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Simple Formulas for Counting Processes in Reliability Models
James Ledoux® , INSA Rennes
Gerardo Rubino T, ENST Bretagne & IRISA

Abstract

Dependability evaluation is a basic component in the assessment of the giisipairable systems. We develop
a model taking simultaneously into account the occurrence of failures guairse together with the observation
of user-defined success events. The model is built from a Markoggmiption of the behavior of the system.
We obtain the distribution function of the joint number of observed failures andlwkeded services on a fixed
mission period of the system. In particular, the marginal distribution of thaber of failures can be directly
related to the distribution of the Markovian Arrival Process extensively usegieueing theory. We give both
the analytical expressions of the considered distributions and the algorithohitians for their evaluation.
Asymptotical analysis is also provided.
Keywords: Counting Processes, Markov Chains, Uniformization.
AMS 1991 Subject Classification: Primary 60J10, 90B25

Secondary 60J27.

1 Introduction

In the last years, special attention has been devoted to the quantitativeisnatyueueing models with a Marko-
vian Arrival Process (MAP) [11] (or a versatile Markovian point gees according to [13]). The interest of such
a point process is to keep the tractability of the Poisson arrivals but sigmifjcgeneralize it allowing the in-
clusion of dependent interarrival times, non-exponential interdmdigdributions, etc. Lucantoni’s tutorial [11]
reviews this class of stochastic process. We refer for instance togf4] discussion on qualitative features in
traffic streams which can be captured by such a process. Extengikdnasbeen performed about the stationary
characteristics of MAPs and, in the last years, on the transient anafysisse processes as well, mainly on
problems coming from communications systems (see [1] and references jridi ikjstance). Here, we point
out that MAP-type processes are also suitable for modeling some failure @scenphenomenon in repairable

systems. Moreover, from the viewpoint of reliability (or dependability [Bpory, we are mainly interested in
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evaluating measures on transient features of the system. The aim of thagppegisely to present a general
dependability model and to give analytic and algorithmic results for evaluating it finite observation period.
In Section 2, the system is modeled by a discrete time Markov process. Oneiwists & handle the concept
of delivered serviceavith the help of a particular class of transitions. We also give a construatifireitibn of a
model of failure occurrence and recovery times. We allow, for instanceytsider phase (PH) distributed recov-
ery times. The joint distribution of the number of observed events (including éajiiand of delivered services
on an finite interval is then derived and we propose an efficient algorithiiné numerical computation of this
distribution. In Section 3, we discuss the counterpart of the model in continuoususimg the uniformiza-
tion technique. Finally, we report in Section 4 the extensions to our contexinoé svell-known formulas on

expectation measures associated with MAP processes. Section 5 consistsloflicy remarks.

Main notation

e U={1,2,..., M}, R : the sets of up and recovery states;

e o= (ai,...,ay) wWherea; = P(system starts at statg

Q = (Q(i,7))ijeu (resp. P = (P(i,7))ijeu) WhereQ(i, j) (resp.P(4, 7)) is the transition rate (resp.

probability) from state to statej for afailure-freesystem;
e X;: the state occupied at timidor afailure-freesystem;
e X;: the up or recovery state occupied at titnevhen failures are taken into accoynt
e N;: the number of failures up to time
e (;: the number of delivered services up to time
e \; (resp.p; ): primaryfailure rate (resp. probability) when the occupied state is
e \(i,7): occurrence probability of primary failure during a control transfer from statéo statej;
e u; (resp.u(i, j)) has the same meaning &s(resp.A(4, 7)) for thesecondaryailure process;

e (i, j): probability that the first recovery state entered given that a failure occurs in the state



2 Discrete time model

2.1 Description

In this section, we are concerned with models evolving in discrete time. Such a p@udbk useful when a
discrete temporal grain is more significant than a continuous one to represemndyehavior. We consider
that we have a model of the system in operation, which is assumed to be a discest®mogeneous Markov
chain X on the finite state spa¢é = {1,..., M }. The different states can represent the load on the system as
it is usually done in performance evaluation, or some measure of perforrfeseteor the active module of a
software system, etc. This Markov chain is given by its transition probabilityixn&te= (P(i,j))iﬁjeu, where
P(i, j) denotes the transition probability from state statej, and by its initial distributiony = («, ..., ay).
By convention, vectors are row vectors. Column vectors are denoted d&nysnoé the transpose operatoy” .

Suppose that stateepresents a computer system working to satisfy some request, and thaisétitey state
i, the next visited state is (this happens with probability(, j)). Given this, there are two possibilities: either
the service request is satisfied at this point in time or it is not. In the first eassay that amxecution cycle
ends successfully. The probability of this event is denoted By j) and the probability of its complementary
event isps(i, 7). So, we have the decompositidt(i, j) = p.(i,7) + pr(i,j). Of course, in a model we will
usually have, for instancey (4, j) = 0 for many pairsi, j. Observe that if a cycle ends when the model jumps
from statei to statej, we are assuming that the next cycle starts from gtate

Assume now that the system is subject to failures and that it includes regiéificfa (that is, it is arepairable
system). Let us describe the failure process. We distinguish two types otfaiherfirst one is associated with
states, the second one with transitions. When the model is inistatiilure occurs with probability;, thus
depending on the identity of the state. This means that, at the next jump, a cgslareuccessfully and a repair
phase will start. We discuss above the representation of the repair timenéagplications, it can be useful to
associate failures directly with transitions. To do this, suppose that a failusendd®ccur during a sojourn in
statei (this event has probability — p;). If the next state to be visited is statéwhich happens with probability
P(i, 7)), suppose that a second class of failure can occur, caltemhafer failure and that this happens with
probability A(, j), thus depending on both the original and the next state. Such a failurescansxecution
break.

Retrieving a safe state involves a general random delay which is assuinaetta phase type (PH) distribu-
tion; in other words, this delay can be seen as the time up to absorption in a finfeteltime Markov chain (for

PH distributions, see [13]). The set of non-absorbing states assowiifttetiis PH random variable is denoted by



‘R and it represents the seti@covery states our model. The sub-stochastic matrix of transition probabilities
between recovery states is denotedf&y The phase type assumption allows us to represent times to recover an
operational state which depend on the identity of the state in which the failuretased. Indeed, the sequence
of successive visited states® can be related to the first recovery state selected after a failure. We agsatme
the recovery statg is entered after a failure occurrence in stager at a transition instant fror) with constant
probability a(i, j) (with >_..» (i, j) = 1). These delays can be interpreted, for instance, as either the time
needed to restart the system or as the period of time used by a fault totezah&nism to recover a safe state.
After a recovery period ended by state R, statej € U is entered with constant probabili@(z‘, 7). Therefore,
matrix S = (§(i J))(ZJ)ER y is composed by the transition probabilities from the “down” states to the “up”
states and we ha\(éi + R)lT = 1T, wherel represents a column vector with all its entries equal to one.

Let us define now the process" = (X;),>0 WwhereX; is the occupied up-state at timef the systemis up,
or the recovery state reached at timelts state space is the sét= I/ U R. Given a sequence of states visited

by X* (a trajectory of the process), all the failure processes are assumedrntddpendent of each other and

independent of the recovery process. We define three maﬁL(@sﬁ by their respective entries:

AG5) = peli, )1 —pi)(1 = A(i, 5)) i,jeu,
Cli,j) = py(i,g)(1—pi)(1 = A, 5)) i,jeu,
D(i,j) = [pi+(1—p) Y, Pli,k)AG, k) |a(i,j) i€U,jeR.

The nonnegative numbe?(i,j) (respectively@(i,j)) represents the probability that* jumps from state
1 to j without any occurrence of a failure or success event (respectivelynaittailure event and a delivered
service). The entr)ﬁ(i,j) is the probability that theX* jumps from up-staté to repair-statej, that is after
the occurrence of a failure event. It is immediate to check #vats a finite homogeneous Markov chain with

transition probability matrix

A+C D

S R

P =
which is assumed to be irreducible. Therefore, the alternation of execetmvery periods is infinite.

2.2 Example

Let us consider the Markov reliability-model for a modular software develdpeCheung [3]. The control

structure is represented by a directed graph where every node ig@mranodule. Each directed aft j)

The reasons explaining some of the notation are better understood in¢hesiis of the continuous time model (Section 3).



represents a possible transfer of control froto j. A probability P(i, j) that the associated transfer will take
place when control is at moduleis attached to every afé, j). The set of modules is assumed to be the state
space of a finite Markov chain with transition probability matftx Suppose that we have 5 modules and that the
transition probability matrix is

0 1/2 1/2 0 0
3/10 0 2/5 3/10 O

P=| 0 0 0 2/5 3/5
o 0 0 0 1
/2 0 1/2 0 0

In Cheung’s formulation, there exists a single input module in the program. Hemamwconsider any module
as an input state. For our example, moduland 3 are such input points. We suppose that the selection of
the input module is done according to the probability distributios (1/2,0,1/2,0,0). Finally, an absorbing
state (called a terminal node) is used in [3] to represent mission succésssufftware, that is, the fact that the
software completes its task successfully. Here, we allow any module to be a temodesor a class of tasks. In
our example, we consider that% of the execution of modul2 corresponds to a completion of a task. If such a

task is completed, id0% (resp.60%) of the cases the input modutgresp. moduld) is then executed. So we

can write
21 1 1
2,3)=—--=- and 2,3)=—
pr(2,3) £3 = F Pe(2,3) 5
13 3

Sincep.(2,1) = 0, all the transitions from modul2 to modulel correspond to the success of a task and the
beginning of a new one. Since modulesnd3 are the only input modules, we hai®2, 4) = p.(2, 4), thatis any
transition from modul@ to module4 means that modulé must be executed after mod@éor the completion of
some task. A similar assumption is made for modulelsand4, thatis[P(1,2) = p.(1,2), P(1,3) = pc(1,3)],
[P(3,4) = pc(3,4), P(3,5) = pc(3,5)] andP(4,5) = pc(4,5). Finally, modulés is always a terminal module,
that is each execution of modulecorresponds to the completion of a task. After such a mission success, the
input modulesl and3 are executed according to the selection probability distribution

Now let us describe the failure parameters. For each magMe have a constant probabilipy that the

module fails. For our numerical evaluations, theses probabilities are

1 3
= = = 0 = — = —.
P1=DpP2=D5 » D3 1007174 100



In [3], when such a failure event occurs, the programs are definititebpsd. We suppose here that each failure
event is followed by a recovery period. There is no failure associated witBitions in the example for the sake
of simplicity.

In our numerical example, we assume that there are two recovery statdsdlbyl rp and2. After a failure
in module3 the system recovers during a geometrically distributed period with paraiéter, 1) = 1/1000
(and thus(3,1z) = 1). In the same way, after a failure in modulethe recovering period has a geometric
distribution with parameteR(2r, 2r) = 3/1000 (and thus(4,2r) = 1). After a recovering period, the input

modulesl and3 are entered according to the initial distributienThe five associated matrices are then

01 1 0 0 00000 0 0
004+ 2 0 2 0t1to0o0 0 0
A — 299 399 N D—| 1
A=10 0 0 2% 251, C=]10 00 00|, D=] O [
000 0 % 0 0000 0 135
000 0 0 10300 0 0
1 999 1 999 1
0 1o 002 0 Toooz O O

2.3 Main joint distribution

We are interested in computing the distribution of the discrete time bi-dimensionabp(dég C,),>0 where
Ny, (respectivelyCy,) is the cumulative number of failures (respectively of delivered servicesyrabd at time
h. To do this, let us consider the tri-dimensional proc@SsC, X*) = (N, Ch, X} )n>0 Over the state space
N x N x £. 1t follows from the independence assumptions on failure and recovepegges and from the

phase type assumption for recovery delays thatC, X*) is a homogeneous Markovian process with initial

distribution:
P(No=0,Co=0,X5 =i) = P(X5=1i)=a,
P(No=Fk,Co=n,X5=14) = 0 fork,n>1andanyicl.

The transition probabilities associated With, C, X*) are given, for alk > 0 andh > 1, by

P( (thcth;;) = (k,n,j) ‘ (Nh—lach—l)X;:—l) = (kvn7i) ) =




. . . . D(i,j) (i,j) €U xR
]P)((thch7Xh):(k7+1an7]) ‘ (Nh—lach—hXh—l):(kvnﬂz)) = .
0 otherwise,

C(i,j) (i,j) eUxU

P ( (Nh,Ch, Xj) = (k,n+1,5) | (No—1,Cho1, X5y 1) = (kymyi) ) = _
0 otherwise.

All other transition probabilities fof N, C, X*) are null. The above theorem gives the distribution function of
the counting processVy, Cr)r>0. In the sequel, for anyg € N the expressioif0)” will denote a sequence of
values0. We denote by diag\/;) a diagonal matrix (respectively a block diagonal matrix), with the real number

M; (respectively matrix\/;) as diagonali, i)-entry (respectivelyi, i)-block entry).
Theorem 2.1 For all time h > 0, we have:

P(N}, < k,Cp < n) = (a, (0)", (0)2F+0y ph 1T Wk,n >0,

where
B D 0 - - 0
0 R g
Priint1 = N
B D 0
R 9
0O -+ -« ... 0 B

isa(2k+ 1) x (2k + 1) block matrix with thgn + 1) x (n + 1) block matricesB defined by

A C 0 - 0
0
B = 0 |,
C
0 -+ -« 0 A

and R’ = diag(R), 8’ = diag(5), D’ = diag(D).

Proof. Let us denote by;() the probability measure conditional to the evelf = i), for anyi € /. We use



the following renewal equations for eagh> 1:

Vield: Pi(Ny <k,Cp<n) ZAU (Np_1 < k,Cpq < n)
Jjeu
+ZCZ] Nh1<k:(]h1<n—1)
jeu
+ZD@] i(Np_1 <k—1,C,1 <n) fork,n>1.
JER

Vield: Pi(N, <k,Cj=0) ZA” (N1 < k,Cp_q = 0)

+ZD@] (Np_1 <k—1,C4_1=0) fork>1.
JER

VieU: Py(N,=0,C,<n) = ZAH (Np1 = 0,01 < n)

Jeu
+> " C(6,§) Pj(Npo1 = 0,Chy <n—1) forn > 1.
Jjeu
VieR: P(Ny<k—1,Co<n) = Y R(i,j)Pj(Nyy <k—1,Cho1 < n)
JER
+3 80, 5) Pj(Nu—1 <k —1,Cp_1 <n) fork >1,Yn>0.
Jjeu

Let us define the row vectors

zy(kyn,h) = (Pi(Np <k, Ch <n))icy s

rr(k,n,h) = (Pi(Ny <k—1,Cph<n))icr

and denote the column vectasy (k,n, k)" and (zx (k,n, h))T respectively byz},(k,n, h) andzf, (k,n, h).

The previous relations can be rewritten with this notation:Hfor 1,

ol (kyn h) = Al (k,n,h—1) + Cal(kyn—1,h — 1) + Dak (k,n,h — 1) k,n>1

o (k,0,h) = Az} (k,0,h —1)+ Dak(k,0,h — 1) k> 1,

zf,(0,n,h) = ExL(O,n,h —-1)+ ax-{{(O,n —1,h—1) n>1, (1)
a2k (k,n, h) = ﬁm%(k‘,n,h 1)+ §:I;Z,(k: —1,nh—-1), 25(kmn0)=1" k>1n>0
27(0,0,h) = A (0,0,h—1), af(k,n,0) = 17, k,n > 0.




If we define the column vector

zT(h) = [ 2k, h), ... 2y(k,0,h), zr(k,n,h),...,er(k,0,h),
l’u(k’ - 17n7h)7 s ,l‘u(k’ - 1707h)7 .I‘R(k‘ - 17n7h)7 s 7$R(kj - 1707h‘)7

2(0,m,h), ..., x4(0,0,h) ],

then we can verify that fok > 1

LET(]’L) = Pk;+17n+1 ‘TT(]’L — ].)

with 27(0) = 1. Therefore, the proposed representation of the distribution functioigfC;,) follows imme-
diately.

System (1) can be used for the numerical evaluation of the distribution fure(idp, < ko, Ch, < no),
ko,no > 0. Atsteph < hg, the value of the couple of vectots;,(k,n, k), z%(k,n,h)) is obtained from
the computation performed at stép- 1, as illustrated in Figure 1. Of course, a compact representation of the

involved matrices can be used having regard to their probable sparsity.

h—1 h

****************

****************

,,,,,,,,,,,,,,,,

Figure 1: The contents of the cél, n, h) is the couple of vectorgr], (k, n, h), z1 (k,n, h)).

2.4 Marginal distributions

From the distribution of the random varialil®,, C},), we can derive the marginal distribution functions of the

variablesN, andCy,:

Vk >0, P(Ny<k) = P(N, <k Cp<h)=azj(kh,h);

Vn >0, P(C,<n) = P(N,<h,C,<n)=az}(hmn,h).



Sincex}, (k,h,h — 1) = x},(k,h — 1,h — 1) for0 < k < h — 1 andz ) (k,h,h — 1) = zL (k,h — 1,h — 1) for

1 <k < h— 1, we can reduce system (1) for evaluating the marginal distribit{ov}, < k), for instance, to

af(k,hh) = (A+C)aj(k,h—1,h—1)+ Dag(k,h—1,h—1), k>1;
a3(0,h,h) = (A+C)a,(0,h—1,h—1);

ah(k,hh) = Rap(k,h—1,h—1)+Saj(k—1,h—1,h—1), k>1;
th(k,0,0) = 17, k>1 and (k0,00 = 17, k>0.

In that case, it is clear that we only need a double index for the vectors.

2.5 Expected values

Let us briefly analyze now the mean number of failures up to ima first expression of this expectation can

be easily derived from Theorem 2.1:

+o0 400
E[Ny = > P(Ny>k)=> (1-axj(khh)
k=0 k=0
h—1
= > (1—axj(k,h,h)) sincex)(k,h,h)=1"fork >h
k=0
h—1
= h—Y ax}(khh). 2)

=
Il

0
We obtain in the same way for the random variatje

h—1
E[Ch) = h =) axfy(h,n,h).

n=0
Therefore, forh fixed, the computation dE[V;,,] consists in summing the outputs of the previous algorithm
with the successive valuég = 1,...,hg — 1. We will give other representation of these expectation measures
in Section 4. They will be directly related to the classical relations in [12], [@B&fMAP in the continuous time

context.

2.6 Example (continued)

The reliability measure adopted by Cheung [3] is the probability of reachimgettminal node from the input
module, that is, the probability that the software completes successfully a taskrdsponds to the probability
of absorption in the terminal state given that the Markov model starts in the itgiat $n [15], Siegrist modi-

fies Cheung’s model by eliminating the assumption of a terminal state and by corgitterimean number of

10



transitions up to a failure as the measure of reliability. Our model and the resulsvadys subsections allows
us to perform a much more deep analysis of such a system. Since we obtain thdisjpibution function of

the two main processes in the model, virtually any measure of interest can becaliyeerived. The designer
can also use this distribution in order to tune a control variable or to verify sl@pendability constraint. For
instance, it is important to see if given> 0, we haveP(Nyg < k,Cyg > n) > 1 — ¢ for someH, k,n, or
P(Ng <k |Cyg >n) > 1— ¢, or whatever. More simply, we can analyze the behavior of the joint distribution
as a function of one or two variables. Let us illustrate this with some numericas/aln Figure 2 we plot the

numberP(Ng = 0,Cy > n) as a function ofs, for different values of the total interval lengfh. As one can

0.9
0.8t
O.7ﬁ
0.6
0.5
0.4
0.3
0.2

0.1 . .
+
4

I I I I I I I I I I I I I I I
@ o o
+

I I I I I
+ o &
+ o o
+ o &
+ o o
| | | | |

T
+
|

T

0 N N I I IS S S SN NU U S T S

\ery

0 2 4 6 8 10 12 14 16 18 20
n: number of delivered services

Figure 2:P(Nyg = 0,Cy > n) as a function oh, for different values of the total interval lengtth: P(Nyy =

0,C40>7”L) + ., P(N3020,030>n) ° P(NQ():O,CQ()>H) S5)

expect, this probability is not very dependentofor small values of:, and gets quickly very small values when
this dependency begins to increase. In the second example, we keep thedotal length constant and we look
atP(Nyg < k,Cy > n) as a function of:, for different values of. The behavior of these joint probabilities is

similar as the behavior of the joint distributions illustrated in Figure 2.

11
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Figure 3: P(Ny < k,Cy > n) as a function ofn, with & = 0,1,2 : P(Nyy = 0,Cyp > n) + ,

P(N40 <1,Cy4 > n) o, ]P’(N40 < 2,Cy > n) D

3 Continuous time model

3.1 Description

In the continuous counterpart of the previous model, when the system is upeh#vior is described by a
continuous time Markov chaiX over the state spadé = {1,...,M}. The infinitesimal generator and the
initial distribution of X are respectively denoted &y = (Q(7,5))ijeu anda = (a1,...,an). The entry
Q(i,7) (@ # ) is the transition rate from staieo statej in absence of any disruption phenomenon.

We will count two classes of events. First, we consider what wesealbndary events/Nhen the occupied
state isi, they occur according to a Poisson process havinguaté secondary event can also take place with
constant probability.(s, j) simultaneously with a transition from statéo statej. These events are just counted
and they do not affect the behavior of the Markov ch&inthey are of interest for instance in reliability models
as we will see in Remark 2 (see also [10]).

The other class of events is composed of the failures; they lead to an execw#@ndmd the execution is
restarted (after some delay) for instance from a checkpoint or pefham the beginning. Their occurrence is
aprimary event When the occupied stateidisa failure arrives with constant rate. Failures may also happen

at a transition instant: when there is a switch from siate statej, the probability of having a primary event

is assumed to be constant and is denotedyj). In order to simplify the technical evaluation of the model,

12



we accept the simultaneous occurrence of the two types of events whams#idn occurs from to j (with
probability \(z, ) (4, 7)), with the result that only the primary one will be taken into account. The pootess
constituted by the occurrence times of successive events is closely relMédP®(see Remark 1).

As in Section 2, we distinguish the transitions between two stasesl j where an execution cycle ends in
statei and is followed by a jump to statg from those occurring within those cycles. To do this, a probability
pr(i) thati is the last occupied state in an execution cycle is associated with each state

As in discrete time, we suppose that the delay following an execution breaktiglam variable with a phase
type distribution. We denote the set of transient states associated with thigstibution by R. The sub-
generator composed by the transition rates between elemeRtsofienoted byR. As argued in the discrete
time context, we can then model a delay which depends on the state in which theliaidunccurred. We assume
that the first recovery state entered after a failure in gtaté/ (or at a transition time from stagis j € R with
constant probabilityy(7, j). Matrix S = (S(i, j)) j)er xu IS composed of the transition rates from a recovery
state to an up-state of. We have(R + S)17 = 0.

Let us defineX* = (X;):>0 as the process which gives either the up-state or the recovery stateeatatip
time t. Its state space is then the get= &/ U R. Given a sequence of visited states, the occurrence processes
of events associated with each state are independent of each othecclineence processes of events during a
transition are also independent of each other and of the occurrenmespes of events in the up-states. Given a
sequence of states 6f the occurrence process of events and the recovery processaraed to be independent

too. It follows thatX ™ is a finite homogeneous Markov chain with initial distributierand generatof)* given

by
Q*(i,i) = Q(i,i) — N\ ifiecl,
Q(6,7) = [N+ Dpriper QU KA K) [ ali,g)  if (i,j) €U X R,
Q*(1,j) = R(i,j) ifi,7 € R,
Q*(i,j) = S(i.j) if (i,5) € R x U.
As in discrete time, we assume th#t is irreducible, which ensures that the alternation execution-recovery is
infinite.
3.2 Analysis

We will analyze the procesgV,C) = (N, Ct)i>0 Where N; (respectivelyCy) is the cumulative number of

primary or secondary events (respectively of delivered servicalgimtervall0,¢]. To do this, let us consider
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the tri-dimensional time-continuous procésg, C, X*) = (N, Ct, X[ )i>0. It follows from the independence
assumptions that this is a homogeneous Markovian process over the stat®spate £. We denote by\ft(p)
(resp.Nt(s)) the cumulative number of primary (resp. of secondary) events obseveefl), t|. Therefore, for all

t > 0, we have by definitionV; = Nt(p) + Nt(s). Formally, the transition rates ¢V, C, X*) are for allk,n > 0:

.1 X . « NN e
L lim 7]P)((Nt+dt - Nt70t+dt - Ct7Xt+dt) = (0707]) | (NtactaXt) = (k7n71)) if 4 7& J
i,j c U O, |f 1=
.1 . . . NN e
o lim —P((Neyar — Nty Crrae — O, Xipqr) = (0,1, 5) | (N, Cp, Xi) = (k,n,0)) if i # j,
c(i,j) = dtmodl
i,j =7 O, if ¢ = ¥

. . . 1 S S * . * .
d9(i,5) = lim —P(Newar—Ne = N5y = N Covar = Co Xy ) = (1,0,4) | (N, G X7) = (k,m, )

e t+dt
i,jeEU

. .1 X ‘ X .

AP (i,5) = lim —P(Nevar—Ne = Ny = NP Coar = Coo X p) = (1.0,5) | (N, o, X7) = (ko).
1eU,JER

The following expressions for these rates can be derived by listing thexetiff primary, secondary or recovery

involved events:

a(i,j) = (1 —=pp(@)Q, 7)1 — A, 7)(1 — (i, 7)) fi#j andi,jel,
a(i,i) = 0 ifi el
c(i,j) = Q51 — A, 7)1 — pli, j)) ifi7j andi,jelU,
cliyi) = 0 ifiel,
d® (i) = ifiel,
d@(i,j) = Qi, )1 — A, j)]p(, ) if i #j andi,j €U,
AP (i, 5) = [N+ Dppipen QU kA, k)] ali, 5) if (i,7) €U x R.

After checking that, for any, we have

Y laij) + (i )+ d9 G4+ D dP(i5) = QUi i) + N+ i

JjeU JER

and denoting by; this value, let us define the four matricas D?), D(*) andC by
A= (a(i,§))ijeu — diagd)ic, DP = (dP (i, §)) i jyeuxrs
D) = (d¥(i, 1)ijeus  C = (c(i,))ijeu

14



With the previous notation, the generatgt of X* can be rewritten as

. A+C+D® DW
Q"= .
S R

We use the well-known uniformization technique [5] to compute the distribution funofi¢v;, D;). Let us
denote by( Ny, Ch,, X )n>0 the uniformized discrete time Markov chain with respect to the uniformizatiorurate
and by Poisg] the Poisson distributed (with paramet@random variable which gives the number of transitions

over|0, t] for this uniformized chain. The quantity Poiss{) represents the sum

Poisgk, ) = et
oisgk,t) = » e -

h=0

. (ut)"
|

We can now state a PH-representation for the distribution function of the va(i&hl€’;) at a fixed point.

Theorem 3.1 For all ¢ > 0, we have

P(N, < k,Cy <n) = (a,(0)" (0)2*0+D) eArtiniit 1T yE n >0
. = (ut)"
= Poisgmin(k,n),t) + Z efutT axy (k,n, h) (3)

h=min(k,n)+1

whereu =sup{ i €U, j € R : |A(i,7)|,|R(4,7)| } and

B DW®W p o ... ... 0
0 R S’ 0

Aptins1 = : L. 0 0
B D® D)

R 9

0 v e e o0 B

isa(2k + 1) x (2k + 1) block matrix built with the followindn + 1) x (n + 1) block matrices: B has the
same structure as in Theorem 2.1 with matriceand C; R’ = diag(R), S’ = diag(S), D?) = diag(D®))
andD®®) = diag D). Now, ifA, R, C, 5(;), 15(\@, S result from the uniformization transformation of matrices
A,R,C, D), D) S thatisA =1+ Aj/u,R=1+R/u,C =C/u,D® =D® /u, D& = DO /| § =
S/u , then the column vectors), (k, n, h) in (3) are computed with systef) (given in the proof of the theorem)

analogous to systefi).
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Proof. Forallk,n > 0 andt > 0, we can write

400
P(N, < k,Cy<n) = ) P(Poisst) =h) P(N, < k,C; < n | Poisgt) = h)

h=0
min(k,n) h
= Z e‘“t(u}? P(N; < k,C, < n | Poisgt) = h)
h=0
= (ut)" .
+ > e—utT P(N; < k,C; < n | Poisgt) = h)
h=min(k,n)+1 )
= Poisgmin(k,n),t) (sinceP(N; < k,C; <n | Poisgt) = h) = 1if h < min(k,n))
= (ut)" .
+ > e P(N, < .Gy < n | Poisst) = h).
h=min(k,n)+1 ’

Consequently, relation (3) follows from the equaltyN, < k, C; < n | Poisgt) = h) = P(N, < k,Cy < n).
Our problem reduces then to the computation of the distributiddVgf C},) on the uniformized Markov chain
(N, Ch, X}). This can be done with similar arguments as in Theorem 2.1. Indeed, wealdigerete time
model as in Section 2, except that we allow two types of event: the first ong teadrestart in the state within
the event has occurred; concerning the second one, we nechasarg recovery action to do. We can exhibit
the same backward renewal equations than in Theorem 2.1, except that areplaced by matribD® and
that we have an additional term in the two first equations which is respecfively, DB)(i, ) P;(Np—1 <
k—1,Ch1 < n)andY o, DO(i,j) Bj(Nyy < k— 1,0,y = 0) (for anyi € U). If we take up again
the notations;, (k,n, h) = (P;(Ny, < k,Cp, < n))jeyy ok (kyn,h) = (Py(Ny <k —1,C, < n))jr then we

obtain, forh > 1,

ol (b, h) = Axl(kn,h— 1)+ Cal(kyn — 1,h — 1) + DOal(k — 1,n,h — 1)

—&-B(Z)x;ra(k,n, h—1) k,n>1
2] (0,m, h) = Em&(o,n,h—1)+C:’m\2,(0,n—1,h—1) N n>1 @
ol (k,0,h) = Az (k,0,h — 1)+ DOzl (k—1,0,h — 1) + D®)aL (k,0,h —1) k>1
ok (k,n,h) = Rak(k,n,h—1)+ Szl (k—1,n,h—1) with 2% (k,n,00=17  k>1,n>0
27(0,0,h) = Az} (0,0,h —1) and z,(k,n,0) = 17 k,n > 0.

Therefore, the remainder of the proof consists in writit{@V;, < k, C;, < n) asazy,(k,n, h). The exponential
form of P(IV; < k,C; < n) follows from the “geometric” representation 8{N;, < k,C) < n) given in
Theorem 2.1, that is

(o, (0)", ()20 Pl 1T
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With Pyi1 41 = I + Ag41..+41/u. Therefore, relation (3) can be rewritten as

+o0o h
BN, < .G, <) = (o, (0)", (0)%0+) Y =)

h=0

h T
Piliina 1

The last term in the right hand side is merely the veetbr1n+1 1T,
Theorem 3.1 leads to a simple algorithm to evaluate the probabBili¥y, < ko, C, < no), for ko, ng andty

fixed. It can be resumed as follows:
(a) choose the tolerance eregr

(b) computeH such tha@?{fHH e~ (uty)"/h! < ¢; this can be done very efficiently (see [2] for instance)

and will lead to a total absolute error 8Ny, < ko, Cy, < no) bounded by;
(c) compute the vector@(k:, n,h)fork =0,...,kpandn =0, ..., ng with system (4).

Note that we can get, with this algorithm, all the probabiliffédv,, < k, Cy, < n), k < ko; n < no.

Remark 1: relationships with MAPs, MMPPs and PH-renewal processe If we drop the recovery as-
sumptions and the counter of delivered services then we have a MAP (osatilepoint process). Let us adopt
Lucantoni’s formalism [11] for pointing out this fact. According to the notatioerjll], the matricesD, and
Dy (on ) to identify are respectively matriX defined in this section and matrix(®) + D) where«(i, 7)
(7, € U) becomes the constant probability for jumping to sgadéter a failure during the sojourn in stateThe
generator of the Markov process* is Q* = Dy + D;. Itis clear from the MAP assumption on the primary
process that we have as particular primary point processes the Mdidawated Poisson Process (MMPP, with
Ai = 0,u(i,j) =0,4,j € U, see [4]) and the PH-renewal process (with= 0, A(z,j) = u(i,j) = 0,4, € U
anda(i,j) = «; i, € U). The above discussion holds also for Section 2, with the discrete time v@ision
the MAP, MMPP and PH-renewal processes. Consequently, the diiirifunction of the counting variable
N, (respectivelyN},,) at k, can be viewed as the absorption probability of the finite absorbing Markainc
with (k + 1)M x (k 4+ 1) M sub-generator (respectively sub-stochastic) matrix of transition rasggctively

transition probabilities) between transient states given by

Dy Dy 0 --- 0
0 Dy Dy :
App1 =
0
Dy Dy
0 0 Dy
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(respectively byP;. 1 which has the same structure 4g, ; with transition probabilities replacing rates). «

Remark 2: counting only primary or secondary failures. If we are not interested in counting the secondary
events, that is, if we want to evaluate the distributiod\i}f’) only, it is sufficient to letD(®) = 0. System (4)
becomes then equivalent to system (1) given in Theorem 2.1. On thewggrtssume that we do not care about
the primary counter. After examining the renewal equations given in the pfobheorem 3.1, we note that
to compute the distribution function of the secondary events couvit€rwe can use the same system as (4)
except thate, (k, n, h) represents now the column vect®; (N, < k))zevz- Such a counter has been used in the
continuous-time counterpart of the Cheung’s reliability-model (see Examplel@/2joped by Littlewood [10].
Indeed, a software system is often decomposed into a st cdmponents; the execution control is in one and
only one of them at each instant and the evolution of this control procesditmned on the fact that there are
no failures, is Markovian (in [9] we discuss on the relevance of these &k assumptions). When a failure
occurs, the system is assumed to be restarted instantaneously wherdutieeafapears. In other words, the
occurrence of a failure does not affect the behavior of the model. Finalyeasults help us to describe the

transient characteristics of Littlewood’s model and in particular of the failaumting procesaNt(S). N

3.3 Derivation of expected values

As in discrete time, we can exhibit different expressions of the expectdititre sandom variabléV;. The first

one is obtained by conditioning with respect to the number of transitions of thernizked chain ino, ¢):

E[N] = +i:.o]P’(Poisﬁ) = h) E[V; | Poisgt) = h]

= +ioIP’(Poisﬁ) = h) E[N3]
h=1

SPRTICOL P e .
— hzle y h—kzoamu(k,h,h) (with (2))

= ut — Ze—ut .h [Zam{lkhh] (5)

The uniformization of the continuous time Markov ch&ik; );>o with respect to the rate gives the discrete
time Markov chain( X}),>o. The transition probability matrix ofX)x>¢ is given by@\* =1+ Q*/u.
Last, we can, in the same way, derive expression&fdi?’] andE[N,*], simply from the relation&[N?)] =

EIN| o andE[N,*] = E[N;] — E[N)].
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3.4 Example

Kao proposes a procedure for computing the renewal function of a Pétvedrprocess in [7]. As noted in
Remark 1, the presented results can be used to compute the distribution andetal feinctions for such a
process. We just give the numerical values obtained for a Erlang inesveg distribution with order 2 and mean

2.0, that is, for a PH-distribution with representation (see [13])

a=(1,0), T= (1 1).
0 -1

In Figure 4, we first plot some values of the distribution function\gf that is, the probabilitie® (N, < k)
for k = 0,1,2. In [7], the author computes the renewal function using an error bewet to10~5. We set
the error bound to the same value in the example. The reader can verify irbtbehat the values given by
our algorithm have an accuracy of six decimal digits (the “exact” valueseofa¢hewal function up to 8 decimal
digits are obtained using Cox formulas). Note thaf of the values given by our algorithm are closer to the
exact values than those obtained in [7]. For completeness, note that éveaftetensity is computed in [1] for

such an Erlang interrenewal distribution.

4 Asymptotic analysis

Let us establish another expression for the discrete time exped&i\y) of the cumulative number of events of
Section 2. It appears to be useful in studying the asymptotic behavit)\of]. Summing the relations satisfied

by the family of vectorgz}, (k, h, h), k = 0,...,h—1} and{z} (k, h, h), k = 1,...,h}, givenin (1), we obtain

>
Ju

ug (h) = > ag(khh) = (A+ C)ul(h— 1)+ Dug(h— 1)+ (A+C) 1T Vh>2;
e
k=0
h ~ ~
uk (h) = > ap(k,hh) = Rup(h—1)+ Suy(h—1)+17  Vh>2.
< k=1
T AT
If UT(h) denotes the column vect<<r u_br’(];)) > andK, = < (4 +1TC)1 ) then it follows immediately that,
ur
for h > 1,

h—1
UT(h) = (ZP*’“) Ko.

k=0
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(D) + DW)H1T

We deduce fromi{y = 17 — < 0

) = 1T — Ly, that, forh > 1:

h—1
Ewuzh—mﬁwﬂmzamm(iyﬁﬂLa (6)
k=0
If we denote the stationary distribution of the irreducible matrixby =, we can derive after some algebra that
h—1
Pt =n1Tr+ (I -P"I-P +1Tm)7" 7)
k=0

Matrix (I — P*+1"7)~! is the fundamental matrix associated with an irreducible Markov chain hawingition

probability matrixP* (see [6, Chap. 4] for additional details). This last relation allows us to \ifid,] as
E[N) = haLo+(a,0) [1 = P"| (1= P+ 17m) 7 Ly ®8)

and it yields another way to compute the functigivy]. It is sufficient to evaluate the stationary distribution
the inverse matrix/ — P* + 177)~! and the constartt, from the data. From this point of view, the computation
of E[N}] reduces to the evaluation of the state probabilities)) P*" of the Markov chainX*. Note that
relation (8) is the discrete time version of formula (10) given in [13] for theatile point process. Finally, iP*

is an aperiodic matrix then formula (8) gives the linear asymptof&{ &¥,] ash tends to infinity:
E[N,] = hnLo+[(e,0) —7](I — P* +177) 1L + o(1).

In particular, we have
. E[Ny] . ~
hh_)n;o — = Z (1) [Z D(z,])} :
€U JER
However, from (6), this last limit is clearly independent of the period of ma®*. The previous discussion can

also be done in the same way for the random variéhleln particular, we have

h—1 .
Vh > 1, E[Ch] = a <ZP*k> ( ColT ) .

k=0

Relation (6) holds for the counting variablé, associated with the uniformized chaiv,, Cy,, X;),>0 of
Section 3 (matrixP* is replaced by matri@‘). We can thus derive the following expression of the continuous
time expectatiori£[V;] of Section 3:

+oo o (ut)h h—1 e\ -
E[N] =) e (a.0) { DQF | Lo. 9)
h=1 )

k=0
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Relations (5) or (9) can be exploited to evaluate numeridally,]. For a fixed tolerance errar, it suffices to
chooseH such thatt 3,7, e*“t(%,)h < g, in order to obtain a total error di[N;] bounded by.
A third representation oE[/V;] can be deduced from (7) and (g@( and Q* have the same stationary

distribution). It is the continuous time counterpart of relation (8):
E[Ny] = (7Lo)t + (a, 0)(I — Q) (1T — Q*) 1 Ly, (10)

with Ly = uLo. Matrix (177 — Q*)~! is the fundamental matrix associated with the irreducible continuous
time Markov chainX; [6]. This last formula can be viewed as the adaptation to our context of dogmues
result published in [13] for the so-called versatile point process.rtbeaused for the computation Bf V] as

relation (8) for the discrete time expectatiBiVy,]. Finally, whent tends to infinity, we have
E[N;] = (7Lo)t + [(a,0) — 7] (1T — Q*) 1 Lo + 0(1),

t—o00 4 4 ¢
€U “JER Jjeu

5 Conclusion

We investigate in this paper a general dependability model (in discrete or counitime) based on a structural
view of the given system. Mainly, we give the distribution function of the joint nundfeobserved events
(including failures) and delivered services on a fixed interval. We alsaskdte computational issues associated
with the derived formulas. The single failure process is closely related to tHe & Aersatile point process used
in queuing theory. A natural extension to our model is to allow for instancedteence of grouped failures. In
that case, the failure point process has to be related to the BMAP and tlisutiistr function (at a fixed point) of
the corresponding counting random variable can also be viewed as aptasprobability in a finite absorbing

Markov chain.
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t Exact Algo. in [7] Proposed

.05 | .00120935| .00120911 | .00120935

.10 | .00468269| .00468265 | .00468253

.15 | .01020456| .01020427 | .01020451

.20 | .01758001| .01757994 | .01757979

.25 | .02663266| .02663240 | .02663264

.30 | .03720291| .03720214 | .03720281

.35 | .04914633| .04914628 | .04914604

40 | .06233224| .06233212 | .06233220

45 | .07664241| .07664215 | .07664230

.50 | .09196986| .09196980 | .09196961

.55 | .10821777| .10821765 | .10821774

1
.60 | .12529855| .12529832 | .12529849
0.8
.65 | .14313295| .14313252 | .14313282
0.6 .70 | .16164924| .16164850 | .16164900
0.4r .75 | .18078254| .18078248 | .18078211
0.2+ .80 | .20047413| .20047403 | .20047406
0 L L .85 | .22067088| .22067072 | .22067076
0 2 8 10

.90 | .24132472| .24132446 | .24132451

95 | .26239215| .26239175 | .26239181

1.00 | .28383382| .28383371 | .28383377

Figure 4: Distribution and renewal functions for Erlang interrenewal digiiob with order 2 and mean 2.0.
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