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Abstract

Concerned with multi-objective reinforcement learning (MORL), this paper presents MOM-
CTS, an extension of Monte-Carlo Tree Search to multi-objective sequential decision mak-
ing, embedding two decision rules respectively based on the hypervolume indicator and
the Pareto dominance reward. The MOMCTS approaches are firstly compared with the
MORL state of the art on two artificial problems, the two-objective Deep Sea Treasure
problem and the three-objective Resource Gathering problem. The scalability of MOM-
CTS is also examined in the context of the NP-hard grid scheduling problem, showing
that the MOMCTS performance matches the (non-RL based) state of the art albeit with
a higher computational cost.

Keywords: reinforcement learning, Monte-Carlo tree search, multi-objective optimization,
sequential decision making

1. Introduction

Reinforcement learning (RL) (Sutton and Barto, 1998; Szepesvári, 2010) addresses sequen-
tial decision making in the Markov decision process framework. RL algorithms provide
guarantees of finding the optimal policies in the sense of the expected cumulative reward,
relying on the thorough exploration of the state and action spaces. The price to pay for
these optimality guarantees is the limited scalability of mainstream RL algorithms w.r.t.
the size of the state and action spaces.

Recently, Monte-Carlo Tree Search (MCTS), including the famed Upper Confidence
Tree algorithm (Kocsis and Szepesvári, 2006) and its variants, has been intensively investi-
gated to handle sequential decision problems. MCTS, notably illustrated in the domain of
Computer-Go (Gelly and Silver, 2007), has been shown to efficiently handle medium-size
state and action search spaces through a careful balance between the exploration of the
search space, and the exploitation of the best results found so far. While providing some
consistency guarantees (Berthier et al., 2010), MCTS has demonstrated its merits and wide
applicability in the domain of games (Ciancarini and Favini, 2009) or planning (Nakhost
and Müller, 2009) among many others.

This paper is motivated by the fact that many real-world applications, including re-
inforcement learning problems, are most naturally formulated in terms of multi-objective
optimization (MOO). In multi-objective reinforcement learning (MORL), the reward as-
sociated to a given state is d-dimensional (e.g. cost, risk, robustness) instead of a single
scalar value (e.g. quality). To our knowledge, MORL was first tackled by Gábor et al.
(1998); introducing a lexicographic (hence total) order on the policy space, the authors
show the convergence of standard RL algorithms under the total order assumption. In
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practice, multi-objective reinforcement learning is often tackled by applying standard RL
algorithms on a scalar aggregation of the objective values (e.g. optimizing their weighted
sum; see also Mannor and Shimkin (2004); Tesauro et al. (2007)).

In the general case of antagonistic objectives however (e.g. simultaneously minimize the
cost and the risk of a manufacturing process), two policies might be incomparable (e.g. the
cheapest process for a fixed robustness; the most robust process for a fixed cost): solutions
are partially ordered, and the set of optimal solutions according to this partial order is
referred to as Pareto front (more in section 2). The goal of the so-called multiple-policy
MORL algorithms (Vamplew et al., 2010) is to find several policies on the Pareto front
(Natarajan and Tadepalli, 2005; Chatterjee, 2007; Barrett and Narayanan, 2008; Lizotte
et al., 2012).

The goal of this paper is to extend MCTS to multi-objective sequential decision making.
The proposed scheme called MOMCTS basically aims at discovering several Pareto-optimal
policies (decision sequences, or solutions) within a single tree. MOMCTS requires one to
modify the exploration of the tree to account for the lack of total order among the nodes,
and the fact that the desired result is a set of Pareto-optimal solutions (as opposed to, a
single optimal one). A first possibility considers the use of the hypervolume indicator (Zit-
zler and Thiele, 1998), which measures the the MOO quality of a solution w.r.t. the current
Pareto front. Specifically, taking inspiration from (Auger et al., 2009), this indicator is used
to define a single optimization objective for the current path being visited in each MCTS
tree-walk, conditioned on the other solutions previously discovered. MOMCTS thus han-
dles a single-objective optimization problem in each tree-walk, while eventually discovering
several decision sequences pertaining to the Pareto-front. This approach, first proposed by
Wang and Sebag (2012), suffers from two limitations. On the one hand, the hypervolume in-
dicator computation cost increases exponentially with the number of objectives. Secondly,
the hypervolume indicator is not invariant under the monotonous transformation of the ob-
jectives. The invariance property (satisfied for instance by comparison-based optimization
algorithms) gives robustness guarantees which are most important w.r.t. ill-conditioned
optimization problems (Hansen, 2006).

Addressing these limitations, a new MOMCTS approach is proposed in this paper,
using Pareto dominance to compute the instant reward of the current path visited by
MCTS. Compared to the first approach − referred to as MOMCTS-hv in the remainder
of this paper, the latter approach − referred to as MOMCTS-dom− has linear computa-
tional complexity w.r.t. the number of objectives, and is invariant w.r.t. the monotonous
transformation of the objectives.

Both MOMCTS approaches are empirically assessed and compared to the state of
the art on three benchmark problems. Firstly, both MOMCTS variants are applied on
two artificial benchmark problems, using MOQL (Vamplew et al., 2010) as baseline: the
two-objective Deep Sea Treasure (DST) problem (Vamplew et al., 2010) and the three-
objective Resource Gathering (RG) problem (Barrett and Narayanan, 2008). A stochastic
transition model is considered for both DST (originally deterministic) and RG, to assess
the robustness of both MOMCTS approaches. Secondly, the real world NP-hard problem
of grid scheduling Yu et al. (2008) is considered to assess the performance and scalability
of MOMCTS methods comparatively to the (non-RL-based) state of the art.

The paper is organized as follows. Section 2 briefly introduces the formal background.
Section 3 describes the MOMCTS-hv and the MOMCTS-dom algorithm. Section 4 presents
the experimental validation of MOMCTS approaches. Section 5 discusses the strengths and
limitations of MOMCTS approaches w.r.t. the state of the art and the paper concludes
with some research perspectives.
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(a) (b)

Figure 1: The left figure shows vectorial rewards in the two-dimensional objective plane.
The non-dominated vectorial rewards are depicted as black circles. The hypervol-
ume indicator of these solutions w.r.t reference point z in the lower-left corner is
the surface of the shaded region. The right figure shows the perspective projection
rpx of rx on the piecewise linear envelope of the Pareto front (section 3.1.1).

2. Formal background

Assuming the reader’s familiarity with the reinforcement learning setting (Sutton and
Barto, 1998), this section briefly introduces the main notations and definitions used in
the rest of the paper.

A Markov decision process (MDP) is described by its state and action space respectively
denoted S and A. The transition function (p : S × A × S 7→ [0, 1]) gives the probability
p(s, a, s′) of reaching state s′ by executing action a in state s. The (scalar) reward function
is defined from the state × action space onto IR (r : S ×A 7→ IR).

2.1. Multi-objective optimization

In multi-objective optimization (MOO), each point x in the search space X is associated
with a d-dimensional reward vector rx in IRd, referred to as vectorial reward in the following.
With no loss of generality, it is assumed that each objective is to be maximized.
Given two points x, x′ ∈ X with rx = (r1, . . . , rd) and rx′ = (r′1, . . . , r

′
d) their associated

vectorial rewards, rx is said to dominate, or Pareto-dominate, rx′ (noted rx � rx′) iff ri
is greater than or equal to r′i for i = 1 . . . d. The dominance is strict (noted rx � rx′) if
rx � rx′ and ri > r′i for some i (Fig. 1(a)). As mentioned, Pareto-dominance defines a
partial order relation on IRd and thus on X . The Pareto front is defined as follows:

Definition 1 Given A ⊂ IRd a set of vectorial rewards, the set PA of non-dominated points in A is
defined as:

PA = {r ∈ A : @r′ ∈ A s.t. r′ � r}

The Pareto front is made of all non-dominated vectorial rewards. By abuse of language, PA is
referred to as the set of Pareto-optima in A.

Two different categories of MOO problems are distinguished depending on whether
they correspond to a convex or non-convex Pareto front. The convex Pareto front can be
identified by solving a set of single objective optimization problems defined on the weighted
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sum of the objectives, referred to as linear scalarization of the MOO problem (as done in
MOQL, section 4.2.1). When dealing with non-convex Pareto fronts (for instance, the DST
problem (Vamplew et al., 2010), and the ZDT2 and DTLZ2 test benchmarks (Deb et al.,
2002)) however, the linear scalarization approach fails to discover the non-convex parts of
the Pareto front (Deb, 2001). Although many MOO problems have a convex Pareto front,
especially in the two-objective case, the discovery of the non-convex Pareto front remains
the main challenge for MOO approaches (Deb et al., 2000; Beume et al., 2007)1.

2.2. Monte-Carlo Tree Search

Let us describe the best known MCTS algorithm, referred to as Upper Confidence Tree
(UCT) (Kocsis and Szepesvári, 2006) and extending the Upper Confidence Bound algorithm
(Auer et al., 2002) to tree-structured spaces. UCT simultaneously explores and builds a
search tree, initially restricted to its root node, along N tree-walks a.k.a. simulations. Each
tree-walk involves three phases:
The bandit phase starts from the root node and iteratively selects an action/a child node
until arriving in a leaf node. Action selection is handled as a multi-armed bandit problem.
The set As of admissible actions a defines the possible child nodes (s, a) of node s; the
selected action a∗ maximizes the Upper Confidence Bound:

r̂s,a +
√
ce ln(ns)/ns,a (1)

over a ranging in As, where ns stands for the number of times node s has been visited, ns,a
denotes the number of times a has been selected in node s, and r̂s,a is the average reward
collected when selecting action a from node s. The first (respectively the second) term
in Eq. (1) corresponds to the exploitation (resp. exploration) term, and the exploration
vs exploitation trade-off is controlled by parameter ce. Upon the selection of a∗, the next
state is drawn from the transition model depending on the current state and a∗. In the
remainder of the paper, a tree node is labeled with the sequence of actions followed from
the root; the associated reward is the average reward collected over all tree-walks involving
this node.
The tree building phase takes place upon arriving in a leaf node s; some action a is
(uniformly or heuristically) selected and (s, a) is added as child node of s. Accordingly, the
number of nodes in the tree is the number of tree-walks.
The random phase starts from the new leaf node (s, a) and iteratively (uniformly or
heuristically) selects an action until arriving in a terminal state u; at this point the reward
ru of the whole tree-walk is computed and used to update the reward estimates in all nodes
(s, a) visited during the tree-walk:

r̂s,a ←
1

ns,a + 1

(
ns,a × r̂s,a + ru

)
(2)

ns,a ← ns,a + 1; ns ← ns + 1

Additional heuristics have been considered, chiefly to prevent over-exploration when the
number of admissible arms is large w.r.t the number of simulations (the so-called many-
armed bandit issue (Wang et al., 2008)). The Progressive Widening (PW) heuristics
(Coulom, 2006) will be used in the following, where the allowed number of child nodes
of s is initialized to 1 and increases with its number of visits ns like bns1/bc (with b usually
set to 2 or 4). The Rapid Action Value Estimation (RAVE) heuristic is meant to guide the
exploration of the search space (Gelly and Silver, 2007). In its simplest version, RAV E(a)

1. Notably, the chances for a Pareto front to be convex decreases with the number of objectives.
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is set to the average reward taken over all tree-walks involving action a. The RAVE vector
can be used to guide the tree-building phase2, that is, when selecting a first child node upon
arriving in a leaf node s, or when the Progressive Widening heuristics is triggered and a
new child node is added to the current node s. In both cases, the selected action is the one
maximizing RAV E(a). The RAVE heuristic aims at exploring earlier the most promising
regions of the search space; for the sake of convergence speed, it is clearly desirable to
consider the best options as early as possible.

3. Overview of MOMCTS

The main difference between MCTS and MOMCTS regards the node selection step. The
challenge is to extend the single-objective node selection criterion (Eq. (1)) to the multi-
objective setting. Since there is no total order between points in the multi-dimensional
space, as mentioned, the most straightforward way of dealing with multi-objective opti-
mization is to get back to single-objective optimization, through aggregating the objectives
into a single one; the price to pay is that this approach yields a single solution on the
Pareto front. Two aggregating functions (the hypervolume indicator and the cumulative
discounted dominance reward) aimed at recovering a total order among points in the multi-
dimensional reward space conditionally to the search archive, will be integrated within the
MCTS framework.
The MOMCTS-hv algorithm is presented in section 3.1 and its limitations are discussed
in section 3.2. The MOMCTS-dom algorithm aimed at overcoming these limitations is
introduced in section 3.3.

3.1. MOMCTS-hv

3.1.1. Node selection based on hypervolume indicator

The hypervolume indicator (Zitzler and Thiele, 1998) provides a scalar measure of solution
sets in the multi-objective space as follows.

Definition 2 Given A ⊂ IRd a set of vectorial rewards, given reference point z ∈ IRd such that it
is dominated by every r ∈ A, then the hypervolume indicator (HV) of A is the measure of the set of
points dominated by some point in A and dominating z:

HV (A; z) = µ({x ∈ IRd : ∃r ∈ A s.t. r � x � z})

where µ is the Lebesgue measure on IRd (Fig.1( a)).

It is clear that all dominated points in A can be removed without modifying the hypervol-
ume indicator (HV (A; z) = HV (PA; z)). As shown by Fleischer (2003), the hypervolume
indicator is maximized iff points in PA belong to the Pareto front of the MOO problem.
Auger et al. (2009) show that, for d = 2, for a number K of points, the hypervolume indi-
cator maps a multi-objective optimization problem defined on IRd, onto a single-objective
optimization problem on IRd×K , in the sense that there exists at least one set of K points
in IRd that maximizes the hypervolume indicator w.r.t. z.

Let P denote the archive of non-dominated vectorial rewards measured for every ter-
minal state u (section 2.2). It then comes naturally to define the value of any MCTS tree
node as follows.

2. Another option is to use a dynamically weighted combination of the reward r̂s,a and RAV E(a) in Eq.
(1).
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Let us associate to each node (s, a) in the tree the vector rs,a of the upper confidence
bounds on its rewards:

rs,a =

(
r̂s,a; i +

√
ci ln(ns)/ns,a

)d
i=1

(3)

with ci the exploration vs exploitation parameter for the i-th objective (Eq. (1)).
An upper-bound V (s, a) on the value of (s, a) is given by considering the hypervolume

indicator of rs,a w.r.t. archive P .

V (s, a) = HV (P ∪ {rs,a}; z)

While V (s, a) does provide a scalar value of a node (s, a) conditioned on the solutions
previously evaluated, it takes on a constant value if rs,a is dominated by some vectorial
reward in P . In order to differentiate these dominated points, we consider the perspective
projection rps,a of rs,a onto P, the piecewise linear surface in IRd including all ru ∈ P (Fig.
1(b)). Let rps,a denote the (unique) intersection of line (rs,a, z) with P (being reminded
that z is dominated by all points in P and by rs,a). The value function associated to (s, a)
is then defined as the value of rs,a, minus the Euclidean distance between rs,a and rps,a.
Finally, the value of (s, a) is defined as:

W (s, a) =

{
V (s, a) if rs,a is non-dominated in P
V (s, a)− ‖ rps,a − rs,a ‖2 otherwise

(4)

The Euclidean distance term here sets a penalty for dominated points, increasing with their
distance to the linear envelope P of P . Note that Eq. (4) sets a total order on all vectorial
rewards in IRd, where non-dominated points are ranked higher than dominated ones.

3.1.2. MOMCTS-hv algorithm

MOMCTS-hv differs from MCTS in only three respects (Algorithm 1). Firstly, the selected
action a∗ is the one maximizing value function W (s, a) instead of the UCB criterion (Eq.
(1)). Secondly, MOMCTS-hv maintains the archive P of all non-dominated vectorial re-
wards evaluated in previous tree-walks. Upon arriving in a terminal state u, MOMCTS-hv
evaluates the vectorial reward ru of the tree-walk. It then updates r̂s,a for all nodes (s, a)
visited during the tree-walk, and it updates archive P if ru is non-dominated. Thirdly, the
RAVE vector (section 2.2) is used to select new nodes in the tree-building phase. Letting
RAV E(a) denote the average vectorial reward associated to a, letting RAV Ep(a) denote
the perspective projection of RAV E(a) on the approximated Pareto front P, then the
action selected is the one minimizing

‖ RAV Ep(a)−RAV E(a) ‖2 (5)

MOMCTS-hv parameters include i) the total number of tree-walks N , ii) the b pa-
rameter used in the progressive widening heuristic (section 2.2); iii) the exploration vs
exploitation trade-off parameter ci for every i-th objective; and iv) the reference point z.

3.2. Discussion

Let B denote the average branching factor in the MOMCTS-hv tree, and let N denote the
number of tree-walks. As each tree-walk adds a new node, the number of nodes in the tree
is N+1 by construction. The average length of a tree-path thus is in O(logN). Depending
on the number d of objectives, the hypervolume indicator is computed with complexity
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Algorithm 1 MOMCTS-hv

MOMCTS-hv
Input: number N of tree-walks
Output: search tree T
Initialize T ← root node (initial state), P ← {}
for t = 1 to N do

TreeWalk(T , P, root node)
end for
return T

TreeWalk
Input: search tree T , archive P , node s
Output: vectorial reward ru
if s is not a leaf node, and ¬(b(ns + 1)1/bc > b(ns)1/bc) // (PW test is not triggered)
then

Select a∗ = argmax {W (s, a), (s, a) ∈ T } //Eq. (4)
ru ← TreeWalk(T , P, (s, a∗))

else
As = { admissible actions not yet visited in s}
Select a∗ = arg min{‖ RAV Ep(a)−RAV E(a) ‖2, a ∈ As}
Add (s, a∗) as child node of s
ru ← RandomWalk(P, (s, a∗))

end if
Update ns, ns,a∗ , RAV E(a∗) and r̂s,a
return ru

RandomWalk
Input: archive P , state u
Output: vectorial reward ru
Arnd ← {} // store the set of actions visited in the random phase
while u is not final state do

Uniformly select an admissible action a for u
Arnd ← Arnd ∪ {a}
u← (u, a)

end while
ru = evaluate(u) //obtain the vectorial reward of the tree-walk
if ru is not dominated by any point in P then

Prune all points dominated by ru in P
P ← P ∪ {ru}

end if
Update RAV E(a) for a ∈ Arnd
return ru
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O(|P |d/2) for d > 3 (respectively O(|P |) for d = 2 and O(|P | log |P |) for d = 3) (Beume
et al., 2009). The complexity of each tree-walk thus is O(B|P |d/2logN), where |P | is at
most the number N of tree-walks.

By construction, the hypervolume indicator based selection criterion (Eq. (4)) drives
MOMCTS-hv towards the Pareto front and favours the diversity of the Pareto archive.
On the negative side however, the computational cost of W (s, a) is exponential with
the number d of objectives. Besides, the hypervolume indicator is not invariant under
monotonous transformation of objective functions, which prevents the approach from en-
joying the same robustness as comparison-based optimization approaches (Hansen, 2006).
Lastly, the MOMCTS-hv critically depends on its hyper-parameters. The exploration vs
exploitation (EvE) trade-off parameters ci, i = 1, 2, . . . , d (Eq. (1)) of each objective have
a significant impact on the performance of MOMCTS-hv (likewise, the MCTS applicative
results depend on the tuning of the EvE trade-off parameters (Chaslot et al., 2008)). Addi-
tionally, the choice of the reference point z also influences the hypervolume indicator values
(Auger et al., 2009)).

3.3. MOMCTS-dom

This section presents a new MOMCTS approach aimed at overcoming the above limitations,
which is based on the Pareto dominance test. Notably, this test has linear complexity w.r.t.
the number of objectives, and is invariant under monotonous transformation of objectives.
As this reward depends on the Pareto archive which evolves along the search, the cumulative
discounted dominance(CDD) reward mechanism is proposed to handle the search dynamics.

3.3.1. Node selection based on cumulative discounted dominance reward

Let P denote the archive of all non-dominated vectorial rewards previously gathered during
the search process. A straightforward option would be to associate to each tree-walk reward
1 if the tree-walk gets a vectorial reward ru which is not strictly dominated by any point
in the archive P , and reward 0 otherwise. Formally this boolean dominance reward, called
ru;dom, is defined as:

ru;dom =

{
1 if @r ∈ P, r � ru
0 otherwise

(6)

The optimization problem defined by dominance rewards is non-stationary as it depends on
the archive P , which evolves along time. To cope with non-stationarity, the reward update
proceeds along a cumulative discounted (CD) process as follows. Let ts,a denote the index
of the last tree-walk which visited node (s, a), let ∆t = t− ts,a where t is the index of the
current tree-walk, let δ ∈ [0, 1] be a discount factor, the CD update is defined as:

r̂s,a;dom ← r̂s,a;dom · δ∆t + ru;dom, δ ∈ [0, 1] (7)

ts,a ← t; ns,a ← ns,a + 1; ns ← ns + 1

The reward update in MOMCTS-dom differs from the standard scheme (Eq. (2)) in two
respects. Firstly, cumulative instead of average rewards are considered. The rationale for
this modification is that a tiny percentage of the tree-walks finds a non-dominated vectorial
reward if ever. In such cases, average rewards come to be negligible in front of the explo-
ration term, making the MCTS degenerate to pure random search. The use of cumulative
rewards instead tends to prevent this degradation.
Secondly, a discount mechanism is used to moderate the cumulative effects using the dis-
count factor δ (0 ≤ δ ≤ 1) and taking into account the number ∆t of tree-walks since this
node was last visited. This discount mechanism is meant to cope with the dynamics of
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multi-objective search through forgetting old rewards, thus enabling the decision rule to
reflect up-to-date information.
Indeed, the CD process is reminiscent of the discounted cumulative reward defining the
value function in Reinforcement Learning (Sutton and Barto, 1998), with the difference
that the time-step t here corresponds to the tree-walk index, and that the discount mech-
anism is meant to limit the impact of past (as opposed to, future) information.

In a stationary context, r̂s,a;dom would converge towards 1
1−δ∆t r̄, with ∆t the average

interval of time between two visits to the node. If the node gets exponentially rarely visited,
r̂s,a;dom goes to r̄. Quite the contrary, if the node happens to be frequently visited, r̄ is
multiplied by a large factor ( 1

1−δ ), entailing the over-exploitation of the node. However,
the over-exploitation is bound to decrease as soon as the Pareto archive moves towards the
true Pareto front. While this CDD reward was found to be empirically suited to the MOO
setting (see also Maes et al. (2011)), further work is required to analyze its properties.

3.3.2. MOMCTS-dom algorithm

MOMCTS-dom proceeds as standard MCTS except for the update procedure, where Eq.
(2) is replaced by Eq. (7). Keeping the same notations B,N and |P | as above, as the
dominance test in the end of each tree-walk is linear (O(d|P |)), the complexity of each
tree-walk in MOMCTS-dom is O(B logN + d|P |), linear w.r.t. the number d of objectives.

Besides the MCTS parameters N and b, MOMCTS-dom involves two additional hyper-
parameters: i) the exploration vs exploitation trade-off parameter ce; and ii) the discount
factor δ.

4. Experimental validation

This section presents the experimental validation of the MOMCTS-hv and MOMCTS-dom
algorithms.

4.1. Goals of experiments

The first goal is to assess the performance of the MOMCTS approaches comparatively to
the state of the art in MORL (Vamplew et al., 2010). Two artificial benchmark problems
(Deep Sea Treasure and Resource Gathering) with probabilistic transition functions are
considered. The Deep Sea Treasure problem has two objectives which define a non-convex
Pareto front (section 4.2). The Resource gathering problem has three objectives and a
convex Pareto front (section 4.3). The second goal is to assess the performance and scal-
ability of MOMCTS approaches in a real-world setting, that of grid scheduling problems
(section 4.4).

All reported results are averaged over 11 runs unless stated otherwise.

Indicators of performance

Two indicators are defined to measure the quality of solution sets in the multi-dimensional
space. The first indicator is the hypervolume indicator (section 3.1.1). The second indi-
cator, inspired from the notion of regret, is defined as follows. Let P ∗ denote the true
Pareto front. The empirical Pareto front P defined by a search process is assessed from
its generational distance (Van Veldhuizen, 1999) and inverted generational distance w.r.t.

P ∗. The generational distance (GD) is defined by GD(P ) =
(√∑n

i=1 d
2
i

)
/n, where n is

the size of P and di is the Euclidean distance between the i-th point in P and its nearest
point in P ∗. GD measures the average distance from points in P to the Pareto front. The

9



Wang Sebag

(a) The state space (b) The Pareto front

Figure 2: The Deep Sea Treasure problem. Left: the DST state space with black cells as
sea-floor, gray cells as terminal states, the treasure value is indicated in each
cell. The initial position is the upper left cell. Right: the Pareto front in the
time×treasure plane.

inverted generational distance (IGD) is likewise defined as the average distance of points
in P ∗ to their nearest neighbour in P . For both generational and inverted generational
distances, the smaller, the better.

The algorithms are also assessed w.r.t. their computational cost (measured on a PC
with Intel dual-core CPU 2.66GHz).

4.2. Deep Sea Treasure

The Deep Sea Treasure (DST) problem, first introduced by Vamplew et al. (2010), is
converted into a stochastic sequential decision making problem by introducing noise in the
transition function of DST. The state space of Deep Sea Treasure (DST) consists of a 10×11
grid (Fig. 2(a)). The action space of DST includes four actions (up, down, left and right),
each sending the agent to one adjacent square in the indicated direction with probability
1−η, and in the other three directions with equal probability η/3, where 0 ≤ η < 1 indicates
the noise level in the environment. When the selected action would send the agent beyond
the grid or the sea borders, the agent stays in the same place. Each policy, with the top
left square as initial state, gets a two dimensional reward: the time spent until reaching
a terminal state or reaching the time horizon T = 100, and the treasure attached to the
terminal state (Fig. 2(a)). The list of all 10 non-dominated vectorial rewards in the form
of (−time, treasure) are depicted in the two-dimensional plane in Fig. 2(b). It is worth
noting that the Pareto front is non-convex.

4.2.1. Baseline algorithm

As mentioned in the introduction, the state of the art in MORL considers a scalar aggrega-
tion (e.g. a weighted sum) of rewards associated to all objectives. Several multiple-policy
MORL algorithms have been proposed (Natarajan and Tadepalli, 2005; Tesauro et al.,
2007; Barrett and Narayanan, 2008; Lizotte et al., 2012) using the weighted sum of the
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objectives (with several weight settings) as scalar reward, which is optimized using stan-
dard reinforcement learning algorithms. The differences between the above algorithms are
how they share the information between different weight settings and which weight settings
they choose to optimize. In the following, MOMCTS-dom is compared to Multi-Objective
Q-Learning (MOQL) (Vamplew et al. (2010)). Choosing MOQL as baseline is motivated
as it yields all policies found by other linear-scalarisation based approaches, provided that
a sufficient number of weight settings be considered.

Formally, in the two objective reinforcement learning case, MOQL optimizes indepen-
dently m scalar RL problems through Q-learning, where the i-th problem considers reward
ri = (1−λi)×ra+λi×rb, where 0 ≤ λi ≤ 1, i = 1, 2, . . . ,m define the m weight settings of
MOQL, and ra (respectively rb) is the first (resp. the second) objective reward. In its sim-
plest version, the overall computational effort is equally divided between the m scalar RL
problems. The computational effort allocated to the each weight setting is further equally
divided into ntr training phases; after the j-th training phase, the performance of the i-
th weight setting is measured by the two-dimensional vectorial reward, noted ri,j , of the
current greedy policy. The m vectorial rewards of all weight settings {r1,j , r2,j , . . . , rm,j}
together compose the Pareto front of MOQL at training phase j.

4.2.2. Experimental setting

We use the same MOQL experimental setting as in Vamplew et al. (2010):

• ε-greedy exploration is used with ε = 0.1.

• Learning rate α is set to 0.1.

• The state-action value table is optimistically initialized (time = 0, treasure = 124).

• Due to the episodic nature of DST, no discounting is used in MOQL(γ = 1).

• The number m of weight settings ranges in {3, 7, 21}, with λi = i−1
m−1 , i = 1, 2, . . . ,m.

After a few preliminary experiments, the progressive widening parameters b is set to 2 in
both MOMCTS-hv and MOMCTS-dom. In MOMCTS-hv, the exploration vs exploitation
(EvE) trade-off parameters in the time cost and treasure value objectives are respectively set
to ctime = 20, 000 and ctreasure = 150. As the DST problem is concerned with minimizing
the search time (maximizing its opposite) and maximizing the treasure value, the reference
point used in the hypervolume indicator calculation is set to (-100,0).
In MOMCTS-dom, the EvE trade-off parameter ce is set to 1, and the discount factor δ is
set to 0.999.

Experiments are carried out in a DST simulator with the η noise level ranging in 0,
1 × 10−3, 1 × 10−2, 5 × 10−2 and 0.1. The training time of MOQL, MOMCTS-hv and
MOMCTS-dom is limited to 300,000 time steps (ca 37,000 tree-walks in MOMCTS-hv and
45,000 tree-walks in MOMCTS-dom). The entire training process is equally divided into
ntr = 150 phases. At the end of each training phase, the MOQL and MOMCTS solution
sets are tested in the DST simulator, and form the Pareto set P . The performance of
algorithms is reported as the hypervolume indicator of P .

4.2.3. Results

Table 1 shows the performance of MOMCTS approaches and MOQL measured by the
hypervolume indicator, with reference point z = (−100, 0).
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(a)

(b)

Figure 3: The hypervolume indicator performance of MOMCTS-hv, MOMCTS-dom and
MOQL versus training time in the deterministic DST problem (η = 0). For the
sake of comparison with MOQL, the training time refers to the number of action
selections in MOMCTS approaches, and each tree-walk in MOMCTS carries out
on average 7 to 8 action selections in the DST problem. Top: The hypervolume
indicator of MOMCTS-hv, MOMCTS-dom and MOQL-m=21. Bottom: The
hypervolume indicator of MOQL with m = 3, 7, 21.
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Table 1: The DST problem: hypervolume indicator results of MOMCTS-hv, MOMCTS-
dom and MOQL with m ranging in 3,7 and 21 in with different noise levels η,
averaged over 11 independent runs. The optimal hypervolume indicator is 10455.
For each η, significantly better results are indicated in bold font (significance value
p < 0.05 for the Student’s t-test).

η = 0 η = 1× 10−3 η = 0.01 η = 0.05 η = 0.1

MOMCTS-hv 10416±37 10434±31 10436±32 10205±211 9883±1091

MOMCTS-dom 10450±4 10446±19 10389±65 9858±1153 9982±360

MOQL-m=3 7099±3926 8116±3194 6422± 4353 7333±4411 6953±3775

MOQL-m=7 10078±34 10049±94 9495±1701 8345±2887 8924±2663

MOQL-m=21 10078±17 10085±129 7806±1933 8744±2070 6744±2355

Deterministic setting

Fig. 3 displays the hypervolume indicator performance of MOMCTS-hv, MOMCTS-dom
and that of MOQL for m = 3, 7, 21 in the deterministic setting (η = 0). It is observed that
for m = 7 or 21, MOQL reaches a performance plateau (10062) within 20,000 time steps.
The fact that MOQL does not reach the optimal hypervolume indicator 10455 is explained
as the DST Pareto front is not convex (Fig. 2(b)). As widely known (Deb, 2001), linear-
scalarisation based approaches of MOO fail to discover solutions in non-convex regions of
the Pareto front. In such cases, MOQL is prevented from finding the true Pareto front
and thus is inconsistent. Ultimately, MOQL only discovers the extreme points (-19,124)
and (-1,1) of the Pareto front (Fig. 4(a)). In the meanwhile, MOMCTS-hv performance
dominates that of MOQL throughout the training process. MOMCTS-dom catches up
MOQL after 80,000 time steps. The entire Pareto front is found by MOMCTS-hv in 5 out
11 runs, and by MOMCTS-dom algorithm in 10 out 11 runs.

Fig. 3(b) shows the influence of m on MOQL. For m = 7, MOQL reaches the perfor-
mance plateau before m = 21 (respectively 8,000 time steps vs 20,000 time steps), albeit
with some instability. The instability increases as m is set to 3. The fact that for MOQL-
m = 3 fails to reach the MOQL performance plateau is explained as the extreme point
(-19,124) can be missed in some runs as MOQL uses a discount factor of 1 (after Vamplew
et al. (2010)). Therefore the largest 124 treasure might be discovered later than in time
step 19.

The percentage of times out of 11 runs that each non-dominated vectorial reward
is discovered for at least one test episode during the training process of MOMCTS-hv,
MOMCTS-dom and MOQL for m = 21 is displayed in Fig. 4(b). This picture shows
that MOQL discovers all strategies (lying in the non-convex regions of the Pareto front)
during intermediate test episodes. However, these non-convex strategies are eventually
discarded as the MOQL solution set gradually converges to extreme strategies. Quite
the contrary, MOMCTS approaches discovers all strategies in the Pareto front, and keeps
them in the search tree after they have been discovered. The weakness of MOMCTS-hv
is that the longest decision sequences corresponding to the vectorial rewards (-17,74) and
(-19,124) need more time to be discovered. The MOMCTS-dom successfully discovers all
non-dominated vectorial rewards (in 10 out of 11 runs) and reaches an average hypervolume
indicator performance slightly higher than that of MOMCTS-hv.
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(a) (b)

Figure 4: Left: The vectorial rewards found by representative MOMCTS-hv, MOMCTS-
dom and MOQL-m = 21 runs. Right: The percentage of times out of 11
runs that each non-dominated vectorial reward was discovered by MOMCTS-hv,
MOMCTS-dom and MOQL-m = 21, during at least one test episode.

Stochastic setting

Fig. 5 shows the performance of MOMCTS-hv, MOMCTS-dom and MOQL-m=21 in the
stochastic environments (η = 0.01, 0.1). As could have been expected, the performances
of MOQL and MOMCTS approaches decrease and their variances increase with noise level
η, although their performances improve with training time (except for the MOQL in the
η = 0.01 case). In the low noise case (η = 0.01), MOQL reaches its optimal performance
after time step 40,000, with a high performance variance. It is outperformed by MOMCTS-
hv and MOMCTS-dom, with higher average hypervolume indicators and lower variances.
When the noise rate increases (η = 0.1), both performances are degraded while MOMCTS
approaches still outperforms MOQL in terms of relative performance and lower variance
(as shown in Table 1), showing a good robustness w.r.t. noise.

In summary, the empirical validation on the artificial DST problem shows both the
strengths and the weaknesses of MOMCTS approaches. On the positive side, MOMCTS
approaches show able to find solutions lying in the non-convex regions of the Pareto front,
as opposed to linear scalarization-based methods. Moreover, MOMCTS shows a relatively
good robustness w.r.t. noise. On the negative side, MOMCTS approaches are more com-
putationally expensive than MOQL (for 300,000 time steps, MOMCTS-hv takes 147 secs,
MOMCTS-dom takes 49 secs versus 25 secs for MOQL).

4.3. Resource Gathering

The Resource Gathering (RG) task first introduced in Barrett and Narayanan (2008) is
carried out in a 5× 5 grid (Fig. 6). The action space of RG include the same four actions
(up, down, left and right) as in the DST problem. Starting from the home location, the goal
of the agent is to gather two resources (gold and gems) and take them back home. Each
time the agent reaches one resource location, the resource is picked up. Both resources can
be carried by the agent at the same time. If the agent steps on one of the two enemy cases
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(a) η = 0.01

(b) η = 0.1

Figure 5: The hypervolume indicator of MOMCTS-hv, MOMCTS-dom and MOQL-m=21
versus training time in the stochastic environment (η = 0.01, 0.1).
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Figure 6: The Resource Gathering problem. The initial position of the agent is marked
by the home symbol. Two resources (gold and gems) are located in fixed posi-
tions. Two enemy cases (marked by swords) send the agent back home with 10%
probability.

(indicated by swords), it may be attacked with 10% probability, in which case the agent
loses all resources being carried and is returned to the home location immediately. The
agent enters a terminal state when it returns home (including the case of being attacked)
or when the time horizon T = 100 is reached. Five possible immediate reward vectors
ordered as (enemy, gold, gems) will be received upon the termination of a policy:

• (−1, 0, 0) in case of an enemy attack;

• (0, 1, 0) for returning home with only gold;

• (0, 0, 1) for returning home with only gems;

• (0, 1, 1) for returning home with both gold and gems;

• (0, 0, 0) in all other cases.

The RG problem contains a discrete state space of 100 states corresponding to the 25 agent
positions in the grid, multiplied by the four possible states of resources currently being held
(none, gold only, gems only, both gold and gems). The vectorial reward associated to each
policy π is calculated as follows:
Let r = (enemy, gold, gems) be the vectorial reward obtained by policy π after a L-step
episode. The immediate reward of π is set to rπ;L = r/L = (enemy/L, gold/L, gems/L),
and the policy is associated its immediate reward averaged over 100 episodes, favoring the
discovery of policies with shortest length. Seven policies (Table 2 and Fig. 7) correspond-
ing to the non-dominated average vectorial rewards of the RG problem are identified by
Vamplew et al. (2010). The non-dominated vectorial rewards compose a convex Pareto
front in the three dimensional space (Fig. 8).

4.3.1. Experimental setting

In the RG problem, the MOMCTS approaches are assessed comparatively with the MOQL
algorithm, which independently optimizes the weighted sums of the three objective func-
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Figure 7: The seven policies in the Resource Gathering problem that correspond to the
non-dominated vectorial rewards.

Figure 8: The seven non-dominated vectorial rewards in the Resource Gathering problem
identified by Vamplew et al. (2010).
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Table 2: The optimal policies for the Resource Gathering problem.
# policy description vectorial reward

π1 Go directly to gems, avoiding enemies (0,0,0.1)

π2 Go to both gold and gems, avoiding enemies (0, 5.556× 10−2, 5.556× 10−2)

π3 Go directly to gold, avoiding enemies (0, 8.333× 10−2, 0)

π4 Go to both gold and gems, through enemy1 or enemy2 once (−7.75× 10−3, 6.977× 10−2, 6.977× 10−2)

π5 Go directly to gold, through enemy1 once (−1.075× 10−2, 9.677× 10−2, 0)

π6 Go to both gold and gems, through the enemies twice (−1.815× 10−2, 7.736× 10−2, 7.736× 10−2)

π7 Go directly to gold, through enemy1 twice (−2.628× 10−2, 1.1203× 10−1, 0)

tions (enemy, gold, gems) under m weight settings. In the three dimensional reward
space, one weight setting is defined by a 2D vector (λi, λ

′
j), with λi, λ

′
j ∈ [0, 1] and

0 ≤ λi + λ′j ≤ 1. Let us denote the scalar rewards optimized by MOQL as ri,j =
(1 − λi − λ′j) × renemy + λi × rgold + λ′j × rgems, where l weights λi (respectively λ′j)
are evenly distributed in [0, 1] for the gold (resp. gems) objective, subject to λi + λ′j ≤ 1,

the total number of weight settings thus is m = l(l−1)
2 .

The parameters of MOQL and MOMCTS approaches have been selected after prelimi-
nary experiments, using the same amount of computational resources for a fair comparison.
For the MOQL:

• The ε-greedy exploration is used with ε = 0.2.

• Learning rate α is set to 0.2.

• The discount factor γ is set to 0.95.

• By taking l = 4, 6, 10, the number m of weight settings ranges in {6, 15, 45}.

In MOMCTS-hv, the progressive widening parameter b is set to 2. The exploration
vs exploitation (EvE) trade-off parameters associated to each objective are defined as
cenemy = 1 × 10−3, cgold = 1 × 10−4, cgems = 1 × 10−4. The reference point z used in
the hypervolume indicator calculation is set to (−0.33,−1× 10−3,−1× 10−3), where -0.33
represents the maximum enemy penalty averaged in each time step of the episode, and the
−1 × 10−3 values in the gold and gems objectives are taken to encourage the exploration
of solutions with vectorial rewards lying in the hyper-planes gold = 0 and gems = 0.
In MOMCTS-dom, the progressive widening parameter b is set to 1 (no progressive widen-
ing). The EvE trade-off parameter ce is set to 0.1. The discount factor δ is set to 0.99.

The training time of all considered algorithms is 600,000 time steps (ca 17,200 tree-walks
for MOMCTS-hv and 16,700 tree-walks for MOMCTS-dom). Like in the DST problem,
the training process is equally divided into 150 phases. At the end of each training phase,
the MOQL and MOMCTS solution sets are tested in the RG simulator. Each solution
(strategy) is launched 100 times and is associated the average vectorial reward (which might
dominate the theoretical optimal ones due to the limited sample). The vectorial rewards
of the solution set provided by each algorithm defines its Pareto archive. The algorithm
performance is set to the hypervolume indicator of the Pareto archive with reference point
z = (−0.33,−1× 10−3,−1× 10−3). The optimal hypervolume indicator is 2.01× 10−3.

4.3.2. Results

Table 3 shows the performance of MOMCTS-hv, MOMCTS-dom and MOQL algorithms
after 600,000 times steps of training, measured by the hypervolume indicator. Fig. 9 dis-
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Figure 9: The Resource Gathering problem: Average hypervolume indicator of MOMCTS-
hv, MOMCTS-domand MOQL (with m = 6, 15 and 45) over 11 runs, versus
number of time steps. The optimal hypervolume indicator 2.01×10−3 is indicated
by the top line.

(a) Enemy vs Gold (b) Enemy vs Gems

Figure 10: The vectorial rewards found by representative MOMCTS-hv, MOMCTS-dom
and MOQL with m = 6, 15 runs. Left: the points projected on the Gems = 0
plane. Right: the points projected on the Gold = 0 plane. The Pareto optimal
points are marked by circles.
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Table 3: The Resource Gathering problem: Average hypervolume indicator of MOMCTS-
hv, MOMCTS-dom and MOQL (with m = 6, 15 and 45) over 11 runs. The optimal
hypervolume indicator is 2.01× 10−3. Significantly better results are indicated in
bold font (significance value p < 0.05 for the Student’s t-test).

HV(×10−3) HV(×10−3)

MOMCTS-hv 1.735±0.304 MOMCTS-dom, δ = 0.9 1.285±0.351

MOQL, m = 6 1.933±0.04 MOMCTS-dom, δ = 0.98 1.75±0.38

MOQL, m = 15 2.021±0.033 MOMCTS-dom, δ = 0.99 1.836±0.175

MOQL, m = 45 2.012±0.041 MOMCTS-dom, δ = 0.999 1.004±0.26

Figure 11: The percentage of of times out of 11 runs that each non-dominated vectorial
reward was discovered by MOMCTS-hv,MOMCTS-domand MOQL with m =
6, 15, 45, during at least one test period.

plays the evolution of hypervolume indicator in MOMCTS-hv, MOMCTS-dom and MOQL
with m = 6, 15, 45. The percentage of times out of 11 runs that each non-dominated vec-
torial reward is discovered for at least one test period during the training process of each
algorithm is displayed in Fig. 11. It is observed that with m = 6 weight settings, the
MOQL performance stops improving after reaching a plateau of 1.9×10−3 at 120,000 time
steps. Inspecting the Pareto archive, the difference between the performance plateau of and
the optimal performance (2.01 × 10−3) is due to the non-discovery of policies π2, π4 and
π5 whose vectorial rewards are not covered by the 6 weight settings. MOQL reaches the
optimum when m increases (after 240,000 steps for m = 15 and 580,000 steps for m = 45).

The MOMCTS approaches are outperformed by MOQL; their average hypervolume
indicator reach 1.8 × 10−3 in the end of the training process, which is explained as the
MOMCTS approaches rarely find the risky policies (π6, π7) (Fig. 11). For example, policy
π6 visits the enemy case twice; the neighbor nodes of this policy thus get the (-1,0,0) reward
(more in section 5).
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Figure 12: The hypervolume indicator performance of MOMCTS-dom with δ varying in
{0.9, 0.98, 0.99, 0.999}, versus training time steps in the Resource Gathering
problem.

Figure 13: The Resource Gathering problem: average computational cost for one tree-walk
for MOMCTS-hv and MOMCTS-dom over 11 independent runs. On average,
each tree-walk in MOMCTS is ca. 35 training time steps.

As shown in Fig. 12, the δ parameter governs the MOMCTS-dom performance. A low
value (δ = 0.9) leads to quickly forgetting the discovery of non-dominated rewards, turning
MOMCTS-dom into pure exploration. Quite the contrary, high values of δ (δ = 0.999)
limit the exploration and likewise hinder the overall performance.

On the computational cost side, the average execution time of 600,000 training steps
of in MOMCTS-hv, MOMCTS-dom and MOQL are respectively 944 secs, 47 secs and 43
secs. As the size of the Pareto archive is close to 10 in most tree-walks of MOMCTS-hv and
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(a) (b)

Figure 14: Scheduling a job containing 7 interdependent tasks on a grid of 2 resources.
Left: The dependency graph of tasks in the job. Right: The illustration of an
execution plan.

MOMCTS-dom, the fact that MOMCTS-hv algorithm is 20 times slower than MOMCTS-
dom matches their computational complexities.
As shown in Fig. 13, the cost of tree-walks in MOMCTS-hv increases up to 20 times
higher than that of MOMCTS-dom within the first 500 tree-walks, during which period
the Pareto archive size |P | grows. Afterwards, the cost of MOMCTS-hv gradually increases
with the depth of the search tree (O(logN)). On the contrary, the computational cost of
each tree-walk in MOMCTS-dom remains stable (between 1×10−3 secs and 2×10−3 secs)
throughout the training process.

4.4. Grid scheduling

Pertaining to the domain of autonomic computing (Tesauro et al., 2007), the problem of
grid scheduling has been selected to investigate the scalability of MOMCTS approaches.
The presented experimental validation considers the problem of grid scheduling, referring
the reader to Yu et al. (2008) for a comprehensive presentation of the field. Grid scheduling
at large is concerned with scheduling the different tasks involved in the jobs on different
computational resources. As tasks are interdependent and resources are heterogeneous,
grid scheduling defines an NP-hard combinatorial optimization problem (Ullman (1975)).

Grid scheduling naturally aims at minimizing the so-called makespan, that is the over-
all job completion time. But other objectives such as energy consumption, monetary cost,
or the allocation fairness w.r.t. the resource providers become increasingly important. In
the rest of section 4.4, two objectives will be considered, the makespan and the cost of the
solution.

In grid scheduling, a job is composed of J tasks T1 . . . TJ , partially ordered through a
dependency relation; Ti → Tj denotes that task Ti must be executed before task Tj (Fig.
14(a)). Each task Ti is associated with its unitary load Li. Each task is assigned one out of
M resources R1, . . . RM ; resource Rk has computational efficiency speedk and unitary cost
costk. Grid scheduling achieves the task-resource assignment and orders the tasks executed
on each resource. A grid scheduling solution called execution plan is given as a sequence σ
of (task-resource) pairs (Fig. 14(b)).
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Let ρ(i) = k denote the index of the resource Rk on which Ti is executed. Let B(Ti)
denote the set of tasks Tj which must either be executed before Ti (Tj → Ti) or which are
scheduled to take place before Ti on the same resource Rρ(i). The completion time of a
task Ti is recursively computed as:

end(Ti) =
Li

speedρ(i)
+max{end(Tj), Tj ∈ B(Ti)}

where the first term is the time needed to process Ti on the assigned resource Rρ(i), and the
second term expresses the fact that all jobs in B(Ti) must be completed prior to executing
Ti.
Finally, grid scheduling is the two-objective optimization problem aimed at minimizing the
overall scheduling makespan and cost:

Find (σ) = argmin {max{end(Tj), j = 1 . . . J} ;∑
k=1...M

costk
speedk

×
∑
i s.t. ρ(i)=k Li}

4.4.1. Baseline algorithms

The state of the art in grid scheduling is achieved by stochastic optimization algorithms
(Yu et al., 2008). The two prominent multi-objective variants thereof are NSGA-II (Deb
et al., 2000) and SMS-EMOA (Beume et al., 2007).
Both algorithms can be viewed as importance sampling methods. They maintain a popula-
tion of solutions, initially defined as random execution plans. Iteratively, the solutions with
best Pareto rank and best crowded distance (a density estimation of neighboring points in
NSGA-II) or hypervolume indicator (in SMS-EMOA) are selected and undergo unary and
binary stochastic perturbations.

4.4.2. Experimental setting

A simulated grid environment containing 3 resources with different unit time costs and pro-
cessing capabilities (cost1 = 20, speed1 = 10; cost2 = 2, speed2 = 5; cost3 = 1, speed3 = 1)
is defined. We firstly compare the performance of MOMCTS approaches and baseline algo-
rithms on a realistic bio-informatic workflow EBI ClustalW2, which performs a ClustalW
multiple sequence alignment using the EBI’s WSClustalW2 service3. This workflow con-
tains 21 tasks and 23 precedence pairs (graph density q = 12%), assuming that all workloads
are equal. Secondly, the scalability of MOMCTS approaches is tested through experiments
based on artificially generated workflows containing respectively 20, 30 and 40 tasks with
graph density q = 15%.

As evidenced from the literature (Wang and Gelly (2007)), MCTS performances heav-
ily depend on the so-called random phase (section 2.2). Preliminary experiments showed
that a uniform action selection in the random phase was ineffective. A simple heuristic
was thus used to devise a better suited action selection criterion in the random phase, as
follows.
Let EFTi define the expected finish time of task Ti (computed off-line):

EFTi = Li +max{EFTj s.t. Tj → Ti}

The heuristic action selection uniformly selects an admissible task Ti. It then compares
EFTi to all EFTj for Tj admissible. If EFTi is maximal, Ti is allocated to the resource

3. The complete description is available at http://www.myexperiment.org/workflows/203.html.
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which is due to be free at the earliest; if EFTi is minimal, Ti is allocated to the resource
which is due to be free at the latest. The random phase thus implements a default policy,
randomly allocating tasks to resources, except for the most (respectively less) critical tasks
that are scheduled with high (resp. low) priority.

The parameters of all algorithms have been selected after preliminary experiments,
using the same amount of computational resources for a fair comparison. The progressive
widening parameter b is set to 2 in both MOMCTS-hv and MOMCTS-dom. In MOMCTS-
hv, the exploration vs. exploitation (EvE) trade-off parameters associated to the makespan
and cost objectives, ctime and ccost are both set to 5× 10−3. In MOMCTS-dom, the EvE
trade-off parameters ce is set to 1, and the discount factor δ is set to 0.99. The parameters
used for NSGA-II (respectively SMS-EMOA) involve a population size of 200 (resp. 120)
individuals, of which 100 are selected and undergo stochastic unary and binary variations
(resp. one-point re-ordering, and resource exchange among two individuals). For all three
algorithms, the number N of tree-walks a.k.a. evaluation budget is set to 10,000. The
reference point in each experiment is set to (zt, zc), where zt and zc respectively denote the
maximal makespan and cost.

Due to the lack of the true Pareto front in the considered problems, we use a reference
Pareto front P ∗ gathering all non-dominated vectorial rewards obtained in all runs of all
three algorithms to replace the true Pareto front. The performance indicators are defined
by the generational distance (GD) and inverted generational distance (IGD) between the
actual Pareto front P found in the run and the reference Pareto front P ∗. In the grid
scheduling experiment, the IGD indicator plays a similar role as the hypervolume indicator
in DST and RG problems.

4.4.3. Results

Fig. 15 displays the GD and IGD of MOMCTS-hv, MOMCTS-dom, NSGA-II and SMS-
EMOA on EBI ClustalW2 workflow scheduling and on artificial jobs with a number J of
tasks ranging in 20, 30 and 40 with graph density q = 15%. Fig. 16 shows the Pareto
front discovered by MOMCTS-hv, MOMCTS-dom, NSGA-II and SMS-EMOA on the
EBI ClustalW2 workflow after N = 100, 1000 and 10000 policy evaluations (tree-walks),
comparatively to the reference Pareto front. In all considered problems, the MOMCTS
approaches are outperformed by the baselines in terms of the GD indicator, while they
quickly find good solutions, they fail to discover the reference Pareto front. In the mean-
while, they yield a better IGD performance than the baselines, indicating that on average a
single run of MOMCTS approaches reaches a better approximation of the true Pareto front.

Overall, the main weakness of MOMCTS approaches is their computational runtime.
The computational cost of MOMCTS-hv and MOMCTS-dom are respectively 5 and 2.5
times higher than that of NSGA-II and SMS-EMOA4. This weakness should have been
relativized, noting that in real-world problems, the evaluation cost dominates by several
orders of magnitude the search cost.

5. Discussion

As mentioned, the state of the art in MORL is divided into single-policy and multiple
policy algorithms (Vamplew et al., 2010). In the former case, the authors use a set of
preferences between objectives which are user-specified or derived from the problem domain

4. On workflow EBI ClustalW2, the average execution time of MOMCTS-hv, MOMCTS-dom, NSGA-II
and SMS-EMOA are respectively 142 secs, 74 secs, 31 secs and 32 secs.
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(a) EBI ClustalW2 (b) J = 20, q = 15%

(c) J = 30, q = 15% (d) J = 40, q = 15%

Figure 15: The generational distance (GD) and inverted generational distance (IGD) for
N = 100, 1000 and 10000 of MOMCTS-hv, MOMCTS-dom, NSGA-II and
SMS-EMOA on (a): EBI ClustalW2; (b)(c)(d): artificial problems with number
of tasks J and graph density q. Each performance point after 1000 and 10 000
evaluations are respectively marked by single and double cycles.
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(a) MOMCTS-hv (b) MOMCTS-dom

(c) NSGA-II (d) SMS-EMOA

Figure 16: Progression of the Pareto-optimal solutions found for N = 100, 1000 and
10000 for MOMCTS-hv, MOMCTS-dom, NSGA-II and SMS-EMOA on the
EBI ClustalW2 workflow. The reference Pareto front is indicated by circles.
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(e.g. defining preferred regions (Mannor and Shimkin, 2004) or setting weights on the
objectives (Tesauro et al., 2007)) to aggregate the multiple objectives in a single one. The
strength of the single-policy approach is its simplicity; its long known limitation is that it
cannot discover a policy in non-convex regions of the Pareto front (Deb, 2001).

In the multiple-policy case, multiple Pareto optimal vectorial rewards can be obtained
by optimization of different scalarized RL problems under different weight settings. Natara-
jan and Tadepalli (2005) show that the efficiency of MOQL can be improved by sharing
information between different weight settings. A hot topic in multiple-policy MORL is
how to design the weight settings and share information among the different scalarized RL
problems. In the case where the Pareto front is known, the design of the weight settings
is made easier − provided that the Pareto front is convex. When the Pareto front is un-
known, an alternative provided by Barrett and Narayanan (2008) is to maintain Q-vectors
instead of Q-values for each pair (state, action). Through an adaptive selection of weight
settings corresponding to the vectorial rewards on the boundary of the convex set of the
current Q-vectors, this algorithm narrows down the set of selected weight settings, at the
expense of an higher complexity of value iteration in each state: the O(|S||A|) complexity
of standard Q-learning is multiplied by a factor O(nd), where n is the number of points on
the convex hull of the Q-vectors and d is the number of objectives. While the approach
provides optimality guarantees (n converge toward the number of Pareto optimal policies),
the number of intermediate solutions can be huge (in the worst case, O(|A||S|)). Based
on the convexity and piece-wise linearity assumption on the shape of the convex hull of
Q-vectors, Lizotte et al. (2012) extends (Barrett and Narayanan, 2008) by narrowing down
the range of points locating on the convex hull, thus keeping the n value under control.

In the MOMCTS-hv approach, each tree node is associated its average reward w.r.t.
each objective, and the selection rule involves the scalar associated reward based on the
hypervolume indicator (Zitzler and Thiele, 1998), with complexityO(B|P |d/2logN). On the
one hand, this complexity is lower than that of a value iteration in Barrett and Narayanan
(2008) (considering that the size of archive P is comparable to the number n of non-
dominatedQ vectors). On the other hand, this complexity is higher than that of MOMCTS-
dom, where the dominance test only needs be computed at the end of each tree-walk, thus
with linear complexity in the number of objectives and tree-walks. The MOMCTS-dom
complexity thus is O(BlogN + d|P |). The price to pay for the improved scalability of
MOMCTS-dom is that the dominance reward might less favor the diversity of the Pareto
archive than the hypervolume indicator: any non-dominated point has the same dominance
reward whereas the hypervolume indicator of non-dominated points in sparsely populated
regions of the Pareto archive is higher.

As shown in the Resource Gathering problem, the MOMCTS approaches have dif-
ficulties in finding “risky“ policies, visiting nodes with many low reward nodes in their
neighborhood. A tentative explanation for this fact is given as, as already noted by Co-
quelin and Munos (2007), it may require an exponential time for the UCT algorithm to
converge to the optimal node if this node is hidden by nodes with low reward.

6. Conclusion and perspectives

This paper has pioneered the extension of MCTS to multi-objective reinforcement learn-
ing, based on two scalar rewards measuring the merits of a policy relatively to the non-
dominated policies in the search tree. These rewards, respectively the hypervolume in-
dicator and the dominance reward, have complementary strengths and weaknesses: the
hypervolume indicator is computationally expensive but explicitly favors the diversity of
the MOO policies, enforcing a good coverage of the Pareto front. Quite the contrary,
the dominance test is linear in the number of objectives; it is further invariant under the
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monotonous transformation of the objective functions, a robust property much appreciated
when dealing with ill-posed optimization problems.

These approaches have been validated on three problems : Deep Sea Treasure (DST),
Resource Gathering (RG) and grid scheduling.

The experimental results on DST confirm a main merit of the proposed approaches,
their ability to discover policies lying in the non-convex regions of the Pareto front. To our
knowledge5, this feature is unique in the MORL literature.

In counterpart, MOMCTS approaches suffer from two weaknesses. Firstly, as shown on
the grid scheduling problem, some domain knowledge is required in complex problems to
enforce an efficient exploration in the random phase. Secondly, as evidenced in the Resource
Gathering problem, the presented approaches hardly discover ”risky” policies which lie in
an unpromising region (the proverbial needle in the haystack).

These first results however provide a proof of concept for the MOMCTS approaches,
noting that these approaches yield comparable performances to the (non RL-based) state
of the art albeit at the price of a higher computational cost.

This work opens two perspectives for further studies. The main theoretical perspective
concerns the properties of the cumulative discounted reward mechanism in the general
(single-objective) dynamic optimization context. On the applicative side, we plan to refine
the RAVE heuristics used in the grid scheduling problem, e.g. to estimate the reward
attached to task allocation paired ordering.
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