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Simple Formulas for Counting Processes in Reliability Models

James Ledoux∗ , INSA Rennes

Gerardo Rubino †, ENST Bretagne & IRISA

Abstract

Dependability evaluation is a basic component in the assessment of the qualityof repairable systems. We develop

a model taking simultaneously into account the occurrence of failures and repairs, together with the observation

of user-defined success events. The model is built from a Markovian description of the behavior of the system.

We obtain the distribution function of the joint number of observed failures and of delivered services on a fixed

mission period of the system. In particular, the marginal distribution of the number of failures can be directly

related to the distribution of the Markovian Arrival Process extensively usedin queueing theory. We give both

the analytical expressions of the considered distributions and the algorithmic solutions for their evaluation.

Asymptotical analysis is also provided.

Keywords: Counting Processes, Markov Chains, Uniformization.

AMS 1991 Subject Classification: Primary 60J10, 90B25
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1 Introduction

In the last years, special attention has been devoted to the quantitative analysis of queueing models with a Marko-

vian Arrival Process (MAP) [11] (or a versatile Markovian point process according to [13]). The interest of such

a point process is to keep the tractability of the Poisson arrivals but significantly generalize it allowing the in-

clusion of dependent interarrival times, non-exponential interarrival distributions, etc. Lucantoni’s tutorial [11]

reviews this class of stochastic process. We refer for instance to [14] for a discussion on qualitative features in

traffic streams which can be captured by such a process. Extensive work has been performed about the stationary

characteristics of MAPs and, in the last years, on the transient analysis of these processes as well, mainly on

problems coming from communications systems (see [1] and references in [11], for instance). Here, we point

out that MAP-type processes are also suitable for modeling some failure occurrence phenomenon in repairable

systems. Moreover, from the viewpoint of reliability (or dependability [8])theory, we are mainly interested in
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evaluating measures on transient features of the system. The aim of the paperis precisely to present a general

dependability model and to give analytic and algorithmic results for evaluating it on an finite observation period.

In Section 2, the system is modeled by a discrete time Markov process. One of its aims is to handle the concept

of delivered servicewith the help of a particular class of transitions. We also give a constructive definition of a

model of failure occurrence and recovery times. We allow, for instance, to consider phase (PH) distributed recov-

ery times. The joint distribution of the number of observed events (including failures) and of delivered services

on an finite interval is then derived and we propose an efficient algorithm for the numerical computation of this

distribution. In Section 3, we discuss the counterpart of the model in continuous time, using the uniformiza-

tion technique. Finally, we report in Section 4 the extensions to our context of some well-known formulas on

expectation measures associated with MAP processes. Section 5 consists of concluding remarks.

Main notation

• U = {1, 2, . . . ,M}, R : the sets of up and recovery states;

• α = (α1, . . . , αM ) whereαi = P(system starts at statei);

• Q = (Q(i, j))i,j∈U (resp. P = (P (i, j))i,j∈U ) whereQ(i, j) (resp.P (i, j)) is the transition rate (resp.

probability) from statei to statej for a failure-freesystem;

• Xt: the state occupied at timet for a failure-freesystem;

• X∗
t : the up or recovery state occupied at timet, when failures are taken into account;

• Nt: the number of failures up to timet;

• Ct: the number of delivered services up to timet;

• λi (resp.pi ): primary failure rate (resp. probability) when the occupied state isi;

• λ(i, j): occurrence probability of aprimary failure during a control transfer from statei to statej;

• µi (resp.µ(i, j)) has the same meaning asλi (resp.λ(i, j)) for thesecondaryfailure process;

• α(i, j): probability that the first recovery state entered isj given that a failure occurs in the statei.
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2 Discrete time model

2.1 Description

In this section, we are concerned with models evolving in discrete time. Such a modelcan be useful when a

discrete temporal grain is more significant than a continuous one to represent system behavior. We consider

that we have a model of the system in operation, which is assumed to be a discretetime homogeneous Markov

chainX on the finite state spaceU = {1, . . . ,M}. The different states can represent the load on the system as

it is usually done in performance evaluation, or some measure of performancelevel, or the active module of a

software system, etc. This Markov chain is given by its transition probability matrix P = (P (i, j))i,j∈U , where

P (i, j) denotes the transition probability from statei to statej, and by its initial distributionα = (α1, . . . , αM ).

By convention, vectors are row vectors. Column vectors are denoted by means of the transpose operator(.)T.

Suppose that statei represents a computer system working to satisfy some request, and that after visiting state

i, the next visited state isj (this happens with probabilityP (i, j)). Given this, there are two possibilities: either

the service request is satisfied at this point in time or it is not. In the first case, we say that anexecution cycle

ends successfully. The probability of this event is denoted bypc(i, j) and the probability of its complementary

event ispf (i, j). So, we have the decompositionP (i, j) = pc(i, j) + pf (i, j). Of course, in a model we will

usually have, for instance,pf (i, j) = 0 for many pairsi, j. Observe that if a cycle ends when the model jumps

from statei to statej, we are assuming that the next cycle starts from statej.

Assume now that the system is subject to failures and that it includes repair facilities (that is, it is arepairable

system). Let us describe the failure process. We distinguish two types of failure; the first one is associated with

states, the second one with transitions. When the model is in statei, a failure occurs with probabilitypi, thus

depending on the identity of the state. This means that, at the next jump, a cycle ends unsuccessfully and a repair

phase will start. We discuss above the representation of the repair time. In some applications, it can be useful to

associate failures directly with transitions. To do this, suppose that a failure does not occur during a sojourn in

statei (this event has probability1− pi). If the next state to be visited is statej (which happens with probability

P (i, j)), suppose that a second class of failure can occur, called atransfer failure, and that this happens with

probabilityλ(i, j), thus depending on both the original and the next state. Such a failure causes an execution

break.

Retrieving a safe state involves a general random delay which is assumed tohave a phase type (PH) distribu-

tion; in other words, this delay can be seen as the time up to absorption in a finite discrete time Markov chain (for

PH distributions, see [13]). The set of non-absorbing states associatedwith this PH random variable is denoted by
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R and it represents the set ofrecovery statesin our model. The sub-stochastic matrix of transition probabilities

between recovery states is denoted byR̂1. The phase type assumption allows us to represent times to recover an

operational state which depend on the identity of the state in which the failure has occurred. Indeed, the sequence

of successive visited states inR can be related to the first recovery state selected after a failure. We assumethat

the recovery statej is entered after a failure occurrence in statei (or at a transition instant fromi) with constant

probabilityα(i, j) (with
∑

j∈R α(i, j) = 1). These delays can be interpreted, for instance, as either the time

needed to restart the system or as the period of time used by a fault tolerantmechanism to recover a safe state.

After a recovery period ended by statei ∈ R, statej ∈ U is entered with constant probabilitŷS(i, j). Therefore,

matrix Ŝ =
(
Ŝ(i, j)

)
(i,j)∈R×U

is composed by the transition probabilities from the “down” states to the “up”

states and we have(Ŝ + R̂)1T = 1T, where1T represents a column vector with all its entries equal to one.

Let us define now the processX∗ = (X∗
h)h≥0 whereX∗

h is the occupied up-state at timeh if the system is up,

or the recovery state reached at timeh. Its state space is the setE = U ∪ R. Given a sequence of states visited

by X∗ (a trajectory of the process), all the failure processes are assumed to beindependent of each other and

independent of the recovery process. We define three matricesÂ, Ĉ, D̂ by their respective entries:

Â(i, j) = pc(i, j)(1− pi)(1− λ(i, j)) i, j ∈ U ,

Ĉ(i, j) = pf (i, j)(1− pi)(1− λ(i, j)) i, j ∈ U ,

D̂(i, j) = [ pi + (1− pi)
∑

k P (i, k)λ(i, k) ]α(i, j) i ∈ U , j ∈ R.

The nonnegative number̂A(i, j) (respectivelyĈ(i, j)) represents the probability thatX∗ jumps from state

i to j without any occurrence of a failure or success event (respectively withno failure event and a delivered

service). The entrŷD(i, j) is the probability that theX∗ jumps from up-statei to repair-statej, that is after

the occurrence of a failure event. It is immediate to check thatX∗ is a finite homogeneous Markov chain with

transition probability matrix

P ∗ =


 Â+ Ĉ D̂

Ŝ R̂




which is assumed to be irreducible. Therefore, the alternation of execution-recovery periods is infinite.

2.2 Example

Let us consider the Markov reliability-model for a modular software developed by Cheung [3]. The control

structure is represented by a directed graph where every node is a program module. Each directed arc(i, j)

1The reasons explaining some of the notation are better understood in the discussion of the continuous time model (Section 3).
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represents a possible transfer of control fromi to j. A probabilityP (i, j) that the associated transfer will take

place when control is at modulei, is attached to every arc(i, j). The set of modules is assumed to be the state

space of a finite Markov chain with transition probability matrixP . Suppose that we have 5 modules and that the

transition probability matrix is

P =




0 1/2 1/2 0 0

3/10 0 2/5 3/10 0

0 0 0 2/5 3/5

0 0 0 0 1

1/2 0 1/2 0 0




.

In Cheung’s formulation, there exists a single input module in the program. Here we can consider any module

as an input state. For our example, module1 and3 are such input points. We suppose that the selection of

the input module is done according to the probability distributionα = (1/2, 0, 1/2, 0, 0). Finally, an absorbing

state (called a terminal node) is used in [3] to represent mission success ofthe software, that is, the fact that the

software completes its task successfully. Here, we allow any module to be a terminal node for a class of tasks. In

our example, we consider that50% of the execution of module2 corresponds to a completion of a task. If such a

task is completed, in40% (resp.60%) of the cases the input module3 (resp. module1) is then executed. So we

can write

pf (2, 3) =
2

5

1

2
=

1

5
and pc(2, 3) =

1

5
,

pf (2, 1) =
1

2

3

5
=

3

10
and pc(2, 1) = 0.

Sincepc(2, 1) = 0, all the transitions from module2 to module1 correspond to the success of a task and the

beginning of a new one. Since modules1 and3 are the only input modules, we haveP (2, 4) = pc(2, 4), that is any

transition from module2 to module4 means that module4 must be executed after module2 for the completion of

some task. A similar assumption is made for modules1, 3 and4, that is
[
P (1, 2) = pc(1, 2), P (1, 3) = pc(1, 3)

]
,

[
P (3, 4) = pc(3, 4), P (3, 5) = pc(3, 5)

]
andP (4, 5) = pc(4, 5). Finally, module5 is always a terminal module,

that is each execution of module5 corresponds to the completion of a task. After such a mission success, the

input modules1 and3 are executed according to the selection probability distributionα.

Now let us describe the failure parameters. For each modulei, we have a constant probabilitypi that the

module fails. For our numerical evaluations, theses probabilities are

p1 = p2 = p5 = 0; p3 =
1

100
, p4 =

3

100
.

5



In [3], when such a failure event occurs, the programs are definitively stopped. We suppose here that each failure

event is followed by a recovery period. There is no failure associated with transitions in the example for the sake

of simplicity.

In our numerical example, we assume that there are two recovery states denoted by1R and2R. After a failure

in module3 the system recovers during a geometrically distributed period with parameterR(1R, 1R) = 1/1000

(and thus,α(3, 1R) = 1). In the same way, after a failure in module4, the recovering period has a geometric

distribution with parameterR(2R, 2R) = 3/1000 (and thus,α(4, 2R) = 1). After a recovering period, the input

modules1 and3 are entered according to the initial distributionα. The five associated matrices are then

Â =




0 1
2

1
2 0 0

0 0 1
5

3
10 0

0 0 0 2
5

99
100

3
5

99
100

0 0 0 0 97
100

0 0 0 0 0




, Ĉ =




0 0 0 0 0

3
10 0 1

5 0 0

0 0 0 0 0

0 0 0 0 0

1
2 0 1

2 0 0




, D̂ =




0 0

0 0

1
100 0

0 3
100

0 0




,

R̂ =




1
1000 0

0 3
1000


 , Ŝ =




999
1000

1
2 0 999

1000
1
2 0 0

997
1000

1
2 0 997

1000
1
2 0 0


 .

2.3 Main joint distribution

We are interested in computing the distribution of the discrete time bi-dimensional process(Nh, Ch)h≥0 where

Nh (respectivelyCh) is the cumulative number of failures (respectively of delivered services) observed at time

h. To do this, let us consider the tri-dimensional process(N,C,X∗) = (Nh, Ch, X
∗
h)h≥0 over the state space

N × N × E . It follows from the independence assumptions on failure and recovery processes and from the

phase type assumption for recovery delays that(N,C,X∗) is a homogeneous Markovian process with initial

distribution:

P(N0 = 0, C0 = 0, X∗
0 = i) = P(X∗

0 = i) = αi,

P(N0 = k, C0 = n,X∗
0 = i) = 0 for k, n ≥ 1 and anyi ∈ U .

The transition probabilities associated with(N,C,X∗) are given, for allk ≥ 0 andh ≥ 1, by

P
(
(Nh, Ch, X

∗
h) = (k, n, j) | (Nh−1, Ch−1, X

∗
h−1) = (k, n, i)

)
=





Â(i, j) (i, j) ∈ U × U

R̂(i, j) (i, j) ∈ R×R

Ŝ(i, j) (i, j) ∈ R× U

0 (i, j) ∈ U ×R
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P
(
(Nh, Ch, X

∗
h) = (k + 1, n, j) | (Nh−1, Ch−1, X

∗
h−1) = (k, n, i)

)
=





D̂(i, j) (i, j) ∈ U ×R

0 otherwise,

P
(
(Nh, Ch, X

∗
h) = (k, n+ 1, j) | (Nh−1, Ch−1, X

∗
h−1) = (k, n, i)

)
=





Ĉ(i, j) (i, j) ∈ U × U

0 otherwise.

All other transition probabilities for(N,C,X∗) are null. The above theorem gives the distribution function of

the counting process(Nh, Ch)h≥0. In the sequel, for anyn ∈ N the expression(0)n will denote a sequence ofn

values0. We denote by diag(Mi) a diagonal matrix (respectively a block diagonal matrix), with the real number

Mi (respectively matrixMi) as diagonal(i, i)-entry (respectively(i, i)-block entry).

Theorem 2.1 For all timeh ≥ 0, we have:

P(Nh ≤ k, Ch ≤ n) = (α, (0)n, (0)2k(n+1)) P h
k+1,n+1 1

T ∀k, n ≥ 0,

where

Pk+1,n+1 =




B D̂′ 0 · · · · · · 0

0 R̂′ Ŝ′ .. .
...

...
. . . .. . .. . .. .

...
...

.. . B D̂′ 0
...

.. . R̂′ Ŝ′

0 · · · · · · · · · 0 B




is a (2k + 1)× (2k + 1) block matrix with the(n+ 1)× (n+ 1) block matricesB defined by

B =




Â Ĉ 0 · · · 0

0
.. . .. . .. .

...
...

.. . .. . .. . 0
...

.. . .. . Ĉ

0 · · · · · · 0 Â




,

andR̂′ = diag(R̂), Ŝ′ = diag(Ŝ), D̂′ = diag(D̂).

Proof. Let us denote byPi() the probability measure conditional to the event(X∗
0 = i), for anyi ∈ U . We use
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the following renewal equations for eachh ≥ 1:

∀i ∈ U : Pi(Nh ≤ k, Ch ≤ n) =
∑

j∈U

Â(i, j) Pj(Nh−1 ≤ k, Ch−1 ≤ n)

+
∑

j∈U

Ĉ(i, j) Pj(Nh−1 ≤ k, Ch−1 ≤ n− 1)

+
∑

j∈R

D̂(i, j) Pj(Nh−1 ≤ k − 1, Ch−1 ≤ n) for k, n ≥ 1.

∀i ∈ U : Pi(Nh ≤ k, Ch = 0) =
∑

j∈U

Â(i, j) Pj(Nh−1 ≤ k, Ch−1 = 0)

+
∑

j∈R

D̂(i, j) Pj(Nh−1 ≤ k − 1, Ch−1 = 0) for k ≥ 1.

∀i ∈ U : Pi(Nh = 0, Ch ≤ n) =
∑

j∈U

Â(i, j) Pj(Nh−1 = 0, Ch−1 ≤ n)

+
∑

j∈U

Ĉ(i, j) Pj(Nh−1 = 0, Ch−1 ≤ n− 1) for n ≥ 1.

∀i ∈ R : Pi(Nh ≤ k − 1, Ch ≤ n) =
∑

j∈R

R̂(i, j) Pj(Nh−1 ≤ k − 1, Ch−1 ≤ n)

+
∑

j∈U

Ŝ(i, j) Pj(Nh−1 ≤ k − 1, Ch−1 ≤ n) for k ≥ 1, ∀n ≥ 0.

Let us define the row vectors

xU (k, n, h) = (Pi(Nh ≤ k, Ch ≤ n))i∈U ,

xR(k, n, h) = (Pi(Nh ≤ k − 1, Ch ≤ n))i∈R

and denote the column vectors(xU (k, n, h))T and(xR(k, n, h))T respectively byxT
U (k, n, h) andxT

R(k, n, h).

The previous relations can be rewritten with this notation: forh ≥ 1,

xT
U (k, n, h) = ÂxT

U (k, n, h− 1) + ĈxT
U (k, n− 1, h− 1) + D̂xT

R(k, n, h− 1) k, n ≥ 1,

xT
U (k, 0, h) = ÂxT

U (k, 0, h− 1) + D̂xT
R(k, 0, h− 1) k ≥ 1,

xT
U (0, n, h) = ÂxT

U (0, n, h− 1) + ĈxT
U (0, n− 1, h− 1) n ≥ 1,

xT
R(k, n, h) = R̂xT

R(k, n, h− 1) + ŜxT
U (k − 1, n, h− 1), xT

R(k, n, 0) = 1T k ≥ 1, n ≥ 0

xT
U (0, 0, h) = ÂxT

U (0, 0, h− 1), xT
U (k, n, 0) = 1T, k, n ≥ 0.





(1)
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If we define the column vector

xT(h) = [ xU (k, n, h), . . . , xU (k, 0, h), xR(k, n, h), . . . , xR(k, 0, h),

xU (k − 1, n, h), . . . , xU (k − 1, 0, h), xR(k − 1, n, h), . . . , xR(k − 1, 0, h),

· · · · · ·

xU (0, n, h), . . . , xU (0, 0, h) ]
T ,

then we can verify that forh ≥ 1

xT(h) = Pk+1,n+1 x
T(h− 1)

with xT(0) = 1T. Therefore, the proposed representation of the distribution function of(Nh, Ch) follows imme-

diately.

System (1) can be used for the numerical evaluation of the distribution functionP(Nh0 ≤ k0, Ch0 ≤ n0),

k0, n0 ≥ 0. At steph ≤ h0, the value of the couple of vectors(xT
U (k, n, h), x

T
R(k, n, h)) is obtained from

the computation performed at steph − 1, as illustrated in Figure 1. Of course, a compact representation of the

involved matrices can be used having regard to their probable sparsity.

Â

Ŝ

D̂

R̂ xR(k, h)xR(k, h− 1)
k

k − 1

h− 1 h

xC(k − 1, h− 1)

xC(k, h− 1) xC(k, h)

Figure 1: The contents of the cell(k, n, h) is the couple of vectors(xT
U (k, n, h), x

T
R(k, n, h)).

2.4 Marginal distributions

From the distribution of the random variable(Nh, Ch), we can derive the marginal distribution functions of the

variablesNh andCh:

∀k ≥ 0, P(Nh ≤ k) = P(Nh ≤ k, Ch ≤ h) = αxT
U (k, h, h);

∀n ≥ 0, P(Ch ≤ n) = P(Nh ≤ h,Ch ≤ n) = αxT
U (h, n, h).
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SincexT
U (k, h, h− 1) = xT

U (k, h− 1, h− 1) for 0 ≤ k ≤ h− 1 andxT
R(k, h, h− 1) = xT

R(k, h− 1, h− 1) for

1 ≤ k ≤ h− 1, we can reduce system (1) for evaluating the marginal distributionP(Nh ≤ k), for instance, to

xT
U (k, h, h) = (Â+ Ĉ)xT

U (k, h− 1, h− 1) + D̂ xT
R(k, h− 1, h− 1), k ≥ 1;

xT
U (0, h, h) = (Â+ Ĉ)xT

U (0, h− 1, h− 1);

xT
R(k, h, h) = R̂ xT

R(k, h− 1, h− 1) + Ŝ xT
U (k − 1, h− 1, h− 1), k ≥ 1;

xT
R(k, 0, 0) = 1T, k ≥ 1 and xT

U (k, 0, 0) = 1T, k ≥ 0.

In that case, it is clear that we only need a double index for the vectors.

2.5 Expected values

Let us briefly analyze now the mean number of failures up to timeh. A first expression of this expectation can

be easily derived from Theorem 2.1:

E[Nh] =
+∞∑

k=0

P(Nh > k) =
+∞∑

k=0

(1− αxT
U (k, h, h))

=
h−1∑

k=0

(1− αxT
U (k, h, h)) sincexT

U (k, h, h) = 1T for k ≥ h

= h−
h−1∑

k=0

αxT
U (k, h, h). (2)

We obtain in the same way for the random variableCh:

E[Ch] = h−
h−1∑

n=0

αxT
U (h, n, h).

Therefore, forh0 fixed, the computation ofE[Nh0 ] consists in summing the outputs of the previous algorithm

with the successive valuesk0 = 1, . . . , h0 − 1. We will give other representation of these expectation measures

in Section 4. They will be directly related to the classical relations in [12], [13] for a MAP in the continuous time

context.

2.6 Example (continued)

The reliability measure adopted by Cheung [3] is the probability of reaching the terminal node from the input

module, that is, the probability that the software completes successfully a task. It corresponds to the probability

of absorption in the terminal state given that the Markov model starts in the input state. In [15], Siegrist modi-

fies Cheung’s model by eliminating the assumption of a terminal state and by considering the mean number of
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transitions up to a failure as the measure of reliability. Our model and the results of previous subsections allows

us to perform a much more deep analysis of such a system. Since we obtain the joint distribution function of

the two main processes in the model, virtually any measure of interest can be numerically derived. The designer

can also use this distribution in order to tune a control variable or to verify somedependability constraint. For

instance, it is important to see if givenε > 0, we haveP(NH ≤ k, CH ≥ n) > 1 − ε for someH, k, n, or

P(NH ≤ k | CH ≥ n) > 1− ε, or whatever. More simply, we can analyze the behavior of the joint distribution

as a function of one or two variables. Let us illustrate this with some numerical values. In Figure 2 we plot the

numberP(NH = 0, CH > n) as a function ofn, for different values of the total interval lengthH. As one can
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Figure 2:P(NH = 0, CH > n) as a function ofn, for different values of the total interval lengthH: P(N40 =

0, C40 > n) + , P(N30 = 0, C30 > n) • , P(N20 = 0, C20 > n) ⊕

expect, this probability is not very dependent onn for small values ofn, and gets quickly very small values when

this dependency begins to increase. In the second example, we keep the totalinterval length constant and we look

atP(NH ≤ k, CH > n) as a function ofn, for different values ofk. The behavior of these joint probabilities is

similar as the behavior of the joint distributions illustrated in Figure 2.
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Figure 3: P(N40 ≤ k, C40 > n) as a function ofn, with k = 0, 1, 2 : P(N40 = 0, C40 > n) + ,

P(N40 ≤ 1, C40 > n ) • , P(N40 ≤ 2, C40 > n) ⊕

3 Continuous time model

3.1 Description

In the continuous counterpart of the previous model, when the system is up, itsbehavior is described by a

continuous time Markov chainX over the state spaceU = {1, . . . ,M}. The infinitesimal generator and the

initial distribution ofX are respectively denoted byQ = (Q(i, j))i,j∈U andα = (α1, . . . , αM ). The entry

Q(i, j) (i 6= j ) is the transition rate from statei to statej in absence of any disruption phenomenon.

We will count two classes of events. First, we consider what we callsecondary events. When the occupied

state isi, they occur according to a Poisson process having rateµi. A secondary event can also take place with

constant probabilityµ(i, j) simultaneously with a transition from statei to statej. These events are just counted

and they do not affect the behavior of the Markov chainX; they are of interest for instance in reliability models

as we will see in Remark 2 (see also [10]).

The other class of events is composed of the failures; they lead to an execution break and the execution is

restarted (after some delay) for instance from a checkpoint or perhaps from the beginning. Their occurrence is

a primary event. When the occupied state isi, a failure arrives with constant rateλi. Failures may also happen

at a transition instant: when there is a switch from statei to statej, the probability of having a primary event

is assumed to be constant and is denoted byλ(i, j). In order to simplify the technical evaluation of the model,

12



we accept the simultaneous occurrence of the two types of events when a transition occurs fromi to j (with

probabilityλ(i, j)µ(i, j)), with the result that only the primary one will be taken into account. The pointprocess

constituted by the occurrence times of successive events is closely related toMAPs (see Remark 1).

As in Section 2, we distinguish the transitions between two statesi andj where an execution cycle ends in

statei and is followed by a jump to statej, from those occurring within those cycles. To do this, a probability

pf (i) thati is the last occupied state in an execution cycle is associated with each statei.

As in discrete time, we suppose that the delay following an execution break is a random variable with a phase

type distribution. We denote the set of transient states associated with this PH-distribution byR. The sub-

generator composed by the transition rates between elements ofR is denoted byR. As argued in the discrete

time context, we can then model a delay which depends on the state in which the failure has occurred. We assume

that the first recovery state entered after a failure in statei ∈ U (or at a transition time from statei) is j ∈ R with

constant probabilityα(i, j). Matrix S = (S(i, j))(i,j)∈R×U is composed of the transition rates from a recovery

state to an up-state ofU . We have(R+ S)1T = 0.

Let us defineX∗ = (X∗
t )t≥0 as the process which gives either the up-state or the recovery state occupied at

time t. Its state space is then the setE = U ∪ R. Given a sequence of visited states, the occurrence processes

of events associated with each state are independent of each other. Theoccurrence processes of events during a

transition are also independent of each other and of the occurrence processes of events in the up-states. Given a

sequence of states ofE , the occurrence process of events and the recovery process are assumed to be independent

too. It follows thatX∗ is a finite homogeneous Markov chain with initial distributionα and generatorQ∗ given

by

Q∗(i, j) = Q(i, j)(1− λ(i, j)) if i 6= j and i, j ∈ U ,

Q∗(i, i) = Q(i, i)− λi if i ∈ U ,

Q∗(i, j) = [λi +
∑

k 6=i,k∈U Q(i, k)λ(i, k) ]α(i, j) if (i, j) ∈ U ×R,

Q∗(i, j) = R(i, j) if i, j ∈ R,

Q∗(i, j) = S(i, j) if (i, j) ∈ R× U .

As in discrete time, we assume thatX∗ is irreducible, which ensures that the alternation execution-recovery is

infinite.

3.2 Analysis

We will analyze the process(N,C) = (Nt, Ct)t≥0 whereNt (respectivelyCt) is the cumulative number of

primary or secondary events (respectively of delivered services) inthe interval]0, t]. To do this, let us consider
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the tri-dimensional time-continuous process(N,C,X∗) = (Nt, Ct, X
∗
t )t≥0. It follows from the independence

assumptions that this is a homogeneous Markovian process over the state spaceN× N× E . We denote byN (p)
t

(resp.N (s)
t ) the cumulative number of primary (resp. of secondary) events observedover]0, t]. Therefore, for all

t ≥ 0, we have by definitionNt = N
(p)
t +N

(s)
t . Formally, the transition rates of(N,C,X∗) are for allk, n ≥ 0:

a(i, j)

i, j ∈ U

=





lim
dt→0

1

dt
P((Nt+dt −Nt, Ct+dt − Ct, X

∗
t+dt) = (0, 0, j) | (Nt, Ct, X

∗
t ) = (k, n, i)) if i 6= j,

0, if i = j

c(i, j)

i, j ∈ U

=





lim
dt→0

1

dt
P((Nt+dt −Nt, Ct+dt − Ct, X

∗
t+dt) = (0, 1, j) | (Nt, Ct, X

∗
t ) = (k, n, i)) if i 6= j,

0, if i = j

d(s)(i, j)

i, j ∈ U

= lim
dt→0

1

dt
P((Nt+dt−Nt = N

(s)
t+dt−N

(s)
t , Ct+dt−Ct, X

∗
t+dt) = (1, 0, j) | (Nt, Ct, X

∗
t ) = (k, n, i))

d(p)(i, j)

i∈U,j∈R

= lim
dt→0

1

dt
P((Nt+dt−Nt = N

(p)
t+dt−N

(p)
t , Ct+dt−Ct, X

∗
t+dt) = (1, 0, j) | (Nt, Ct, X

∗
t ) = (k, n, i)).

The following expressions for these rates can be derived by listing the different primary, secondary or recovery

involved events:

a(i, j) = (1− pf (i))Q(i, j)(1− λ(i, j))(1− µ(i, j)) if i 6= j and i, j ∈ U ,

a(i, i) = 0 if i ∈ U ,

c(i, j) = pf (i)Q(i, j)(1− λ(i, j))(1− µ(i, j)) if i 6= j and i, j ∈ U ,

c(i, i) = 0 if i ∈ U ,

d(s)(i, i) = µi if i ∈ U ,

d(s)(i, j) = Q(i, j)[1− λ(i, j)]µ(i, j) if i 6= j and i, j ∈ U ,

d(p)(i, j) = [λi +
∑

k 6=i,k∈U Q(i, k)λ(i, k) ]α(i, j) if (i, j) ∈ U ×R.

After checking that, for anyi, we have

∑

j∈U

[a(i, j) + c(i, j) + d(s)(i, j)] +
∑

j∈R

d(p)(i, j) = −Q(i, i) + λi + µi

and denoting byδi this value, let us define the four matricesA, D(p), D(s) andC by

A = (a(i, j))i,j∈U − diag(δi)i∈U , D(p) = (d(p)(i, j))(i,j)∈U×R,

D(s) = (d(s)(i, j))i,j∈U , C = (c(i, j))i,j∈U .
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With the previous notation, the generatorQ∗ of X∗ can be rewritten as

Q∗ =


 A+ C +D(s) D(p)

S R


 .

We use the well-known uniformization technique [5] to compute the distribution functionof (Nt, Dt). Let us

denote by(Nh, Ch, X
∗
h)h≥0 the uniformized discrete time Markov chain with respect to the uniformization rateu

and by Poiss(t) the Poisson distributed (with parameteru) random variable which gives the number of transitions

over]0, t] for this uniformized chain. The quantity Poiss(k, t) represents the sum

Poiss(k, t) =
k∑

h=0

e−ut (ut)
h

h!
.

We can now state a PH-representation for the distribution function of the variable(Nt, Ct) at a fixed point.

Theorem 3.1 For all t ≥ 0, we have

P(Nt ≤ k, Ct ≤ n) = (α, (0)n, (0)2k(n+1)) eAk+1,n+1t 1T ∀k, n ≥ 0

= Poiss(min(k, n), t) +

+∞∑

h=min(k,n)+1

e−ut (ut)
h

h!
αxT

U (k, n, h) (3)

whereu = sup{ i ∈ U , j ∈ R : |A(i, i)|, |R(j, j)| } and

Ak+1,n+1 =




B D(p) D(s) 0 · · · · · · 0

0 R′ S′ 0
. . .

...
...

. .. .. . . . . . . . . . .
...

...
.. . . . . . . . 0 0

...
. . . B D(p) D(s)

...
. . . R′ S′

0 · · · · · · · · · · · · 0 B




is a (2k + 1) × (2k + 1) block matrix built with the following(n + 1) × (n + 1) block matrices:B has the

same structure as in Theorem 2.1 with matricesA andC; R′ = diag(R), S′ = diag(S), D(p) = diag(D(p))

andD(s) = diag(D(s)). Now, ifÂ, R̂, Ĉ, D̂(p), D̂(s), Ŝ result from the uniformization transformation of matrices

A,R,C,D(s), D(p), S, that isÂ = I +A/u , R̂ = I +R/u , Ĉ = C/u , D̂(p) = D(p)/u , D̂(s) = D(s)/u , Ŝ =

S/u , then the column vectorsxT
U (k, n, h) in (3) are computed with system(4) (given in the proof of the theorem)

analogous to system(1).
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Proof. For allk, n ≥ 0 andt > 0, we can write

P(Nt ≤ k, Ct ≤ n) =
+∞∑

h=0

P(Poiss(t) = h) P(Nt ≤ k, Ct ≤ n | Poiss(t) = h)

=

min(k,n)∑

h=0

e−ut (ut)
h

h!
P(Nt ≤ k, Ct ≤ n | Poiss(t) = h)

+
+∞∑

h=min(k,n)+1

e−ut (ut)
h

h!
P(Nt ≤ k, Ct ≤ n | Poiss(t) = h)

= Poiss(min(k, n), t) (sinceP(Nt ≤ k, Ct ≤ n | Poiss(t) = h) = 1 if h ≤ min(k, n))

+

+∞∑

h=min(k,n)+1

e−ut (ut)
h

h!
P(Nt ≤ k, Ct ≤ n | Poiss(t) = h).

Consequently, relation (3) follows from the equalityP(Nt ≤ k, Ct ≤ n | Poiss(t) = h) = P(Nh ≤ k, Ch ≤ n).

Our problem reduces then to the computation of the distribution of(Nh, Ch) on the uniformized Markov chain

(Nh, Ch, X
∗
h). This can be done with similar arguments as in Theorem 2.1. Indeed, we havea discrete time

model as in Section 2, except that we allow two types of event: the first one leads to a restart in the state within

the event has occurred; concerning the second one, we necessaryhave a recovery action to do. We can exhibit

the same backward renewal equations than in Theorem 2.1, except that matrix D̂ is replaced by matrix̂D(p) and

that we have an additional term in the two first equations which is respectively
∑

j∈U D̂(s)(i, j) Pj(Nh−1 ≤

k − 1, Ch−1 ≤ n) and
∑

j∈U D̂(s)(i, j) Pj(Nh−1 ≤ k − 1, Ch−1 = 0) (for any i ∈ U ). If we take up again

the notationxT
U (k, n, h) = (Pi(Nh ≤ k, Ch ≤ n))T

i∈U , xT
R(k, n, h) = (Pi(Nh ≤ k − 1, Ch ≤ n))T

i∈R then we

obtain, forh ≥ 1,

xT
U (k, n, h) = ÂxT

U (k, n, h− 1) + ĈxT
U (k, n− 1, h− 1) + D̂(s)xT

U (k − 1, n, h− 1)

+D̂(p)xT
R(k, n, h− 1) k, n ≥ 1

xT
U (0, n, h) = ÂxT

U (0, n, h− 1) + ĈxT
U (0, n− 1, h− 1) n ≥ 1

xT
U (k, 0, h) = ÂxT

U (k, 0, h− 1) + D̂(s)xT
U (k − 1, 0, h− 1) + D̂(p)xT

R(k, 0, h− 1) k ≥ 1

xT
R(k, n, h) = R̂ xT

R(k, n, h− 1) + Ŝ xT
U (k − 1, n, h− 1) with xT

R(k, n, 0) = 1T k ≥ 1, n ≥ 0

xT
U (0, 0, h) = ÂxT

U (0, 0, h− 1) and xT
U (k, n, 0) = 1T k, n ≥ 0.





(4)

Therefore, the remainder of the proof consists in writingP(Nh ≤ k, Ch ≤ n) asαxT
U (k, n, h). The exponential

form of P(Nt ≤ k, Ct ≤ n) follows from the “geometric” representation ofP(Nh ≤ k, Ch ≤ n) given in

Theorem 2.1, that is

(α, (0)n, (0)2k(n+1)) P h
k+1,n+1 1

T
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with Pk+1,n+1 = I +Ak+1,n+1/u. Therefore, relation (3) can be rewritten as

P(Nt ≤ k, Ct ≤ n) = (α, (0)n, (0)2k(n+1))
+∞∑

h=0

e−ut (ut)
h

h!
P h
k+1,n+1 1

T.

The last term in the right hand side is merely the vectoreAk+1,n+1t 1T.

Theorem 3.1 leads to a simple algorithm to evaluate the probabilityP(Nt0 ≤ k0, Ct0 ≤ n0), for k0, n0 andt0

fixed. It can be resumed as follows:

(a) choose the tolerance errorε;

(b) computeH such that
∑+∞

h=H+1 e
−ut0 (ut0)

h/h! < ε; this can be done very efficiently (see [2] for instance)

and will lead to a total absolute error onP(Nt0 ≤ k0, Ct0 ≤ n0) bounded byε;

(c) compute the vectorsxT
U (k, n, h) for k = 0, . . . , k0 andn = 0, . . . , n0 with system (4).

Note that we can get, with this algorithm, all the probabilitiesP(Nt0 ≤ k, Ct0 ≤ n), k ≤ k0; n ≤ n0.

Remark 1: relationships with MAPs, MMPPs and PH-renewal processes. If we drop the recovery as-

sumptions and the counter of delivered services then we have a MAP (or a versatile point process). Let us adopt

Lucantoni’s formalism [11] for pointing out this fact. According to the notationin [11], the matricesD0 and

D1 (on U ) to identify are respectively matrixA defined in this section and matrixD(s) + D(p) whereα(i, j)

(i, j ∈ U) becomes the constant probability for jumping to statej after a failure during the sojourn in statei. The

generator of the Markov processX∗ is Q∗ = D0 + D1. It is clear from the MAP assumption on the primary

process that we have as particular primary point processes the MarkovModulated Poisson Process (MMPP, with

λi = 0, µ(i, j) = 0, i, j ∈ U , see [4]) and the PH-renewal process (withµi = 0, λ(i, j) = µ(i, j) = 0, i, j ∈ U

andα(i, j) = αi i, j ∈ U ). The above discussion holds also for Section 2, with the discrete time versions of

the MAP, MMPP and PH-renewal processes. Consequently, the distribution function of the counting variable

Nt (respectivelyNh) at k, can be viewed as the absorption probability of the finite absorbing Markov chain

with (k + 1)M × (k + 1)M sub-generator (respectively sub-stochastic) matrix of transition rates (respectively

transition probabilities) between transient states given by

Ak+1 =




D0 D1 0 · · · 0

0 D0 D1
. ..

...
...

.. . . .. . .. .. .
...

...
. .. . .. .. . 0

...
. .. D0 D1

0 · · · · · · · · · 0 D0



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(respectively byPk+1 which has the same structure asAk+1 with transition probabilities replacing rates). ⊳

Remark 2: counting only primary or secondary failures. If we are not interested in counting the secondary

events, that is, if we want to evaluate the distribution ofN
(p)
t only, it is sufficient to letD(s) ≡ 0. System (4)

becomes then equivalent to system (1) given in Theorem 2.1. On the contrary, assume that we do not care about

the primary counter. After examining the renewal equations given in the proof of Theorem 3.1, we note that

to compute the distribution function of the secondary events counterN (s) we can use the same system as (4)

except thatxT
R(k, n, h) represents now the column vector(Pi(Nh ≤ k))T

i∈R. Such a counter has been used in the

continuous-time counterpart of the Cheung’s reliability-model (see Example 2.2)developed by Littlewood [10].

Indeed, a software system is often decomposed into a set ofM components; the execution control is in one and

only one of them at each instant and the evolution of this control process, conditioned on the fact that there are

no failures, is Markovian (in [9] we discuss on the relevance of these Markovian assumptions). When a failure

occurs, the system is assumed to be restarted instantaneously where the failure appears. In other words, the

occurrence of a failure does not affect the behavior of the model. Finally our results help us to describe the

transient characteristics of Littlewood’s model and in particular of the failure counting processN (s)
t . ⊳

3.3 Derivation of expected values

As in discrete time, we can exhibit different expressions of the expectation of the random variableNt. The first

one is obtained by conditioning with respect to the number of transitions of the uniformized chain in]0, t]:

E[Nt] =
+∞∑

h=1

P(Poiss(t) = h) E[Nt | Poiss(t) = h]

=
+∞∑

h=1

P(Poiss(t) = h) E[Nh]

=
+∞∑

h=1

e−ut (ut)
h

h!

[
h−

h−1∑

k=0

α xT
U (k, h, h)

]
(with (2))

= ut−
+∞∑

h=1

e−ut (ut)
h

h!

[
h−1∑

k=0

α xT
U (k, h, h)

]
. (5)

The uniformization of the continuous time Markov chain(X∗
t )t≥0 with respect to the rateu gives the discrete

time Markov chain(X∗
h)h≥0. The transition probability matrix of(X∗

h)h≥0 is given byQ̂∗ = I +Q∗/u.

Last, we can, in the same way, derive expressions forE[N
(p)
t ] andE[N (s)

t ], simply from the relationsE[N (p)
t ] =

E[Nt]
D(s)=0

andE[N (s)
t ] = E[Nt]− E[N

(p)
t ].
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3.4 Example

Kao proposes a procedure for computing the renewal function of a PH-renewal process in [7]. As noted in

Remark 1, the presented results can be used to compute the distribution and the renewal functions for such a

process. We just give the numerical values obtained for a Erlang interrenewal distribution with order 2 and mean

2.0, that is, for a PH-distribution with representation (see [13])

α = (1, 0), T =


−1 1

0 −1


 .

In Figure 4, we first plot some values of the distribution function ofNt, that is, the probabilitiesP(Nt ≤ k)

for k = 0, 1, 2. In [7], the author computes the renewal function using an error boundε set to10−6. We set

the error bound to the same value in the example. The reader can verify in the table that the values given by

our algorithm have an accuracy of six decimal digits (the “exact” values of the renewal function up to 8 decimal

digits are obtained using Cox formulas). Note that75% of the values given by our algorithm are closer to the

exact values than those obtained in [7]. For completeness, note that the renewal density is computed in [1] for

such an Erlang interrenewal distribution.

4 Asymptotic analysis

Let us establish another expression for the discrete time expectationE[Nh] of the cumulative number of events of

Section 2. It appears to be useful in studying the asymptotic behavior ofE[Nh]. Summing the relations satisfied

by the family of vectors{xT
U (k, h, h), k = 0, . . . , h−1} and{xT

R(k, h, h), k = 1, . . . , h}, given in (1), we obtain

uT
U (h) =

def

h−1∑

k=0

xT
U (k, h, h) = (Â+ Ĉ) uT

U (h− 1) + D̂ uT
R(h− 1) + (Â+ Ĉ) 1T ∀h ≥ 2;

uT
R(h) =

def

h∑

k=1

xT
R(k, h, h) = R̂ uT

R(h− 1) + Ŝ uT
U (h− 1) + 1T ∀h ≥ 2.

If UT(h) denotes the column vector

(
uT
U (h)

uT
R(h)

)
andK0 =

(
(Â+ Ĉ)1T

1T

)
then it follows immediately that,

for h ≥ 1,

UT(h) =

(
h−1∑

k=0

P ∗k

)
K0.
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We deduce fromK0 = 1T −

(
(D̂(s) + D̂(p))1T

0

)
= 1T − L0, that, forh ≥ 1:

E[Nh] = h− (α, 0)UT(h) = (α, 0)

(
h−1∑

k=0

P ∗k

)
L0. (6)

If we denote the stationary distribution of the irreducible matrixP ∗ by π, we can derive after some algebra that

h−1∑

k=0

P ∗k = h 1Tπ + (I − P ∗h)(I − P ∗ + 1Tπ)−1. (7)

Matrix (I−P ∗+1Tπ)−1 is the fundamental matrix associated with an irreducible Markov chain having transition

probability matrixP ∗ (see [6, Chap. 4] for additional details). This last relation allows us to writeE[Nh] as

E[Nh] = hπL0 + (α, 0)
[
I − P ∗h

]
(I − P ∗ + 1Tπ)−1L0 (8)

and it yields another way to compute the functionE[Nh]. It is sufficient to evaluate the stationary distributionπ,

the inverse matrix(I−P ∗+1Tπ)−1 and the constantL0 from the data. From this point of view, the computation

of E[Nh] reduces to the evaluation of the state probabilities(α, 0)P ∗h of the Markov chainX∗. Note that

relation (8) is the discrete time version of formula (10) given in [13] for the versatile point process. Finally, ifP ∗

is an aperiodic matrix then formula (8) gives the linear asymptote ofE[Nh] ash tends to infinity:

E[Nh] = hπL0 + [(α, 0)− π](I − P ∗ + 1Tπ)−1L0 + o(1).

In particular, we have

lim
h→∞

E[Nh]

h
=
∑

i∈U

π(i)

[∑

j∈R

D̂(i, j)

]
.

However, from (6), this last limit is clearly independent of the period of matrix P ∗. The previous discussion can

also be done in the same way for the random variableCh. In particular, we have

∀h ≥ 1, E[Ch] = α

(
h−1∑

k=0

P ∗k

)(
Ĉ1T

0

)
.

Relation (6) holds for the counting variableNh associated with the uniformized chain(Nh, Ch, X
∗
h)h≥0 of

Section 3 (matrixP ∗ is replaced by matrix̂Q∗). We can thus derive the following expression of the continuous

time expectationE[Nt] of Section 3:

E[Nt] =
+∞∑

h=1

e−ut (ut)
h

h!
(α, 0)

(
h−1∑

k=0

Q̂∗
k

)
L̂0. (9)
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Relations (5) or (9) can be exploited to evaluate numericallyE[Nt]. For a fixed tolerance errorε, it suffices to

chooseH such thatut
∑+∞

h=H e−ut (ut)
h

h! < ε, in order to obtain a total error onE[Nt] bounded byε.

A third representation ofE[Nt] can be deduced from (7) and (9) (̂Q∗ andQ∗ have the same stationary

distribution). It is the continuous time counterpart of relation (8):

E[Nt] = (πL0)t+ (α, 0)(I − eQ
∗t)(1Tπ −Q∗)−1L0, (10)

with L0 = uL̂0. Matrix (1Tπ − Q∗)−1 is the fundamental matrix associated with the irreducible continuous

time Markov chainX∗
t [6]. This last formula can be viewed as the adaptation to our context of an analogous

result published in [13] for the so-called versatile point process. It can be used for the computation ofE[Nt] as

relation (8) for the discrete time expectationE[Nh]. Finally, whent tends to infinity, we have

E[Nt] = (πL0)t+ [(α, 0)− π](1Tπ −Q∗)−1L0 + o(1),

and lim
t→∞

E[Nt]

t
= πL0 =

∑

i∈U

[∑

j∈R

D(p)(i, j) +
∑

j∈U

D(s)(i, j)

]
.

5 Conclusion

We investigate in this paper a general dependability model (in discrete or continuous time) based on a structural

view of the given system. Mainly, we give the distribution function of the joint number of observed events

(including failures) and delivered services on a fixed interval. We also discuss the computational issues associated

with the derived formulas. The single failure process is closely related to the MAP or versatile point process used

in queuing theory. A natural extension to our model is to allow for instance the occurrence of grouped failures. In

that case, the failure point process has to be related to the BMAP and the distribution function (at a fixed point) of

the corresponding counting random variable can also be viewed as an absorption probability in a finite absorbing

Markov chain.
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Figure 4: Distribution and renewal functions for Erlang interrenewal distribution with order 2 and mean 2.0.
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