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ERROR ANALYSIS OF A DYNAMIC MODEL ADAPTATION

PROCEDURE FOR NONLINEAR HYPERBOLIC EQUATIONS

C. CANCÈS, F. COQUEL, E. GODLEWSKI, H. MATHIS, AND N. SEGUIN

Abstract. We propose a dynamic model adaptation method for a nonlinear
conservation law coupled with an ordinary differential equation. This model,
called the fine model, involves a small time scale and setting this time scale
to 0 leads to a classical conservation law, called the coarse model, with a
flux which depends on the unknown and on space and time. The dynamic
model adaptation consists in detecting the regions where the fine model can

be replaced by the coarse one in an automatic way, without deteriorating the
accuracy of the result. To do so, we provide an error estimate between the
solution of the fine model and the solution of the adaptive method, enabling
a sharp control of the different parameters. This estimate rests upon stability
results for conservation laws with respect to the flux function. Numerical
results are presented at the end and show that our estimate is optimal.
Key-words. Conservation laws, error estimate, model adaptation, thick cou-
pling interface.
AMS Subject Classification. 35L65, 35B45, 35B30, 35A35.
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1. Introduction

In the context of the simulation of complex fluids, the inner heterogeneities of a
flow may lead to use several models with different degrees of accuracy. In an ideal
situation, these models can be related one another through asymptotic analysis:
singular limits, homogenization, space reduction. . . A model may be preferred to
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another according to the local features of the flow: for the computations, one aims
at using the simplest one without deteriorating the accuracy of the results when
compared to those obtained with the finest model. It naturally gives rise to prob-
lems of coupling if different models are used in different zones of the computational
domain at the same time. Moreover, in the case of transient flows, these zones may
evolve in agreement with the structures of the flow. Therefore, we have to tackle
the problem of the automatic detection of the best model to use among a given hi-
erarchy of models; this is what we call dynamic model adaptation. The difficulties
are twofold:

• how to estimate the decrease of accuracy due to the local use of a coarser
model instead of a reference model,

• how to handle the use of different models in different regions of the com-
putational domain.

A byproduct of these two issues is the necessity of estimating the error due to the
coupling of the different models. Such estimates are usually called modeling error
estimates and go back to the early works of Oden and coworkers [32, 29, 28, 31] for
heterogeneous materials, Stein and Ohnimus [30] for Solid Mechanics, and Actis,
Szabo and Schwab [1] for laminated plates and shells. In [5], Braack and Ern
develop a posteriori error estimators in a general setting in order to equilibrate
the modeling error with the numerical error for a global adaptive method. Since
these pioneer works, model adaptation has known a large increase of interest, see
for instance [27, 2, 26, 15, 16, 13].

The applications we have in mind here prevents us from following the method-
ologies proposed in the literature. Indeed, we are interested in compressible fluids
with stiff effects such as phase transition, thermal exchanges or drag force in two-
phase flows, and more generally to nonlinear hyperbolic systems of PDE’s. Model
adaptation for several of these applications have already been addressed in [25]
by the authors, in a more heuristic way due to the complexity of the investigated
models. Given a system of balance laws with a stiff source term, we proposed in
[25] an error indicator to dynamically replace this model by its equilibrium approx-
imation. To do so, a Chapman–Enskog expansion is performed at the numerical
level and we use the first-order corrector as the modeling error indicator. Even if
it is impossible to theoretically assess the relevance of this approach, the numerical
results are convincing. We then obtain a fully dynamic model adaptation method
for nonlinear systems of hyperbolic equations (very similar methods are proposed
in [15, 16] for kinetics equations and their hydrodynamic limits). In the present
paper, we aim at providing theoretical arguments in favor of our approach by using
error estimates for nonlinear hyperbolic equations. Due to the limited knowledge in
the mathematical study of nonlinear systems of conservation laws, see for instance
[14], we have no other choice than restricting ourselves to much simpler models
than those investigated in [25]. The “hierarchy of models” we focus on consists of a
two equations system made of scalar conservation law together with a stiff ordinary
differential equation. The two equations of the fine model (1) may be decoupled
in order to simplify the analysis, which is already quite intricate. This leads us to
consider the following fine model :







∂tuf(x, t) + ∂xF (uf (x, t), vf (x, t)) = 0,

∂tvf (x, t) =
1

τ
(veq(x, t) − vf (x, t)),

(1)
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where uf , vf : R×R+ → R are the unknowns. The functions F and veq are assumed
to be smooth and the constant τ > 0 denotes the characteristic relaxation time and
may be considered to be small. As a result, if this time is neglected in the sense
τ → 0, one obtains the coarse model

{

∂tuc(x, t) + ∂xF (uc(x, t), veq(x, t)) = 0,

vc(x, t) = veq(x, t).
(2)

The dynamic model adaptation consists in replacing (1) by (2) automatically in
time and space with a sharp control of the error induced by this replacement and
by the coupling at the transition zones between the two models. The procedure
leads to the computation of an “adapted solution” (ua, va) to be compared to the
exact solution (uf , vf ). In practice, our algorithm todefine the solution (ua, va) to
our dynamic model adaptation relies on a discrete-in-time procedure. To evolves
from time tn to time tn+1 = tn + ∆ta, ∆ta being a given time step, we perform
the following computations (we only present in this introduction a simplified and
slightly inexact version, see Section 2.3 for the full description of the method):

(1) Assume that (ua, va)(tn, ·) is known and let Σ > 0 be a given threshold.
(2) Solve the Cauchy problem for all x ∈ R







∂tvi(x, t) =
1

τ
(veq(x, t)− vi(x, t)), t ∈ [tn, tn+1],

vi(x, tn) = va(x, tn).
(3)

(3) Define the fine domain by Ω
(n)
f = {x ∈ R | ‖vi − veq‖1,∞>∆taΣ}.

(4) Computation of va:
(a) Define a regularized characteristic function χδ ∈ C(R; [0, 1]) such that

χδ(x, t) = 1 if x ∈ Ω
(n)
f , χδ(x, t) = 0 if d(x,Ω

(n)
f ) ≥ δ and TV(χδ) ≤

TV(1
Ω

(n)
f

).

(b) Define

va = χδvi + (1− χδ)veq in R× [tn, tn+1]. (4)

(5) Computation of ua:
solve the scalar conservation law

∂tua + ∂xF (ua, va) = 0 (5)

for x ∈ R and t ∈ [tn, tn+1], with initial datum ua(·, tn).

(The main difference with the true model adaptation algorithm studied in this

paper concerns Step (3); the precise definition of Ω
(n)
f is given in Equation (12).

Moreover, we have to add the regularity assumptions (14) on χδ.)
Let us briefly explain why we have introduced a regularization at step (4) of the

above algorithm. The goal of this paper is to perform an error analysis between
the solution (ua, va) of the model adaptation and the solution (uf , vf ) of the fine
model (1) in order to fix the different parameters of the model adaptation algorithm
(the time step ∆ta, the threshold Σ, and the buffer size δ) and obtain an error
estimate between (ua, va) and (uf , vf ). Due to the possibility of exactly computing
vf in the fine model (1), the different models rely on scalar conservation laws of the
form

∂tu+ ∂xf(u, x, t) = 0. (6)
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[—]It is well-known that the classical theory of well-posedness for such equations
requires that f is a smooth function of its three variables [21]. It is obviously the
same when one aims at deriving error estimates, see [22, 10, 24, 3, 17, 8, 20, 9, 12, 23]
and Appendix A.2. The main tool we use is an estimate when considering two
conservation laws with different flux functions. This has been studied by Lucier
[24], Bouchut and Perthame [3] and recently by Lécureux-Mercier in [23] (see also
[12]). We adapt these results in Appendix A.2 to our setting. We then have to pay
a special attention to the smoothness w.r.t. (with respect to) x of the underlying
problems to solve. Coupling problems with infinitely thin coupling interfaces can
be found for instance in [18, 11, 19, 25] but developing error estimates for such
problems seems out of reach: to our knowledge, the only example of (numerical)
error estimates for a discontinuous flux f w.r.t. x is done in [7] and this result does
not apply here. We thus have to consider a regularizing buffer zone for the model
coupling, as done by Degond, Dimarco and Mieussens [15, 16] and Boutin, Coquel
and LeFloch [4]. This explains why we use the regularized characteristic function
χδ in (4) instead of the classical characteristic function 1

Ω
(n)
f

. Of course, the error

estimate between the solution (ua, va) of the model adaptation and the solution
(uf , vf ) of the fine model (1) blows up when δ tends to 0 (since va does not remain
smooth), so that we have to carefully calibrate δ in order to control the error due
to the model adaptation.

Remark 1.1. To lead the analysis, we have to restrict ourselves to simple models.
One of the consequences is the necessity to solve the fine equation (3) for v in
the whole space domain at each time step, so that we cannot hope to gain any
efficiency with such a method. However it is the only setting for which it is possible
to provide sharp estimates and relations between the different parameters of the
model adaptation method. However, we think useful to find a simplified setting
where the adaptation method is thoroughly justified.

Let us now present the outline of the paper. In section 2, the fine model and
the associated coarse model are described in details, with a special care to the
smoothness of the different functions. Then, the discrete-in-time model adaptation
algorithm is given. Section 3 first collects the error estimates due to the adaptation,
w.r.t. the different parameters of the adaptive algorithm. Using the error analysis
developed in Appendix A, we are able to prove Theorem 3.9 where an error esti-
mate between the solution of the fine model (1) and the solution provided by the
dynamic model adaptation procedure is given. In the last section, we numerically
illustrate the dynamic model adaptation. The fine model corresponds to a trans-
port equation of a chemical component uf with a speed vf which depends on the
external medium. With sufficiently small numerical parameters in order to avoid
any interaction between the modeling error and the numerical error, we verify that
the error estimate is optimal. The final section is devoted to some related ongoing
works and possible extensions.

2. The models and the dynamic model adaptation
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2.1. The fine model. We first consider the solution (uf , vf ) : R × R+ → R
2 of

the so-called fine model, that is







∂tuf(x, t) + ∂xF (uf (x, t), vf (x, t)) = 0,

∂tvf (x, t) =
1

τ
(veq(x, t) − vf (x, t)),

uf(x, 0) = u0(x),

vf (x, 0) = v0(x).

(7)

In the above system, the following assumptions on the data are supposed to be
fulfilled.

(i) The flux function F is supposed to belong to C2(R2;R), with uniformly
bounded first order and second order derivatives. Moreover, we assume
that F (0, v) = 0 for all v ∈ R.

(ii) The relaxation time τ is assumed to be constant and strictly positive.
(iii) Concerning the equilibrium state veq, it is supposed to belong to C2(R+ ×

R+), and to be constant outside of the cylinder (−R,R) × R+ for some
R > 0.

(iv) The initial data v0 is supposed to belong to C2(R), and to be equal to veq
for |x| ≥ R. As a consequence, vf ≡ veq outside of (−R,R)× R+.

In the system (7), the second equation is linear and decoupled from the first one,
so that it can be solved apart. Therefore, vf is explicitly given by: ∀(x, t) ∈ R×R+,

vf (x, t) = v0(x)e
− t

τ +
1

τ

∫ t

0

veq(x, a)e
a−t
τ da. (8)

It is easy to check that vf ∈ C2(R × R+) is uniformly bounded as well as its first
and second order derivatives, so that the function s 7→ F (s, vf (x, t)) is regular
enough to ensure the existence and the uniqueness of the Kružkov entropy solution
uf (see [21]) to the problem

{

∂tuf + ∂xF (uf , vf ) = 0 in R× R+,

uf(·, 0) = u0.

In the sequel, we will assume that u0 ∈ L∞∩BV(R), so that, thanks to [21, 12, 23],
the solution uf itself belongs to L∞

loc∩BVloc(R×R+). The stability result is recalled
in Appendix A (see Theorem A.1).

2.2. The coarse model. Roughly speaking, in the case where τ is small, vf should
be close to veq. Therefore, a natural coarse model for approximating the solution
of (7) consists in







∂tuc(x, t) + ∂xF (uc(x, t), veq(x, t)) = 0,

uc(x, 0) = u0(x),

vc(x, t) = veq(x, t).

(9)

Here again, due to the regularity of veq, the problem (9) admits a unique Kružkov
entropy solution uc belonging to L∞

loc ∩ BVloc(R× R+) for u0 ∈ L∞ ∩ BV(R).
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2.3. Adaptive modeling. We aim now at solving the coarse model (9) in the
domain where uc is close to uf , and to turn back to the resolution of the system (7)
in the zones where uc is not a satisfactory approximation of uf . To do so, we will
introduce a time-dependent partition of R, i.e:

R = Ωf (t) ∪ Ωc(t), Ωf (t) ∩Ωc(t) = ∅, ∀t ≥ 0. (10)

In order to define the sets Ωf and Ωc, we introduce three threshold values Σ > 0,
Σ′ and Σ′′ > 0, and a time step ∆ta > 0 for the adaptation procedure. For n ∈ N,
we denote by In the interval [tn, tn+1), where tk = k∆ta. We also introduce the
size of the regularized buffer zones, denoted δ in the following.

Let us now describe the adaptation model procedure which defines the functions
(ua, va) : R×R+ → R

2 which approximate the solution (uf , vf ) of the fine model (7):

Initialization:

Define
(
u
(−1)
a , v

(−1)
a

)
(·, 0) = (u0, v0)(·).

From tn to tn+1:

(1) Define the indicator function v
(n)
i : R × In → R as the solution of the

Cauchy problem






∂tv
(n)
i =

1

τ

(

veq − v
(n)
i

)

,

v
(n)
i (·, tn) = v

(n−1)
a (·, tn).

(11)

(2) Define the open subset Ω
(n)
f of R by

Ω
(n)
f =

{

x ∈ R | |veq(x, t)− v
(n)
i (x, t)| > ∆taΣ,

|∂xveq(x, t)− ∂xv
(n)
i (x, t)| > ∆taΣ

′,

or |∂2xxv
(n)
i | > Σ′′, ∀t ∈ In

}

,

(12)

and Ω
(n)
c =

◦
︷ ︸︸ ︷

R \ Ω
(n)
f .

Define Ωf (t) = Ω
(n)
f and Ωc(t) = Ω

(n)
c for all t ∈ In.

(3) Define a regularized characteristic function χ
(n)
δ ∈ C2(R; [0, 1]) such that

χ
(n)
δ (x) =

{

1 if x ∈ Ω
(n)
f ,

0 if d
(
x,Ω

(n)
f

)
≥ δ,

∀x ∈ R, (13)

such that there exist α1 > 0 and α2 > 0 depending neither on Ωf nor on δ
such that

‖∂xχ
(n)
δ ‖∞ ≤

α1

δ
, ‖∂2xxχδ‖∞ ≤

α2

δ2
. (14)

Notice that such a function χ
(n)
δ always exists. In the sequel, we denote by

χδ : R× R+ the function defined by

χδ(x, t) = χ
(n)
δ (x) if t ∈ In. (15)

(4) Solution to the model coupling problem:

Define v
(n)
a ∈ C2(R× In;R) by

v(n)a = χ
(n)
δ v

(n)
i + (1− χ

(n)
δ )veq. (16)
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Define u
(n)
a ∈ C([tn, tn+1];L

1
loc(R)) as the unique Kružkov entropy solution

of the scalar conservation law
{

∂tu
(n)
a + ∂xF

(

u
(n)
a , v

(n)
a

)

= 0,

u
(n)
a (·, tn) = u

(n−1)
a (·, tn).

(17)

Thanks to this algorithm, we are now able to define the solution of the dynamic
model coupling procedure by: for all t ∈ In, for almost all x ∈ R,

(ua, va)(x, t) =

∞∑

n=0

(u(n)a , v(n)a )(x, t) 1In .

We also introduce the following global indicator function

vi(·, t) =
∞∑

n=0

v
(n)
i (·, t) 1In .

Let us note that for all t ∈ I0, we have vi = vf , which yields

v(0)a = χδvf + (1− χδ)veq. (18)

Remark 2.1. It is worth noticing that neither va nor vi is continuous w.r.t.
time due to the adaptation procedure. Nevertheless, the functions are piecewise
smooth and right-continuous w.r.t. time, discontinuities appearing only at the ends
(tk+1)k≥0 of the model adaptation time steps Ik = [tk, tk+1). Therefore, the function
ua is uniquely defined. Moreover, in view of Theorem A.1 presented in Appendix

(see also [23]), the total variation of u
(n)
a (·, t) is controlled for all t ∈ In, so that the

application t 7→ TV(ua(·, t)) is locally bounded on R+.

Remark 2.2. Notice that, thanks to the assumption vf ≡ veq on {|x| > R} × R+,
one has Ωf (t) ⊂ {|x| < R} for all t ≥ 0.

3. Quantifying the modeling error linked to adaptation

We consider an arbitrary finite time horizon T > 0, and, for the sake of simplicity,
we assume that there exists a positive integer Na such that T = Na∆ta.

3.1. Estimation of the error ‖vf − va‖.

Lemma 3.1. There exists c depending only on τ and T (but not on Σ, Σ′, δ and
∆ta) such that, for all n ≥ 0,

|va(x, tn)− vf (x, tn)| ≤ cΣ1|x|<R. (19)

Proof. First, in view of Remark 2.2,

va(x, tn) = vf (x, tn) if |x| ≥ R.

Now, fix x ∈ (−R,R). Clearly, because of the definition of v
(0)
a , one has

|va(x, 0)− vf (x, 0)| ≤ ∆taΣ ≤ TΣ, (20)

so that (19) holds for n = 0. Now, assume that (19) holds for n ≥ 0, then

|va(x, tn+1)− vf (x, tn+1)| ≤ An + Bn + Cn, (21)



8 C. CANCÈS, F. COQUEL, E. GODLEWSKI, H. MATHIS, AND N. SEGUIN

where, due to the definition (16) of v
(n)
a and since va(x, tn+1) = v

(n+1)
a (x, tn+1), we

have set

An = |v(n+1)
a (x, tn+1)− v

(n+1)
i (x, tn+1)|,

Bn = |v(n)a (x, tn+1)− v
(n)
i (x, tn+1)|

= (1− χδ(x, tn+1))|veq(x, tn+1)− v
(n)
i (x, tn+1)|,

Cn = |v
(n)
i (x, tn+1)− vf (x, tn+1)|.

Bearing in mind the definitions of Ω
(n+1)
f and Ω

(n)
f , we have

An ≤ ∆taΣ and Bn ≤ ∆taΣ. (22)

On the other hand, using the fact that v
(n)
i (x, ·) and vf (x, ·) satisfy the same linear

ODE on In for different initial data, w(n)(x, ·) := v
(n)
i (x, ·)− vf (x, ·) is the solution

on In of
{

∂tw
(n) + 1

τw
(n) = 0,

w(n)(x, tn) = va(x, tn)− vf (x, tn).

Therefore,

Cn = e−∆ta/τ |va(x, tn)− vf (x, tn)|. (23)

In view of (21), (22) and (23), we obtain that

|va(x, tn+1)− vf (x, tn+1)| ≤ 2∆taΣ+ e−∆ta/τ |va(x, tn)− vf (x, tn)|,

yielding by induction that

|va(x, tn)− vf (x, tn)| ≤
2∆ta

1− e−∆ta/τ
Σ+ e−n∆ta/τ |va(x, 0)− vf (x, 0)|.

It only remains to check that the function t 7→ 2t
1−e−t/τ is increasing, so that, since

∆ta ≤ T ,

|va(x, tn)− vf (x, tn)| ≤
2T

1− e−T/τ
Σ + |va(x, 0)− vf (x, 0)|.

We conclude by using (20). �

Lemma 3.2. There exists c depending only on τ and T (but not on Σ, Σ′, δ and
∆ta) such that

|va(x, t) − vf (x, t)| ≤ cΣ1|x|<R(x), ∀(x, t) ∈ R× [0, T ). (24)

Proof. In the case t = T , then (24) is nothing but (19) with n = Na. Assume now
that t ∈ [0, T ), then there exists a unique n ∈ {0, . . . , N − 1} such that t ∈ In. The
triangular inequality yields

|va(x, t) − vf (x, t)| ≤ |va(x, t)− vi(x, t)| + |vi(x, t)− vf (x, t)|.

The first term of the right-hand side is controlled by ∆taΣ, while the second one is
controlled by

|vi(x, t)− vf (x, t)| ≤ e−(t−tn)/τ |v(n−1)
a (x, tn)− vf (x, tn)|

≤ e−(t−tn)/τ (Bn−1 + Cn−1) ,

where the quantities Bn−1 and Cn−1 have been introduced and controlled in the
proof of Lemma 3.1. �
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The proof of Lemmas 3.1 and 3.2 relies on two arguments, namely

(1) vf and vi are solutions of the same contractive ODE with different initial
data;

(2) the error between va and vi is controlled thanks to the adaptation proce-
dure.

These two arguments still hold when one considers the space derivatives ∂xva, ∂xvf
and ∂xvi instead of the functions va, vf and vi, but one has to take care of the
perturbation introduced by the buffer of size δ. This leads to the following two
lemmas.

Lemma 3.3. There exists c depending only on τ and T (but not on Σ, Σ′, δ and
∆ta) such that, for all n ∈ {0, . . . , Na},

|∂xva(x, tn)− ∂xvf (x, tn)| ≤ c

(

Σ′ +
Σ

δ

)

1|x|<R(x), ∀x ∈ R. (25)

Proof. First, we use again Remark 2.2 to claim that, for all t ≥ 0 and for all x such
that |x| ≥ R, one has

∂xva(x, t) = ∂xvf (x, t).

Consider now the case x ∈ (−R,R). The definition (18) of v
(0)
a provides that

va(x, 0)− vf (x, 0) = (1− χδ(x, 0))(veq(x, 0)− vf (x, 0)),

so that, in view of (13) and (14), one has

|∂xva(x, 0)− ∂xvf (x, 0)|

≤
(

|∂xveq(x, 0)− ∂xvf (x, 0)|+
α1

δ
|veq(x, 0)− vf (x, 0)|

)

1
Ω

(0)
c (x)

.

It follows from the definition of Ω
(0)
f that

∣
∣
∣∂xv

(0)
a (x, 0)− ∂xvf (x, 0)

∣
∣
∣ ≤ ∆ta

(

Σ′ +
α1Σ

δ

)

≤ c

(

Σ′ +
Σ

δ

)

. (26)

Now, fix n ∈ {0, . . . , Na − 1}, then, since v
(n+1)
i (·, tn+1) ≡ v

(n)
a (·, tn+1), we have

|∂xva(x, tn+1)− ∂xvf (x, tn+1)| ≤ Dn + En + Fn, (27)

where we have set

Dn =
∣
∣
∣∂x

(

v(n+1)
a − v

(n+1)
i

)

(x, tn+1)
∣
∣
∣ ,

En =
∣
∣
∣∂x

(

v(n)a − v
(n)
i

)

(x, tn+1)
∣
∣
∣ ,

Fn =
∣
∣
∣∂x

(

v
(n)
i − vf

)

(x, tn+1)
∣
∣
∣ .

In view of the definition (16) of v
(n+1)
a , one has

v(n+1)
a − v

(n+1)
i = (1− χδ)(veq − v

(n+1)
i ) on R× In+1,

so that, due to the definitions of Ω
(n+1)
f and χδ, we obtain that

Dn ≤ ∆ta

(

Σ′ +
α1Σ

δ

)

1
Ω

(n+1)
c

(x). (28)

Similarly,

En ≤ ∆ta

(

Σ′ +
α1Σ

δ

)

1
Ω

(n)
c

(x). (29)
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In order to control Fn, we notice that z(n) := ∂xv
(n)
i − ∂xv

(n)
f is the solution on In

of {

∂tz
(n) + 1

τ z
(n) = 0,

z(n)(x, tn) = ∂xva(x, tn)− ∂xvf (x, tn),

so that, as in the proof of Lemma 3.1, we obtain that

Fn ≤ e−∆ta/τ |∂xva(x, tn)− ∂xvf (x, tn)|.

We conclude by mimicking the induction detailed in the proof of Lemma 3.1. �

We derive the following lemma, whose proof is left to the reader, from Lemma 3.3
by adapting the proof of Lemma 3.2.

Lemma 3.4. There exists c depending only on τ and T (but not on Σ, Σ′, δ and
∆ta) such that

|∂xva(x, t)− ∂xvf (x, t)| ≤ c

(

Σ′ +
Σ

δ

)

1|x|<R(x) ∀(x, t) ∈ R× [0, T ). (30)

The last estimate we need concerns the second order space derivative of va.

Lemma 3.5. There exists c depending only on veq, vf and T such that

|∂2xxva(x, t)| ≤ c

(

1 + Σ′′ +
Σ

δ2
+

Σ′

δ

)

, ∀(x, t) ∈ R× [0, T ). (31)

Proof. Here again, the proof is based on an induction argument. For t ∈ I0, it
follows from (18) that

∂2xxv
(0)
a = χδ∂

2
xxvf + (1− χδ)∂

2
xxveq + 2∂x(vf − veq)∂xχδ + (vf − veq)∂

2
xxχδ.

In view of the definition (15) and of the properties (14) of the function χδ, we get
that

∣
∣
∣∂2xxv

(0)
a

∣
∣
∣ ≤ max

{∣
∣∂2xxvf

∣
∣ ,
∣
∣∂2xxveq

∣
∣
}
+

2α1Σ
′

δ
+
α2Σ

δ2
on R× [0,∆ta]. (32)

In particular, due to the regularity of vf and veq, the relation (31) holds for (x, t) ∈
R× I0 for c = c0 defined by

c0 = max
{
‖∂2xxvf‖L∞(R×I0), ‖∂

2
xxveq‖L∞(R×I0), 2α1, α2

}
. (33)

Now, fix n ≥ 1, and assume that there exists cn−1 such that

|∂2xxv
(n−1)
a (x, tn)| = |∂2xxv

(n)
i (x, tn)| ≤ cn−1

(

1 + Σ′′ +
Σ

δ2
+

Σ′

δ

)

.

Then, for all x ∈ R, the function t 7→ ∂2xxv
(n)
i (x, t) is the solution of the linear ODE

{

∂t∂
2
xxv

(n)
i (x, t) + 1

τ ∂
2
xxv

(n)
i (x, t) = 1

τ ∂
2
xxveq(x, t),

∂2xxv
(n)
i (x, tn) = ∂2xxv

(n−1)
a (x, tn).

In particular, for all t ∈ In, one has

|∂2xxv
(n)
i (x, t)| ≤ |∂2xxv

(n)
i (x, tn)| ≤ cn−1

(

1 + Σ′′ +
Σ

δ2
+

Σ′

δ

)

. (34)

Recall that the function v
(n)
a is then defined by (16), so that, on R× In, one has

∂2xxv
(n)
a = χδ∂

2
xxv

(n)
i + (1 − χδ)∂

2
xxveq

+2∂x(v
(n)
i − veq)∂xχδ + (v

(n)
i − veq)∂

2
xxχδ. (35)
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Since v
(n)
a ≡ v

(n)
i in Ω

(n)
f × In, one gets directly from (34) that

|∂2xxv
(n)
a (x, t)| ≤ cn−1

(

1 + Σ′′ +
Σ

δ2
+

Σ′

δ

)

, ∀(x, t) ∈ Ω
(n)
f × In. (36)

Now, for (x, t) ∈ Ω
(n)
c × In, one has

∣
∣
∣∂2xxv

(n)
i

∣
∣
∣ ≤ Σ′′,

∣
∣
∣∂x(v

(n)
i − veq)

∣
∣
∣ ≤ Σ′, and

∣
∣
∣v

(n)
i − veq

∣
∣
∣ ≤ Σ.

Therefore, using again (14) in (35), we obtain

|∂2xxv
(n)
a (x, t)| ≤ ‖∂2xxveq‖∞ +Σ′′ +

2α1Σ
′

δ
+
α2Σ

δ2
, ∀(x, t) ∈ Ω

(n)
c × In. (37)

In particular, it follows from (36) and (37) that

|∂2xxv
(n)
a (x, t)| ≤ cn

(

1 + Σ′′ +
Σ

δ2
+

Σ′

δ

)

,

where

cn = max
{

cn−1 , ‖∂
2
xxveq‖L∞(R×(0,T )), 2α1, α2

}

.

In view of the definition (33) of c0, we obtain by a straightforward induction
that (31) holds with

c = max
{
‖∂2xxvf‖L∞(R×(0,T )), ‖∂

2
xxveq‖L∞(R×(0,T )), 2α1, α2

}
.

�

3.2. Quantification of the error ‖uf−ua‖. In this section, our goal is to quantify
the error produced by the adaptation procedure described in Section 2.3. To do so,
we will overestimate

‖ua − uf‖C([0,T ],L1(R)), (38)

where T is an arbitrary final time, thanks to quantities depending on Σ,Σ′ and δ.
Then, for a suitable choice of these quantities, we will guaranty that the modeling
error (38) can be enforced to remain as small as desired.

Setting
f : (s, x, t) ∈ R× R× R+ 7→ f(s, x, t) = F (s, va(x, t)) (39)

and
g : (s, x, t) ∈ R× R× R+ 7→ g(s, x, t) = F (s, vf (x, t)), (40)

the function ua is then defined as the unique entropy solution to the problem
{

∂tua + ∂xf(ua) = 0 in R× (0,∞),

ua(·, 0) = u0 in R,

while uf can be seen as the unique entropy solution to the problem
{

∂tuf + ∂xg(uf ) = 0 in R× (0,∞),

uf(·, 0) = u0 in R.

Therefore, in order to quantify the difference between ua and uf , we will use a
stability result w.r.t. to the flux function established in Appendix.

Using Theorem A.3, we obtain that for all t⋆ > 0, one has

‖ua(·, t
⋆)− uf (·, t

⋆)‖L1(R) ≤ inf
ǫ>0

(

ǫC1 +
C2

ǫ
+ C3

)

, (41)
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where, in view of the definition of the functions f and g, we have

C1 = α+ β‖∂s∂xf‖∞

+3

∫ t⋆

0

sup
s∈R

‖∂2xxf(s, ·, t)‖∞dt, (42)

C2 = 2

∫ t⋆

0

∫

R

‖(f − g)(·, x, t)‖∞dxdt, (43)

C3 =

∫ t⋆

0

∫

R

‖∂x(f − g)(·, x, t)‖∞dxdt. (44)

In the definition (42) of C1, the quantities α and β depend only on t⋆ (in an
increasing way), u0, F and on the fine solution vf , but not on the adaptation
procedure. They are made explicit in Appendix A.2.

Remark 3.1.

(1) Theorem A.3 gives a localized in space error estimate. Nevertheless, since
the flux functions s 7→ F (s, va(x, t)) and s 7→ F (s, vf (x, t)) coincide on
{|x| > R} × R+, the contribution of the flux functions variation is lo-
cated on a finite measure space. Then, the error produced by the adap-
tation procedure travels with a speed lower or equal to ‖∂uF‖∞, so that
after a time t, the functions uf(·, t) and ua(·, t) may differ only on {|x| <
R + t‖∂uF‖∞}. Therefore, considering the L1-norm on the full space R is
meaningful in (41).

(2) Because of the previous point, the integrals w.r.t. the space variable ap-
pearing in (42)–(44) can be considered on the full R. As a consequence,
the integration domains do not depend on ǫ as it is the case in the more
general case presented in Appendix. Therefore, the quantities defined as Cǫ

i

in the Appendix do not depend on ǫ in the present case. This justifies the
fact that we denote them by Ci, without ǫ.

Lemma 3.6. There exists c > 0 depending only on the data F , u0, vf , veq and in
an increasing way of t⋆ (but not on the adaptation procedure) such that

C1 ≤ c

(

1 + Σ′′ +Σ′ +
Σ

δ
+ (Σ′)

2
+

Σ2

δ2
+

Σ′

δ
+

Σ

δ2

)

. (45)

Proof. Bearing in mind the definition (39) of the flux function f ,we obtain that

∂s∂xf(s, x, t) = ∂s∂vF (s, va(x, t))∂xva(x, t),

so that

‖∂s∂xf‖∞ ≤ ‖∂s∂vF‖∞ (‖∂xvf‖∞ + ‖∂x(va − vf )‖∞) .

In view of Lemma 3.4, we deduce that

‖∂s∂xf‖∞ ≤ ‖∂u∂vF‖∞

(

‖∂xvf‖∞ + Σ′ +
2

δ
Σ

)

. (46)

Similarly, we have

∂2xxf(u, x, t) = ∂2vvF (u, va(x, t)) (∂xvf (x, t))
2
+ ∂vF (u, va(x, t))∂

2
xxva,
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so that

sup
s∈R

∥
∥∂2xxf(s, ·, t)

∥
∥ ≤

∥
∥∂2vvF

∥
∥
∞

(‖∂xvf‖∞ + ‖∂x(va − vf )‖∞)
2

+ ‖∂vF‖∞ ‖∂2xxva(·, t)‖∞.

Using Lemmas 3.4 and 3.5, we deduce from the fact that
(
∑k

i=1 ai

)2

≤ k
∑k

i=1(ai)
2

that

sup
s∈R

∥
∥∂2xxf(s, ·, t)

∥
∥ ≤ 3‖∂2vvF‖∞

(

‖∂xvf‖
2
∞ + (Σ′)

2
+

1

δ2
Σ2

)

+‖∂vF‖∞c

(

1 + Σ′′ +
Σ′

δ
+

Σ

δ2

)

. (47)

Hence, denoting by c a generic quantity depending only on the data F , u0, vf ,
veq and in an increasing way of t⋆, we deduce from (42), (46) and (47) that (45)
holds. �

Lemma 3.7. There exists c depending only on the data F , R and t⋆ in an increasing
way (but not on the adaptation procedure) such that

C2 ≤ c Σ. (48)

Proof. In view of the regularity of F and of Lemma 3.2, we have

|f − g| = |F (s, va)− F (s, vf )| ≤ ‖∂vF‖∞|vf − va| ≤ ‖∂vF‖∞Σ1(−R,R).

Estimate (48) then follows directly from the definition (43) of C2. �

Lemma 3.8. There exists c depending only on the data F , vf , R and in an in-
creasing way of t⋆ (but not on the adaptation procedure) such that

C3 ≤ c

(

Σ+ Σ′ +
Σ

δ

)

. (49)

Proof. For all s ∈ R, one has

∂xf(s, x, t) = ∂xF (s, va(x, t)) = ∂vF (s, va(x, t))∂xva(x, t).

Similarly,

∂xg(s, x, t) = ∂vF (s, vf (x, t))∂xvf (x, t)

= ∂vF (s, va(x, t))∂xvf (x, t) + [∂vF (s, va(x, t)) − ∂vF (s, va(x, t))] ∂xvf (x, t).

Therefore,

|∂x(f − g)| ≤ ‖∂vF‖∞|∂x(vf − va)|+ ‖∂xvf‖∞‖∂2vvF‖∞|vf − va|.

The Lemmas 3.2 and 3.4 then yield

sup
s∈R

|∂x(f −g)(s, x, t)| ≤

(

‖∂vF‖∞

(

Σ′ +
2

δ
Σ

)

+ ‖∂xvf‖∞‖∂2vvF‖∞Σ

)

1(−R,R)(x).

Estimate (49) follows from integrating on R× (0, t⋆). �

We aim to let δ, Σ and Σ′ go to 0, but we expect to select a good scaling so that
the error contributions for C1, C2 and C3 can be balanced. The first step consists
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of course in balancing the error contribution within each Ci. To do so, it appears
from (45) and (49) that it is relevant to fix

Σ′ =
Σ

δ
. (50)

We also propose to choose Σ′′ of the same order as 1, and for the sake of simplicity,
we denote

Σ′′ = 1. (51)

Because we investigate the limit δ,Σ,Σ′ → 0, this implies that Σ is negligible
w.r.t. Σ′ = Σ/δ. As a consequence of the choices (50) and (51), we obtain for
Lemmas 3.6, 3.7 and 3.8 that

C1 ≤ c

(

1 +
Σ

δ2

)

, C2 ≤ cΣ, and C3 ≤ c
Σ

δ
. (52)

Now, balancing the contributions in C1 suggests us to choose

δ = Σ1/2, (53)

so that (52) turns to

C1 ≤ c, C2 ≤ cΣ, and C3 ≤ cΣ1/2, (54)

where c denotes a generic quantity depending on the data and on t⋆ in an increasing
way.

Theorem 3.9. Fix Σ > 0, then with the choices (50) and (53) of the parameters
δ and Σ′, there exists c depending only on u0, F , vf , R and T such that

‖ua − uf‖C([0,T ];L1(R)) ≤ cΣ1/2. (55)

Proof. Let t⋆ ∈ [0, T ], then taking (54) into account in (41) provides that

‖ua(·, t
⋆)− uf (·, t

⋆)‖L1(R) ≤ c(t⋆) inf
ǫ>0

(

ǫ+
Σ

ǫ
+Σ1/2

)

,

where the dependence of c w.r.t. t⋆ has been stressed. Therefore, since c depends
in an increasing way on t⋆, we deduce that

‖ua(·, t
⋆)− uf(·, t

⋆)‖L1(R) ≤ c(T ) inf
ǫ>0

(

ǫ+
Σ

ǫ
+Σ1/2

)

.

The optimal choice for ǫ for minimizing the right hand-side is clearly ǫ = Σ1/2,
yielding

‖ua(·, t
⋆)− uf (·, t

⋆)‖L1(R) ≤ c(T )Σ1/2.

Since both ua and uf belong to C([0, T ];L1
loc(R)) (see e.g. [6]) and since ua − uf

is compactly supported in space with support in [−R,R], we obtain that ua − uf
belongs to C([0, T ];L1(R)) and that (55) holds. �
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4. Application to a model of transport with inertia

In this section, we illustrate the dynamic model adaptation procedure on the
simple example of a transport equation. Let veq ∈ C2(R × R+) be the material
speed of the flow, that is supposed to be given. Then we are interested by the
concentration u of a chemical component convected by the flow. The coarse model
consists in assuming that the speed of the chemical particles is exactly given by
veq. This yields the equation

{

∂tuc + ∂x(vequc) = 0,

uc(0) = u0.
(56)

But taking into account the inertia of the particles leads to considering that their
speed does not coincide with the material speed of the flow, but is given by vf
defined by the ODE

{

∂tvf = 1
τ (veq − vf ),

vf (·, 0) = v0.
(57)

The resulting concentration uf obeys the equation
{

∂tuf + ∂x(vfuf ) = 0,

uf (0) = u0,
(58)

where vf is given by (57).
As soon as the concentrations uf and uc remain uniformly bounded, the problem

enters the frame proposed in Section 2. Therefore, we can apply the dynamic
adaptation procedure described in Section 2.3 while controlling the error through
the analysis carried out in Section 3.

Figure 1. The equilibrium speed veq (left) and the effective speed
vf (right) plotted in the (x, t)-plan.

In order to illustrate our purpose, we have computed numerically the solutions
uc, uf and ua thanks to an explicit upwind finite volume scheme. The speed vf , as
well as the speed vi necessary to build va are computed thanks to a fourth order
Runge-Kutta scheme.
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We define the function ν by

ν(x) =







1 if x ≤ 0,

1− 8x3(1− x) if x ∈ [0, 1/2],

1− ν(1 − x) if x ≥ 1/2,

then the equilibrium speed, plotted in (x, t)-plan on Figure 1, is given by

veq(x, t) = ν(|x− 5− 2.5 cos(t)|) + 0.3.

The relaxation parameter τ is set equal to 0.5.
For the adaptation time step, we have set ∆ta = π/50, and the numerical time

step has been set to ∆t = ∆ta/10. Following the analysis carried out in Section 3,
we use Σ as a parameter, and Σ′,Σ′′ and δ are fixed by

Σ′ = δ = Σ1/2, Σ′′ = 1.

We define u0 = 1x≤5, so that we can build the functions uf , uc and ua for any
choice of the parameter Σ.

We present now the results obtained for Σ = 0.1. On Figures 2 and 3, we can
see that all the solutions look similar. Nevertheless, it appears on Figure 4 that, as
expected by our study, the adapted solution ua is much closer to the fine solution
uf than uc.

Figure 2. The concentration uc computed with the coarse mo-
del (56) (left) and the concentration uf computed with the fine
model (58) (right) plotted in the (x, t)-plan.

We plot some results obtained for the lower value of Σ = 0.01 on Figure 5. As
expected, the fine domain Ωf in this case is bigger that in the case where Σ = 0.1,
and the error |ua − uf | is smaller.

Finally, we present on Figure 6 the L1((1, 9) × (0, 2π))-error between the fine
solution uf and the adapted solution ua. The saturation of the convergence if due
to the numerical approximation of the solution. Indeed, refining the space and time
discretization makes the saturation value decrease.
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Figure 3. The concentration ua computed via the adapted model
described in Section 2.3 (left) and the evolution of the domains Ωf

(red) and Ωc (blue) w.r.t. time (right) plotted in the (x, t)-plan.
Σ = 0.1.

Figure 4. Plot in the (x, t)-plane of the difference between the fine
and the coarse solutions uc − uf (left), and the difference between
the fine and the adapted solution ua − uf (right, Σ = 0.1). Notice
the difference in the scales along the vertical axes.

5. Conclusion

We derive in this work an error estimate for a simple algorithm of dynamic model
adaptation applied to nonlinear hyperbolic equations. In order to perform this
analysis, we have to consider thick interfaces of coupling (the only error estimate
with a thin coupling interface is available in the very particular case of [7]). Using
Theorem 3.9, we are able to define the size δ of the smooth buffer which connects
the fine model to the coarse model w.r.t. the parameters of the model and of the
procedure. Note that we had to adapt the stability results obtained by Lécureux-
Mercier in [23] in our context. We also provide some numerical results to illustrate
the optimality of our result.

We only concentrate on a discrete-in-time procedure for the model adaptation.
It would be interesting to include in the analysis the numerical error to obtain
a full numerical procedure of model adaptation, as done for instance in [5]. The
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Figure 5. We plot in the (x, t)-plane the results of computations
for Σ = 0.01, i.e. the fine domain Ωf (t) (in red, left), and the
difference ua − uf (right). For the left figure, check that the size
of the fine domain grows when Σ decreases. For the right figure,
notice the difference in the scale along the vertical axes w.r.t. Fig-
ure 4.

Figure 6. Numerical evaluation of ‖ua − uf‖L1 as a function of
Σ (solid blue), linear function with slope 1/2 (dashed green).

main tools can be found in the works of Chainais-Hillairet [8] and of Kröner and
Ohlberger [20]. However, since our method is discrete w.r.t. time, the flux f of the
underlying scalar conservation law

∂tu+ ∂xf(u, x, t) = 0

is discontinuous w.r.t. at each time step. As a consequence, we need to slightly
refine the result of Chainais-Hillairet.

Appendix A. Stability results for scalar conservation laws

In this appendix (precisely, in Theorem A.3), we state a new stability result for
entropy solutions of scalar conservation law w.r.t. their flux functions. Despite all
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this section is written in the one-dimensional space dimension, it can be adapted
to the multidimensional case without particular difficulty, excepted the heavy no-
tations involved in the study.

The stability result presented in Theorem A.3 is an extension to the case of time
and space dependent flux functions of a result presented in [3]. It relies on stability
estimates proved in [23] (see also [12]) that are recalled in Theorem A.1.

A.1. Total variation estimates for Kružkov entropy solutions. We consider
two functions

f :

{

R× R× R+ → R

(s, x, t) 7→ f(s;x, t),
and g :

{

R× R× R+ → R

(s, x, t) 7→ f(s;x, t),

being continuous on R × R × R+, and having continuous derivatives ∂sf , ∂s∂xf
and ∂2xxf (resp. ∂sg, ∂s∂xg and ∂2xxg). We assume that f(0;x, t) = g(0;x, t) for all
(x, t) ∈ R× R+, and that

Lf := sup
(x,t)∈R×R+

sup
s1,s2∈R

∣
∣
∣
∣

f(s1;x, t)− f(s2;x, t)

s1 − s2

∣
∣
∣
∣
<∞,

Lg := sup
(x,t)∈R×R+

sup
s1,s2∈R

∣
∣
∣
∣

g(s1;x, t)− g(s2;x, t)

s1 − s2

∣
∣
∣
∣
<∞,

that

‖∂s∂xf‖∞ := sup
s∈R

sup
(x,t)∈R×R+

|∂s∂xf(s;x, t)| <∞,

‖∂s∂xg‖∞ := sup
s∈R

sup
(x,t)∈R×R+

|∂s∂xg(s;x, t)| <∞,

and that, for all T > 0, for φ ∈ {f, g},

(x, t) 7→ ‖∂2xxφ(·;x, t)‖∞ belongs to L1(R× (0, T )) ∩ L∞(R;L1(0, T )). (59)

Let u ∈ L∞(R× R+) be the unique entropy solution of






∂tu+ ∂xf(u;x, t) = 0 in R× R+,

u(·, 0) = u0 ∈ L∞(R),
(60)

and let v ∈ L∞(R× R+) be the unique entropy solution of






∂tv + ∂xg(v;x, t) = 0 in R× R+,

v(·, 0) = v0 ∈ L∞(R).
(61)

Recall that u is defined by: ∀κ ∈ R, ∀ψ ∈ C∞
c (R× R+),

∫∫

R×R+

|u− κ|∂tψdxdt +

∫

R

|u0 − κ|ψ(·, 0)dx

+

∫∫

R×R+

sign(u− κ)(f(u;x, t)− f(κ;x, t))∂xψdxdt

−

∫∫

R×R+

sign(u− κ)∂xf(κ;x, t)ψdxdt ≥ 0, (62)
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while v is defined by: ∀κ ∈ R, ∀ψ ∈ C∞
c (R× R+),

∫∫

R×R+

|v − κ|∂tψdxdt +

∫

R

|v0 − κ|ψ(·, 0)dx

+

∫∫

R×R+

sign(v − κ)(g(v;x, t) − g(κ;x, t))∂xψdxdt

−

∫∫

R×R+

sign(v − κ)∂xg(κ;x, t)ψdxdt ≥ 0. (63)

Theorem A.1 ([6, 23]). The unique entropy solution u to the problem (60) belongs
to C(R+, L

1
loc(R)) and

lim
t→0

‖u(·, t)− u0‖L1(R) = 0. (64)

Moreover, if u0 belongs to BV (R), then, for all T > 0, u(·, T ) ∈ BV (R), and there
exists cf depending only on f such that

TV(u(T )) ≤ TV(u0)e
cfT +

∫ T

0

ecf (T−t)

∫

R

∥
∥∂2xxf(·;x, t)

∥
∥
∞
dxdt,

where
∥
∥∂2xxf(·;x, t)

∥
∥
∞

:= sup
s∈R

∣
∣∂2xxf(s;x, t)

∣
∣ ,

and

cf = 3 ‖∂x∂sf‖L∞(R×R×R+) .

In what follows, we will often have to deal with the quantity

∫ T

0

TV(u(t))dt = TV(u0)
ecfT − 1

cf
+

∫ T

0

∫ t

0

ecf (t−τ)

∫

R

‖∂2xxf(·;x, t)‖∞dxdτdt.

We denote by






Cf,0(T ) =
ecf T−1

cf
,

Cf,1(T ) =
∫ T

0

∫ t

0 e
cf(t−τ)

∫

R
‖∂2xxf(·;x, t)‖∞dxdτdt,

so that
∫ T

0

TV(u(t))dt = Cf,0(T )TV(u0) + Cf,1(T ). (65)

Similarly, we have

∫ T

0

TV(v(t))dt = Cg,0(T )TV(v0) + Cg,1(T ), (66)

where the quantities Cg,0 and Cg,1 are obtained from Cf,0 and Cf,1 by replacing
the flux function f by the flux function g.

A.2. Stability w.r.t. the flux functions. We first state the following technical
lemma.
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Lemma A.2. For all κ ∈ R, there exists Aκ, Bκ ∈ L∞(R× R+) such that
∫∫

R×R+

|v − κ|∂tψdxdt+

∫

R

|v0 − κ|ψ(·, 0)dx

+

∫∫

R×R+

sign(v − κ)(f(v;x, t) − f(κ;x, t))∂xψdxdt

−

∫∫

R×R+

sign(v − κ)∂xf(κ;x, t)ψdxdt

≥

∫∫

R×R+

Aκ∂xψ dxdt+

∫∫

R×R+

Bκ ψ dxdt. (67)

Moreover, for all κ ∈ R,

|Aκ(x, t)| ≤ 2 ‖(f − g)(·, x, t)‖∞ , ∀(x, t) ∈ R× R+, (68)

while

|Bκ(x, t)| ≤ ‖∂x(f − g)(·;x, t)‖∞ , ∀(x, t) ∈ R× R+. (69)

Proof. First of all, note that, thanks to (63), the function v satisfies : ∀κ ∈ R,
∀ψ ∈ C∞

c (R× R+),
∫∫

R×R+

|v − κ|∂tψdxdt+

∫

R

|v0 − κ|ψ(·, 0)dx

+

∫∫

R×R+

sign(v − κ)(f(v;x, t) − f(κ;x, t))∂xψdxdt

−

∫∫

R×R+

sign(v − κ)∂xf(κ;x, t)ψdxdt

≥

∫∫

R×R+

Aκ∂xψ dxdt+

∫∫

R×R+

Bκ ψ dxdt,

where

Aκ(x, t) = sign(v(x, t) − κ) [(f − g)(v(x, t);x, t) − (f − g)(κ;x, t)] ,

Bκ(x, t) = sign(v(x, t) − κ)∂x(g − f)(κ;x, t).

Clearly, the relations (68) and (69) hold for all κ ∈ R. �

We now give a stability result which is an adaptation of Theorem 3.1 of [3] in
the case of time-space depending flux functions. For x0 ∈ R and R > 0, we denote
by

B(x0, R) = {x ∈ R | |x− x0| < R},

and, for t ∈ [0, t) and ǫ > 0,

Bt = {x ∈ R | |x| < R+ Lf (T − t)}, Bǫ
t = {y ∈ R | |y| < R+ Lf (T − t) + ǫ},

Theorem A.3. Let x0 ∈ R, and let u0 ∈ BV(R), then, for all T > 0 and for all
R > 0,

‖u(·, T )− v(·, T )‖L1(B(x0,R)) ≤ ‖u0 − v0‖L1(B(x0,R+LfT )) + inf
ǫ>0

(

ǫCǫ
1 +

Cǫ
2

ǫ
+ Cǫ

3

)

,
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where

Cǫ
1 := TV(v0)

(
1 + ecgT + 2‖∂s∂xf‖∞Cg,0(T )

)

+2‖∂s∂xf‖∞Cg,1(T ) + 3

∫ T

0

sup
s∈R

‖∂2xxf(s, ·, t)‖L∞(Bǫ
t )
,

Cǫ
2 := 2

∫ T

0

∫

y∈Bǫ
t

‖(f − g)(·; y, t)‖∞dydt,

Cǫ
3 :=

∫ T

0

∫

y∈Bǫ
t

‖∂y(f − g)(·; y, t)‖∞dydt.

Proof. For the sake of simplicity, we only perform the proof for x0 = 0, but clearly,
adapting it to any x0 ∈ R does not provide any additional difficulty. We follow the
idea of Kružkov [21], Kuznetsov [22] and Bouchut and Perthame [3], and carry out
a proof based on the doubling variable technique. Let ξ : R× R+ × R× R+ → R+

be a smooth and compactly supported function. Then it follows from (62) and (70)
that
∫∫

R×R+

∫∫

R×R+

|u(x, t)− κ|∂tξ(x, t, y, s)dxdtdyds

+

∫∫

R×R+

∫

R

|u0(x)− κ|ξ(x, 0, y, s)dxdyds

+

∫∫

R×R+

∫∫

R×R+

{
sign(u(x, t)− κ)×

(f(u(x, t);x, t)− f(κ;x, t))∂xξ(x, t, y, s)

}

dxdtdyds

−

∫∫

R×R+

∫∫

R×R+

sign(u(x, t) − κ)∂xf(κ;x, t)ξ(x, t, y, s)dxdtdyds ≥ 0, (70)

while
∫∫

R×R+

∫∫

R×R+

|v(y, s)− κ|∂sξ(x, t, y, s)dxdtdyds

+

∫

R

∫∫

R×R+

|v0(y)− κ|ξ(x, t, y, 0)dxdtdy

+

∫∫

R×R+

∫∫

R×R+

{
sign(v(y, s)− κ)×

(f(v(y, s); y, s)− f(κ; y, s))∂yξ(x, t, y, s)

}

dxdtdyds

−

∫∫

R×R+

∫∫

R×R+

sign(v(y, s)− κ)∂yf(κ; y, s)ξ(x, t, y, s)dxdtdyds

≥

∫∫

R×R+

∫∫

R×R+

[Bκ(y, s)ξ(x, t, y, s) +Aκ(y, s)∂yξ(x, t, y, s)] dxdtdyds. (71)

Let ρ, ρ̃ ∈ C∞
c (R;R+) such that

∫

R
ρ(s)ds =

∫

R
ρ̃(s)ds = 1 and suppρ ⊂ [−1, 1],

suppρ̃ ⊂ [−1, 0]. We moreover assume that

ρ(0) = 1, and sρ′(s) ≤ 0, ∀s ∈ R. (72)

Then , for ǫ, δ > 0, we denote by

ρǫ(s) =
1

ǫ
ρ
(s

ǫ

)

, ρ̃δ(s) =
1

δ
ρ̃
(s

δ

)

,
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so that suppρǫ ⊂ [−ǫ, ǫ], suppρ̃δ ⊂ [−δ, 0] and
∫

R
ρǫ(s)ds =

∫

R
ρ̃δ(s)ds = 1. As a

consequence of (72), one has also

− sρ′ǫ(s) ≥ 0 and −

∫

R

sρ′ǫ(s)ds = 1, (73)

ensuring that s 7→ −sρ′ǫ(s) is also an approximation of the unit.
Let ψ ∈ C∞

c (R× [0, T )) (for some T > 0), then, choosing

ξ(x, t, y, s) = ψ(x, t)ρǫ(x− y)ρ̃δ(t− s)

yields

∂yξ(x, t, y, s) = −ψ(x, t)ρ′ǫ(x − y)ρ̃δ(t− s),

∂tξ(x, t, y, s) + ∂sξ(x, t, y, s) = ∂tψ(x, t)ρǫ(x− y)ρ̃δ(t− s),

∂xξ(x, t, y, s) + ∂yξ(x, t, y, s) = ∂xψ(x, t)ρǫ(x− y)ρ̃δ(t− s).

Choosing κ = v(y, s) in (70) and κ = u(x, t) in (71), then summing (recall that
ρ̃δ(s) = 0 if s ≤ 0) provides

T ǫ,δ
1 + T ǫ,δ

2 + T ǫ,δ
3 + T ǫ,δ

4 ≥ T ǫ,δ
5 + T ǫ,δ

6 , (74)

where

T ǫ,δ
1 =

∫∫

R×R+

∫∫

R×R+

|u(x, t)− v(y, s)|∂tψ(x, t)ρǫ(x− y)ρ̃δ(t− s)dxdtdyds,

T ǫ,δ
2 =

∫∫

R×R+

∫

R

|u0(x) − v(y, s)|ψ(x, 0)ρǫ(x − y)ρ̃δ(−s)dxdyds,

T ǫ,δ
3 =

∫∫

R×R+

∫∫

R×R+







sign(u(x, t)− v(y, s))×
(f(u(x, t);x, t)− f(v(y, s);x, t))

∂xψ(x, t)ρǫ(x− y)ρ̃δ(t− s)






dxdtdyds,

T ǫ,δ
4 =

∫∫

R×R+

∫∫

R×R+







sign(u(x, t)− v(y, s))×
[

(f(v(y, s); y, s)− f(v(y, s);x, t))ρ′ǫ(x − y)

−∂xf(v(y, s);x, t)ρǫ(x − y)
−(f(u(x, t); y, s)− f(u(x, t);x; t))ρ′ǫ(x − y)

+∂yf(u(x, t); y, s)ρǫ(x− y)
]

×

ρ̃δ(t− s)ψ(x, t)







dxdtdyds,

T ǫ,δ
5 =−

∫∫

R×R+

∫∫

R×R+

Au(x,t)(y, s)ψ(x, t)ρ
′
ǫ(x− y)ρ̃δ(t− s)dxdtdyds,

T ǫ,δ
6 =

∫∫

R×R+

∫∫

R×R+

Bu(x,t)(y, s)ψ(x, t)ρǫ(x− y)ρ̃δ(t− s)dxdtdyds.

We can directly let δ tend to 0 in (74). Using the continuity in mean theorem
and (64), this yields that

T ǫ
1 + T ǫ

2 + T ǫ
3 + T ǫ

4 ≥ T ǫ
5 + T ǫ

6 , (75)
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where

T ǫ
1 =

∫

R

∫∫

R×R+

|u(x, t)− v(y, t)|∂tψ(x, t)ρǫ(x− y)dxdtdy,

T ǫ
2 =

∫

R

∫

R

|u0(x)− v0(y)|ψ(x, 0)ρǫ(x− y)dxdy,

T ǫ
3 =

∫

R

∫∫

R×R+







sign(u(x, t) − v(y, t))×
(f(u(x, t);x, t) − f(v(y, t);x, t))

∂xψ(x, t)ρǫ(x− y)






dxdtdy,

T ǫ
4 =

∫

R

∫∫

R×R+







sign(u(x, t)− v(y, t))×
[

(f(v(y, t); y, t)− f(v(y, t);x, t))ρ′ǫ(x− y)

−∂xf(v(y, t);x, t)ρǫ(x− y)
+f(u(x, t);x, t)− f(u(x, t); y; t)ρ′ǫ(x− y)

+∂yf(u(x, t); y, t)ρǫ(x− y)
]

ψ(x, t)







dxdtdy,

T ǫ
5 = −

∫

R

∫∫

R×R+

Au(x,t)(y, t)ψ(x, t)ρ
′
ǫ(x− y)dxdtdy,

T ǫ
6 =

∫

R

∫∫

R×R+

Bu(x,t)(y, t)ψ(x, t)ρǫ(x − y)dxdtdy.

Contrarily to the study performed by Kružkov, we cannot let the parameter ǫ tend
to 0, because of the presence of ρ′ǫ in T ǫ

6 . The goal is now to derive ǫ-dependent
estimates from (75), as it was already the case in [22].

Define the functions Yθ : s 7→ min(1;max(0; 1− s/θ)) and

φθ(x, t) = Yθ(|x| −R− Lf(T − t)),

then, for a function χ ≥ 0 with compact support in [0, T ) to be specified latter,
setting ψ(x, t) = φθ(x, t)χ(t) yields that

|u(x, t)− v(y, t)|φθ(x, t)χ
′(t)

≥ |u(x, t)− v(y, t)|∂tψ(x, t)

+sign(u(x, t)− v(y, t))(f(u(x, t);x, t) − f(v(y, t);x, t))∂xψ(x, t).

Therefore,

T ǫ
1 + T ǫ

3 ≤

∫

R

∫∫

R×R+

|u(x, t)− v(y, t)|φθ(x, t)χ
′(t)ρǫ(x− y)dxdydt. (76)

For this choice of test function ψ, letting θ tend to 0 and recalling that

Bt = {x ∈ R | |x| < R+ Lf (T − t)}, Bǫ
t = {y ∈ R | |y| < R+ Lf (T − t) + ǫ},

taking (76) into account in the relation (75) provides

Dǫ
1 +Dǫ

2 +Dǫ
3 ≤ Dǫ

4 +Dǫ
5, (77)
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where

Dǫ
1 =

∫ T

0

∫

y∈Bǫ
t

∫

x∈Bt

|u(x, t)− v(y, t)|χ′(t)ρǫ(x − y)dxdydt,

Dǫ
2 =

∫

y∈Bǫ
0

∫

x∈B0

|u0(x)− v0(y)|χ(0)ρǫ(x− y)dxdy,

Dǫ
3 =

∫ T

0

∫

y∈Bǫ
t

∫

x∈Bt







sign(u(x, t)− v(y, t))×
[

(f(v(y, t); y, t)− f(v(y, t);x, t))ρ′ǫ(x − y)

−∂xf(v(y, t);x, t)ρǫ(x − y)
+f(u(x, t);x, t)− f(u(x, t); y; t)ρ′ǫ(x − y)

+∂yf(u(x, t); y, t)ρǫ(x− y)
]

χ(t)







dxdydt,

Dǫ
4 =

∫ T

0

∫

y∈Bǫ
t

∫

x∈Bt

Au(x,t)(y, t)ρ
′
ǫ(x − y)χ(t)dxdydt,

Dǫ
5 =

∫ T

0

∫

y∈Bǫ
t

∫

x∈Bt

Bu(x,t)(y, s)ρǫ(x− y)χ(t)dxdydt.

From the triangular inequality, one has

Dǫ
2 ≤

∫

x∈B0

|u0(x) − v0(x)|χ(0)dx +

∫

Bǫ
0

∫

B0

|v0(x) − v0(y)|χ(0)ρǫ(x− y)dxdy.

Since v0 belongs to BV(R), then
∫

Bǫ
0

∫

B0

|v0(x)− v0(y)|χ(0)ρǫ(x− y)dxdy ≤ ǫTV(v0)χ(0),

thus one has

Dǫ
2 ≤

∫

x∈B0

|u0(x)− v0(x)|χ(0)dx + ǫTV(v0)χ(0). (78)

Similarly, the triangular inequality yields that

Dǫ
1 ≤

∫ T

0

∫

x∈Bt

|u(x, t)− v(x, t)|χ′(t)dxdt

+

∫ T

0

|χ′(t)|

∫

y∈Bǫ
t

∫

x∈Bt

|v(x, t)− v(y, t)|ρǫ(x− y)dxdydt.

Since ∫

y∈Bǫ
t

∫

x∈Bt

|v(x, t) − v(y, t)|ρǫ(x− y)dxdy ≤ TV(v(·, t))ǫ,

then it follows from Theorem A.1 that for all t ∈ [0, T ],

TV(v(·, t)) ≤ TV(v0)e
cgT +

∫ T

0

ecg(T−τ)

∫

R

‖∂2xxg(·, x, t)‖∞dxdt := CBV,

where cg = 3‖∂x∂sg‖∞. As a consequence,

Dǫ
1 ≤

∫ T

0

∫

x∈Bt

|u(x, t)− v(x, t)|χ′(t)dxdt + ǫCBV‖χ
′‖L1 . (79)

Since x 7→ f(s;x, t) belongs to C2(R,R), one has, for all (x, y) ∈ Bt ×Bǫ
t , that

f(v(y, t); y, t)− f(v(y, t);x, t) = ∂xf(v(y, t);x, t)(y − x) + (y − x)2µ(x, y, t),
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for some µ(x, y, t) ∈ R with

|µ(x, y, t)| ≤
1

2
sup
s∈R

‖∂2xxf(s; ·, t)‖L∞(Bǫ
t )
. (80)

Therefore,

(f(v(y, t); y, t)− f(v(y, t);x, t))ρ′ǫ(x− y)− ∂xf(v(y, t);x, t)ρǫ(x− y)

= ∂xf(v(y, t);x, t)∂x ((y − x)ρǫ(x− y)) + (x− y)2ρ′ǫ(x− y)µ(x, y, t),

and similarly,

(f(u(x, t);x, t) − f(u(x, t); y, t))ρ′ǫ(x− y) + ∂yf(u(x, t); y, t)ρǫ(x− y)

= ∂yf(u(x, t); y, t)∂y ((x− y)ρǫ(x− y))− (x− y)2ρ′ǫ(x− y)ν(x, y, t)

= −∂yf(u(x, t); y, t)∂x ((x− y)ρǫ(x− y))− (x− y)2ρ′ǫ(x− y)ν(x, y, t), (81)

for some ν(x, y, t) ∈ R fulfilling

|ν(x, y, t)| ≤
1

2
sup
s∈R

‖∂2xxf(s; ·, t)‖L∞(Bǫ
t )
. (82)

It follows from (59) that µ and ν belong to L1(R× R× (0, T )). Denoting by

Dǫ
31 =

∫ T

0

χ(t)

∫

Bt

∫

Bǫ
t







sign(u(x, t)− v(y, t))×
[∂xf(v(y, t), x, t)− ∂yf(u(x, t); y, t)]

×∂x ((y − x)ρǫ(x− y))






dxdydt,

Dǫ
32 =

∫ T

0

χ(t)

∫

Bt

∫

Bǫ
t

{
sign(u(x, t)− v(y, t))×

(µ(x, y, t) + ν(x, y, t)) (x− y)2ρ′ǫ(x− y)

}

dxdydt,

we have

Dǫ
3 = Dǫ

31 +Dǫ
32. (83)

Clearly, for all x ∈ R, the function y 7→ (x − y)2ρ′ǫ(x − y) is compactly supported
in [x− ǫ, x+ ǫ] and

∣
∣(x− y)2ρ′ǫ(x− y)

∣
∣ ≤ ǫ(y − x)ρ′ǫ(x− y).

Using (72), (80) and (82), this ensures that

|Dǫ
32| ≤ ǫ

∫ T

0

χ(t) sup
s∈R

‖∂2xxf(s, ·, t)‖L∞(Bǫ
t )

(∫

Bt

dx

)

dt. (84)

Focus now on Dǫ
31, that we rewrite under the form

Dǫ
31 =

∫ T

0

χ(t)

∫

x∈Bt

∫

y∈Bǫ
t

[A(x, y, t)+B(x, y, t)]∂x[(y− x)ρǫ(x− y)]dxdydt, (85)

where

A(x, y, t) = sign(u(x, t)− v(y, t))
(

∂̃xf(v(y, t);x, t)− ∂̃xf(u(x, t);x, t)
)

,

B(x, y, t) = sign(u(x, t)− v(y, t))
(

∂̃xf(u(x, t);x, t)− ∂yf(u(x, t); y, t)
)

,

where we have introduced the notation

∂̃xf(u(x, t);x, t) = lim
h→0

f(u(x, t);x+ h, t)− f(u(x, t);x, t)

h
.
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Thanks to (72), one has
∫

R

∂x [(y − x)ρǫ(x− y)] dy = 0, ∀x ∈ R.

This implies that, for Υ ∈ {A,B},

∫ T

0

χ(t)

∫

x∈Bt

∫

y∈Bǫ
t

Υ(x, y, t)∂x[(y − x)ρǫ(x − y)]dydxdt

=

∫ T

0

χ(t)

∫

x∈Bt

∫

y∈Bǫ
t

[Υ(x, y, t)−Υ(x, x, t)]∂x[(y − x)ρǫ(x− y)]dydxdt

≤

∫ T

0

χ(t)

∫

x∈Bt

∫

y∈Bǫ
t

|Υ(x, y, t)−Υ(x, x, t)|(y − x)ρ′ǫ(x − y)dydxdt

+

∫ T

0

χ(t)

∫

x∈Bt

∫

y∈Bǫ
t

|Υ(x, y, t)−Υ(x, x, t)|ρǫ(x− y)dydxdt. (86)

On one hand, thanks to the regularity of f , the function

v 7→ sign(u(x, t)− v)
(

∂̃xf(v;x, t)− ∂̃xf(u(x, t);x, t)
)

is ‖∂s∂xf‖∞-Lipschitz continuous. Therefore, it follows from the definition of
A(x, y, t) that

|A(x, y, t) −A(x, x, t)| ≤ ‖∂s∂xf‖∞|v(y, t)− v(x, t)|.

Thus, using the fact the both ρǫ and s 7→ −sρ′ǫ(s) are approximations of the unit,
the relation (86) ensures that

∫ T

0

χ(t)

∫

x∈Bt

∫

y∈Bǫ
t

A(x, y, t)∂x[(y − x)ρǫ(x − y)]dydxdt

≤ 2ǫ‖∂s∂xf‖∞‖χ‖∞

∫ T

0

TV(v(·, t))dt.

Hence, using (66) provides that

∫ T

0

χ(t)

∫

x∈Bt

∫

y∈Bǫ
t

A(x, y, t)∂x[(y − x)ρǫ(x− y)]dydxdt

≤ 2ǫ‖∂s∂xf‖∞‖χ‖∞ (Cg,0(T )TV(v0) + Cg,1(T )) . (87)

On the other hand, the regularity of f ensures that

|B(x, y, t)−B(x, x, t)| ≤ χ(t) sup
s∈R

∥
∥∂2xxf(s; ·, t)

∥
∥
L∞(Bǫ

t )
|x− y|.

As a consequence, it follows from (86) that

∫ T

0

χ(t)

∫

x∈Bt

∫

y∈Bǫ
t

B(x, y, t)∂x[(y − x)ρǫ(x− y)]dydxdt

≤ 2ǫ

∫ T

0

χ(t) sup
s∈R

∥
∥∂2xxf(s; ·, t)

∥
∥
L∞(Bǫ

t )

(∫

Bt

dx

)

dt. (88)
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Taking (87) and (88) into account in (85) yields

Dǫ
31 ≤2ǫ‖χ‖∞

[

‖∂s∂xf‖∞ (Cg,0(T )TV(v0) + Cg,1(T ))

+

∫ T

0

sup
s∈R

∥
∥∂2xxf(s; ·, t)

∥
∥
L∞(Bǫ

t )

(∫

Bt

dx

)

dt
]

. (89)

The relations (83), (84) and (89) thus provide that

Dǫ
3 ≤ǫ‖χ‖∞

[

3

∫ T

0

sup
s∈R

‖∂2xxf(s, ·, t)‖L∞(Bǫ
t )

(∫

Bt

dx

)

dt

+ 2‖∂s∂xf‖∞(Cg,0(T )TV(v0) + Cg,1(T ))
]

. (90)

Concerning Dǫ
4, it follows from (68) and from

∫

R
|ρ′ǫ(x− y)|dx = 2/ǫ that

Dǫ
4 ≥ −

2

ǫ
‖χ‖∞

∫ T

0

∫

y∈Bǫ
t

‖(f − g)(·; y, t)‖∞dydt. (91)

Thanks to (69), one has

Dǫ
5 ≥ −‖χ‖∞

∫ T

0

∫

y∈Bǫ
t

‖∂y(f − g)(·; y, t)‖∞dydt. (92)

By choosing χ(t) = min(1;max(0, λ(T −t))) and letting λ tend to +∞ in (77)–(79),
(91) and (92), we obtain that

∫

BT

|u(x, T )− v(x, T )|dx ≤

∫

B0

|u0(x)− v0(x)|dx + ǫCǫ
1 +

Cǫ
2

ǫ
+ Cǫ

3,

where the quantities Cǫ
1, C

ǫ
2 and Cǫ

3 have been made explicit in Theorem A.3. Since
the result above holds for all ǫ > 0, it also holds for the optimal choice of ǫ,
concluding the proof of Theorem A.3. �
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[21] S. N. Kružkov. First order quasilinear equations with several independent variables. Mat. Sb.
(N.S.), 81(123):228–255, 1970.

[22] N. N. Kuznetsov. The accuracy of certain approximate methods for the computation of weak
solutions of a first order quasilinear equation. Ž. Vyčisl. Mat. i Mat. Fiz., 16(6):1489–1502,
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Université de Nantes, Laboratoire de Mathématiques Jean Leray, 2, Rue de la Houssinière,

44322 Nantes Cedex 03, France

helene.mathis@univ-nantes.fr

Nicolas Seguin

INRIA Rocquencourt, BP 105, F-78153, Le Chesnay Cedex, France

UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France

CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France

nicolas.seguin@upmc.fr


	1. Introduction
	2. The models and the dynamic model adaptation
	2.1. The fine model
	2.2. The coarse model
	2.3. Adaptive modeling

	3. Quantifying the modeling error linked to adaptation
	3.1. Estimation of the error "026B30D vf - va"026B30D 
	3.2. Quantification of the error "026B30D uf - ua"026B30D 

	4. Application to a model of transport with inertia
	5. Conclusion
	Appendix A. Stability results for scalar conservation laws
	A.1. Total variation estimates for Kružkov entropy solutions
	A.2. Stability w.r.t. the flux functions

	References

