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ABSTRACT  

The objective of the present study is to extract new information from complex signals generated 

by Respiratory Inductive Plethysmography (RIP). This indirect cardio-respiratory (CR) measure 

is a well-known wearable solution. We applied time-scale analysis to estimate cardiac activity 

from thoracic volume variations, witnesses of CR interactions. Calibrated RIP signals gathered 

from 4 healthy volunteers in resting conditions are processed by Ensemble Empirical Mode 

Decomposition to extract cardiac volume signals and estimate stroke volumes. Averaged values 

of these stroke volumes (SVRIP) are compared with averaged values of stroke volumes 

determined simultaneously by electrical impedance cardiography (SVICG). There is a satisfactory 

correlation between SVRIP and SVICG (r=0.76, p<0.001) and the limits of agreement between the 

2 types of measurements (±23%) satisfies the required criterion (±30%). The observed under-

estimation (-58%) is argued. This validates the use of RIP for following stroke volume variations 

and suggests that one simple transducer can provide a quantitative exploration of both ventilatory 

and cardiac volumes.��
�
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INTRODUCTION 

Continuous monitoring of vital and behavioral signs is an emerging concept of healthcare. 

Although wearable technology is more and more implied in such a context (Lymberis & Dittmar, 

2011), little attention is paid to its application for functional exploration. Nevertheless, smart 

shirt technology should provide a new way for non-invasive and yet performing tools in the field 

of daily medical practice. The classical challenge addressed in the studies dedicated to wearable 

solutions is the robustness of an indirect measurement devoted to a unique sign.  As an example, 

Lanata et al. (2010) have compared the motion susceptibility of different wearable technologies 

for respiratory rate monitoring. Our challenge here is quite different. The indirect nature of the 

measurements generates a complexity in the signal due to multiple physiological interactions. 

Thus we aim to extract new information from these physiological interferences. This extraction 

will be conducted on a time-scale basis. 



In this article, we propose an integrated physiological tool to study cardio-respiratory 

interactions, which are both of physiological and clinical interest (Bradley et al., 2010; Lalande 

& Johnson, 2010; Marcora et al., 2008). We investigated Respiratory Inductive Plethysmography 

(RIP) (Milledge & Stott, 1977) which is a wearable technology already tested for respiratory rate 

monitoring (Lanata et al., 2010; Grossman et al., 2010) and also used for ventilatory function 

assessment (Chadha et al., 1982, Tobin et al., 1983., Eberhard et al., 2001). We aim here to 

assess the estimation of cardiac parameters from the respiratory signal.   

The nonlinear local technique, Empirical Mode Decomposition (EMD) has been proposed by 

Huang et al. (1998) for adaptively representing non-stationary signals as sums of zero-mean 

AM-FM components (Rilling et al., 2003). Empirical mode decomposition is a signal processing 

technique to extract all the oscillatory modes embedded in a signal without any requirement of 

stationarity or linearity of the data (Liang et al., 2005; Charleston-Villalobos et al., 2007). With 

the EMD technique, any complicated signal can be decomposed into a definite number of high-

frequency and low-frequency components, which are called intrinsic mode functions (IMF).  

In cardio-respiratory EMD applications reported in literature, the extracted modes are 

speculatively associated with specific physiological aspects of the phenomenon investigated. In 

(Balocchi et al., 2004), it has been shown that EMD can be useful for estimating R-R interval 

variations due to respiration. The authors underlined that these variations are the result of many 

nonlinearly interacting processes; therefore any linear analysis has the potential risk of 

underestimating a great amount of information content. In (Bu et al., 2007), EMD was used to 

extract local temporal structures such as the heart beats superimposed on respiration signals in 

order to monitor respiration and cardiac frequencies during sleep using a flexible piezoelectric 

film sensor. These studies demonstrate the interest of the EMD in the cardio-respiratory context.  

However, from experimental results (Wu & Huang, 2007), it has been shown that one major 

obstacle to the use of EMD on many signals was mode mixing due to mode intermittency. 

Therefore, Wu & Huang (2007) have proposed a method called Ensemble Empirical Mode 

Decomposition (EEMD). In Abdulhay et al. (2009), a cardio-respiratory model has been 

proposed to simulate cardio-respiratory (CR), respiratory and cardiac volume signals; Empirical 

Mode Decomposition has then been applied on simulated CR signals to extract cardiac activity. 

It has been shown that EEMD was a promising nonlinear method for efficient cardiogenic 

oscillations extraction in simulated CR signals. 

In this article, we propose then to apply EEMD on real RIP measurements for extraction of 

cardiogenic oscillations. Validation of the proposed approach is carried out by comparing stroke 

volume estimations obtained from RIP signals with those simultaneously determined from 

thoracic electrical impedance (Kubicek et al., 1966; Moshkovitz et al., 2004; Tang & Yong, 

2009). In this first study we will not take into account motion artifacts susceptibility, which have 

to be considered in exercise exploration protocols.  

 

 

MATERIAL AND METHODS 

 

Subjects and protocol 

Four healthy seated volunteers participated in the study. Subjects were asked to make 

spontaneous calm respiration during 10 min. They were asked not to move during recording in 

order to avoid any motion artifacts on signals. Participants provided informed consent. The study 

was approved by the relevant ethics committee (CHU Grenoble). 



 

Material 

Thorax and abdomen cross sectional area changes were recorded with a computer-assisted RIP 

vest (Visuresp®, RBI, Meylan, France). During the 2 last minutes of the recording, breathing 

was recorded simultaneously with a flowmeter (Fleish head no.1) and a differential transducer 

(163PC01D36, Micro Switch) placed on a face mask. Electrocardiogram (ECG) was also 

recorded.��

�

Figure 1. Computer-assisted RIP vest (Visuresp®, RBI, Meylan, France) 

�

Simultaneous measurements were made with a thoracic electrical bioimpedance monitor 

(PhysioFlowTM, Manatec Biomedical, Paris, France). This device is based on analysis of instant 

impedance variations using six electrodes: two for ECG measurement (CM5 position) and four 

for thoracic impedance cardiograph. The PhysioFlow concept has been described in details in 

Charloux et al. (2000). In our study, the six electrodes were taped to the skin under the RIP vest. 

The stroke volumes values (SVICG) were continuously estimated from the impedance signal by 

the PhysioFlow system 

 

Methods 

The synchronous acquisition of all signals was realized using a PowerLab data acquisition 

system and Chart software (ADinstruments). All signals were sampled at 100 Hz. 

Starting from the thorax and abdomen cross sectional area changes and the airflow, the 

method used in Eberhard et al. (2001) was applied to obtain a calibrated respiratory inductance 

plethysmographic volume signal (VRIP). The signal was filtered to eliminate frequencies higher 

than 10 Hz (200-order FIR). 

Empirical Mode Decomposition was then applied on 60 second sequences of VRIP signals. We 

applied the modified EEMD method, proposed by Yeh et al. (2008) and named Complementary 

EEMD (CEEMD). In EEMD, the intrinsic mode functions are defined as the average over a set 

of tests; each test is the EMD of original signal added to a white noise, with the intention that we 

obtain a collection of white noises which cancel each other. Therefore, only the real components 

can survive and persist in the final average. In CEEMD, two sets of averaged IMFs with positive 

and negative residues of added white noises are generated. The averaged IMFs without the 

residue of added white noises are the final result of CEEMD. A set of N=200 white noise signals 

with an amplitude of 1.6 times the rms of RIP signal was used. This EEMD optimization has also 

the advantage to reduce the number of tests and therefore, the computation cost.  

 

Figure 2 and Figure 3 show the result of CEEMD application to one 60 second sequence of 

one VRIP signal. We consider that: 



− IMF1 and IMF2 are likely composed of noise  

− the cardiac signal is spread over IMF3, IMF4, IMF5 and IMF6  

− The remaining IMFs concern respiration and other body movements. 

Therefore we define the extracted cardiac signal as the sum of the cardiac IMFs, it is noted Vh 

and can be observed Figure 4. 

 

Figure 2. IMF1-6 obtained after the application of CEEMD to one real VRIP signal. 

 

 

Figure 3. IMF7-12 obtained after the application of CEEMD to one real VRIP signal. 

 

 

Figure 4. Cardiac signal Vh (bold line) extracted from the previous real VRIP signal: Vh is the 

sum of IMFs 3 to 6, generated by CEEMD on VRIP and considered as cardiac. ECG signal is 

shown to indicate each cardiac cycle. 

  



From the extracted cardiac signals Vh, estimations of beat-to-beat stroke volumes, noted 

SVRIP, are carried out, as the difference between maximum and minimum (Figure 5) of each 

cardiogenic oscillation (Bloch et al., 1998), detected by the R waves of the ECG.  

 

Figure 5. Extracted cardiac volume Vh and ECG signal for one cardiac cycle (defined by the 

dotted vertical lines). The stroke volume SVRIP is estimated as the difference between the 

maximum and the minimum of the cardiogenic oscillation. 

 

For preliminary results, we limit our study to sequences where Empirical Mode 

Decomposition separates efficiently the cardiac and respiratory modes (“no scale mixing”) and 

where there are no ambiguities to decide which IMFs are cardiac. The sequence considered on 

Figure 2 is a “good” one: IMFs generated by CEEMD are easily attributed to cardiac or 

respiratory information. On the contrary, CEEMD applied on the signal shown Figure 6 

generates some IMFs which present scale mixing. This is the case for IMF6 which is clearly 

composed of cardiac and respiratory components. In this preliminary study, such a sequence is 

excluded from the analysis. For all sequences taken into account (for the 4 subjects), beat-to-beat 

SVRIP values are then continuously estimated, in parallel with those determined by impedance 

cardiography (SVICG). 

 

 

Figure 6. Another sequence of VRIP signal. CEEMD applied on this signal generates IMF6 which 

shows scale mixing (pointed out by the black arrow). 

 

All subjects taken together, 24 sequences of 5-beats are considered and values of SV are 

averaged over each sequence. To validate our measurements, we follow a procedure similar to 

many comparative studies (Charloux et al., 2000; Kemps et al., 2008; Tordi et al., 2004). The 

relation between these 24 averaged values of SVRIP and SVICG is first made using linear 

regression. The statistical test of Bland and Altman (Bland & Altman, 1986) is also used to 

compare the 2 types of measurements and evaluate whether there is agreement or bias. 

�

 



RESULTS 

A positive correlation is found between SVRIP and SVICG (r=0.76, p < 0.001, Figure 7). This 

coefficient is satisfactory compared to other values reported in the literature (from 0.65 to 0.95 

depending on the method used (Warburton et al., 1999)).  

 

Figure 7. Comparison between the stroke volume values obtained using CEEMD on RIP signals 

and that obtained using the impedance method. Correlation plot between SVRIP and SVICG in the 

same individuals (n=24). The identity line is represented. 

 

Limits of agreement between SVRIP and SVICG (Figure 8) are ± 23%. These limits of 

agreement are consistent with the recommendation of Critchley & Critchley (1999) for cardiac 

output measurements, which says that “acceptance of a new technique should rely on limits of 

agreement (95% confidence limits) of up to ±30%”. 

 

Figure 8. Comparison between the stroke volume values obtained using CEEMD on RIP signals 

and that obtained using the impedance method. Bland and Altman representation (n=24): 

graphic representation of the difference between the two measurements (SVICG -SVRIP) versus the 

mean of the two measurements ((SVICG +SVRIP)/2) for each measure. The solid line represents 

the mean difference between the tests, and the dashed lines indicate the 95% confidence intervals 

of the difference. 

 

The observed bias (-58%) indicates that SVRIP are systematically under-estimated, compared 

to SVICG and in accordance with classic physiological data (Guz et al., 1987). This can be 

explained by the location of the thoracic and abdominal measures during RIP measurements. 

These locations are not optimal to capture the cardiac thoracic movements. Indeed, 



thoracocardiography relies on a single loop positioned at transverse level of xiphoid process 

(Sackner et al., 1991. Moreover, part of the under-estimation has to be attributed to the fact that 

part of the cardiac contraction is converted into airflow instead of thoracic movements 

(Abdulhay & Baconnier, 2007). 

 

 

CONCLUSION 

Our results demonstrate that stroke volumes can be estimated from cardiac activity present on 

Respiratory Inductive Plethysmography signals. This study suggests that RIP can be used as an 

integrated and non-invasive tool to investigate cardio-respiratory interactions, as it delivers 

quantitative and synchronized assessment of ventilatory and stroke volumes.  

This study is also a proof of the concept that wearable solution can bring multi-dimensional and 

complex information. 

Further steps of validation are considered with more subjects and various recording protocols. 

We also intend to validate the estimation of the beat-to-beat variation of the stroke volume. In 

that purpose, improvements in our RIP signals processing are necessary. Even if the EMD 

solution is well adapted to non-stationary signal analysis, limitations due to scale mixing 

imposed us to limit our results to sequences where cardiac IMFs identification could be made 

without ambiguity. Improvements of the algorithm in terms of robustness and definition of an 

automatic criterion for the IMF choice are our future steps of development. 
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