ac13
Ac21 Ac22 Ac23
Ac31 Ac32 Ac33

 ·
sc1(i, j)
sc2(i, j)
sc3(i, j)

 = Acsc(i, j) (1)

We compare, in the framework of ICTD, the performances
of several different strategies used in the estimation of the
complex independent components. This is done by applying
several different Complex NC-FastICA algorithm criteria [2].

The FastICA algorithm is a fast converging algorithm
based on a fixed-point iteration scheme for finding a maxi-
mum of the nongaussianity of each of the sources s = wHx
[11], with x being the (whitened) observation data vector and
w the mixing vector converging to one of the columns of
the mixing matrix A. In our case, the observation data are
the Pauli target vectors corresponding to the a priori defined
class (kc ∈ Kc), meaning that we finally obtain one mixing
matrix Ac for each of the classes c.

The Complex Fast-ICA algorithm is based on a bottom-
up approach: emphasizing the non-gaussanity of the sources
by maximizing an arbitrary nonlinear contrast function (Eq.
2) whose extrema coincides with the independent component
[1].

JG(w) = E{G(|wHx|2)} (2)

The performances of the algorithm depend strongly on the
choice of the nonlinear function G(y), which is supposed to

be suited to the particular application. Therefore, here we use
three different functions, leading to different criteria (C) in
deriving independent target vectors:

• kurtosis (C1):
G1(y) =

1

2
y2 (3)

In this case, the contrast functions becomes essentially
a measure of the fourth statistical moment of the source
- kurtosis. As its value in case of the Gaussian variable
equals zero, by maximizing the kurtosis of each of the
sources, we ensure their independence.

• logarithm (C2):

G2(y) = log (0.05 + y) (4)

• square root (C3):

G3(y) =
√

0.05 + y (5)

Being a slowly growing nonlinear functions (Fig.2),
G2(y) and G3(y) allow more robust estimation with
respect to the outliers.
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Fig. 2. Nonlinear functions

Additionally, by including the pseudo-covariance matrix of
the observation target vectors in maximizing the contrast
function (Eq. 2), the applied algorithm is generalized to the
case of complex sources having a noncircular distribution
[2]. This way, despite the modulus in equation 2, the phase
information is preserved.

The result of the incoherent target decomposition is the set
of target vectors representing elementary scatterers and a set
of scalars, providing their proportion in the total scattering. In
our case, the target vectors of the independent scatterers are
the columns of the estimated (de-whitened) mixing matrix A.
The contributions to the total backscattering are computed as
the `2 norms of the mixing matrix columns.

2.1. TSVM Parametrization

Being based on Kennaugh-Huynen condiagonalization pro-
jected onto the Pauli basis, the TSVM [3] allows parametriza-
tion of the target vector in terms of rotation angle (ψ), maxi-
mum amplitude (m), target helicity (τm), symmetric scatter-
ing type magnitude (αs) and symmetric scattering type phase
(Φαs ), among which the last four are roll-invariant:
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Comp. τm[◦] αs[◦] Φαs [◦]

1st -0.3303 1.4935 7.5371
2nd -0.4230 7.3886 -9.5901
3rd 8.0126 23.4325 -83.7107

trihedral 0 0 [-90,+90]

Comp. τm[◦] αs[◦] Φαs [◦]

1st -0.2801 0.5324 -27.4152
2nd -0.2415 39.9067 2.5568
3rd 19.8393 58.4871 77.9176

trihedral 0 0 [-90,+90]

Comp. τm[◦] αs[◦] Φαs [◦]

1st -0.2838 0.5285 -27.7087
2nd -0.3573 41.1999 -3.3304
3rd 5.7724 54.9698 -68.5918

trihedral 0 0 [-90,+90]

Fig. 3. Symmetric target Poincaré sphere representation of the independent scattering components (1st - red, 2nd - orange)
estimated in the class 8 with respect to trihedral (blue): (a) C1, (b) C2, (c) C3.

k = m|k|mejΦs

1 0 0
0 cos 2ψ − sin 2ψ
0 sin 2ψ cos 2ψ

 cosαs cos 2τm
sinαsejΦαs

−j cosαs sin 2τm

 . (6)

Using these parameters, it is eventually possible to rep-
resent the obtained independent target vectors on either sym-
metric or non-symmetric target Poincaré sphere. In our case,
they do not necessarily form an orthogonal basis.

3. RESULTS AND CONCLUSIONS

The presented results (Fig. 3 and 4) are obtained by applying
the ICA based ICTD to the RAMSES POLSAR X-band im-
age acquired over Brétigny, France, illustrated with the Pauli
colour coded image in Fig. 1. The same figure shows the
classification map used to define sets of observation data for
the ICA algorithm.

The first point of comparison between the proposed crite-
ria in complex IC derivation (C1, C2 and C3) is the possibil-
ity of identifying the class of trihedral reflectors present in the
scene (Class 8 in Fig. 1.b). The mask derived from the clas-
sification map allowed us to select the set of the observation
data containing target vectors from the regions in the image
where the reflectors were placed. Further, one mixing matrix
is estimated using each of three criteria. In each case, the first
and the second dominant components are presented on sym-
metric scattering target Poincaré sphere [3] (Fig. 3). The third
component parameters are provided in the tables but, due to
the values of helicity and symmetric scattering type phase, it
is not possible to illustrate it using a sphere.

The method is able to almost perfectly identify the class
corresponding to the trihedral reflectors placed in the scene
(Fig. 3). A curious fact is that the second dominant compo-
nent in this case appears to be symmetric as well. Kurtosis
criterion (Fig. 3.a) results in both components almost match-
ing trihedral which indicates apparent ”splitting” of the trihe-
dral on two dominant components (Fig. 4). On the other side,
in case of logarithm and square root criteria, the second com-
ponent, although symmetric, rather represents weaker dipole
backscattering. This is reflected through the increased value
in entropy for C1 with respect to the other criteria.

The second point of comparison assumes the discrimi-
nation between different targets (a priori defined classes) in
terms of the derived parameters and the entropy estimation.
In Fig. 4 we illustrate the maps of the obtained roll-invariant
parameters of the most dominant component for each of the
three criteria, as well as the corresponding entropy images.

We can observe the better performances of kurtosis in dis-
criminating between different targets, in the context of sym-
metry and symmetric scattering type magnitude. However, as
already suggested, the entropy estimation scheme appears to
be far better with the other two methods (C2 and C3).

The overall performance of the analyzed ICA criteria in
the frame of ICTD, seems to depend directly on the growth
rate of the used nonlinear function. The ICA based on slowly
growing nonlinear functions (logarithm and square root) (Fig.
2) are more efficient in both identifying trihedral as the most
dominant backscattering mechanism and, although it is an
implication, in estimating entropy. The drawback is not as
good discrimination between the different classes as the one
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Fig. 4. The ICA based ICTD: τm(1) - helicity of the dominant comp. (a) C1 (e) C2 (i) C3; αs(1) - symmetric scattering type
magnitude of the dominant comp. (b) C1 (f) C2 (j) C3; Φαs(1) - symmetric scattering type phase of the dominant comp. (c)
C1 (g) C2 (k) C3; H - entropy (d) C1 (h) C2 (l) C3.

achieved with the kurtosis criterion.
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