

A Wearable Technology Revisited for Cardio-Respiratory Functional Exploration: Stroke Volume Estimation From Respiratory Inductive Plethysmography

Julie Fontecave Jallon, Pierre-Yves Guméry, P. Calabrese, Raphael Briot, Pierre Baconnier

▶ To cite this version:

Julie Fontecave Jallon, Pierre-Yves Guméry, P. Calabrese, Raphael Briot, Pierre Baconnier. A Wearable Technology Revisited for Cardio-Respiratory Functional Exploration: Stroke Volume Estimation From Respiratory Inductive Plethysmography. International Journal of eHealth and Medical Communications, 2013, 4 (1), pp.12-22. hal-00851940

HAL Id: hal-00851940

https://hal.science/hal-00851940

Submitted on 19 Aug 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A Wearable Technology Revisited for Cardio-Respiratory Functional Exploration: Stroke Volume Estimation From Respiratory Inductive Plethysmography

Julie Fontecave-Jallon*, Pierre-Yves Guméry, Pascale Calabrese, Raphaël Briot, Pierre Baconnier

UJF-Grenoble 1 / CNRS / TIMC-IMAG UMR 5525 / Equipe PRETA, Grenoble, F-38041 France

ABSTRACT

The objective of the present study is to extract new information from complex signals generated by Respiratory Inductive Plethysmography (RIP). This indirect cardio-respiratory (CR) measure is a well-known wearable solution. We applied time-scale analysis to estimate cardiac activity from thoracic volume variations, witnesses of CR interactions. Calibrated RIP signals gathered from 4 healthy volunteers in resting conditions are processed by Ensemble Empirical Mode Decomposition to extract cardiac volume signals and estimate stroke volumes. Averaged values of these stroke volumes (SV_{RIP}) are compared with averaged values of stroke volumes determined simultaneously by electrical impedance cardiography (SV_{ICG}). There is a satisfactory correlation between SV_{RIP} and SV_{ICG} (r=0.76, p<0.001) and the limits of agreement between the 2 types of measurements ($\pm 23\%$) satisfies the required criterion ($\pm 30\%$). The observed underestimation (-58%) is argued. This validates the use of RIP for following stroke volume variations and suggests that one simple transducer can provide a quantitative exploration of both ventilatory and cardiac volumes.

Keywords: Respiratory Inductive Plethysmography, Impedance cardiography, Stroke Volume, Cardio-respiratory interactions, Empirical Mode Decomposition.

INTRODUCTION

Continuous monitoring of vital and behavioral signs is an emerging concept of healthcare. Although wearable technology is more and more implied in such a context (Lymberis & Dittmar, 2011), little attention is paid to its application for functional exploration. Nevertheless, smart shirt technology should provide a new way for non-invasive and yet performing tools in the field of daily medical practice. The classical challenge addressed in the studies dedicated to wearable solutions is the robustness of an indirect measurement devoted to a unique sign. As an example, Lanata *et al.* (2010) have compared the motion susceptibility of different wearable technologies for respiratory rate monitoring. Our challenge here is quite different. The indirect nature of the measurements generates a complexity in the signal due to multiple physiological interactions. Thus we aim to extract new information from these physiological interferences. This extraction will be conducted on a time-scale basis.

In this article, we propose an integrated physiological tool to study cardio-respiratory interactions, which are both of physiological and clinical interest (Bradley *et al.*, 2010; Lalande & Johnson, 2010; Marcora *et al.*, 2008). We investigated Respiratory Inductive Plethysmography (RIP) (Milledge & Stott, 1977) which is a wearable technology already tested for respiratory rate monitoring (Lanata *et al.*, 2010; Grossman *et al.*, 2010) and also used for ventilatory function assessment (Chadha *et al.*, 1982, Tobin *et al.*, 1983., Eberhard *et al.*, 2001). We aim here to assess the estimation of cardiac parameters from the respiratory signal.

The nonlinear local technique, Empirical Mode Decomposition (EMD) has been proposed by Huang et *al.* (1998) for adaptively representing non-stationary signals as sums of zero-mean AM-FM components (Rilling *et al.*, 2003). Empirical mode decomposition is a signal processing technique to extract all the oscillatory modes embedded in a signal without any requirement of stationarity or linearity of the data (Liang et al., 2005; Charleston-Villalobos *et al.*, 2007). With the EMD technique, any complicated signal can be decomposed into a definite number of high-frequency and low-frequency components, which are called intrinsic mode functions (IMF).

In cardio-respiratory EMD applications reported in literature, the extracted modes are speculatively associated with specific physiological aspects of the phenomenon investigated. In (Balocchi et al., 2004), it has been shown that EMD can be useful for estimating R-R interval variations due to respiration. The authors underlined that these variations are the result of many nonlinearly interacting processes; therefore any linear analysis has the potential risk of underestimating a great amount of information content. In (Bu et al., 2007), EMD was used to extract local temporal structures such as the heart beats superimposed on respiration signals in order to monitor respiration and cardiac frequencies during sleep using a flexible piezoelectric film sensor. These studies demonstrate the interest of the EMD in the cardio-respiratory context. However, from experimental results (Wu & Huang, 2007), it has been shown that one major obstacle to the use of EMD on many signals was mode mixing due to mode intermittency. Therefore, Wu & Huang (2007) have proposed a method called Ensemble Empirical Mode Decomposition (EEMD). In Abdulhay et al. (2009), a cardio-respiratory model has been proposed to simulate cardio-respiratory (CR), respiratory and cardiac volume signals; Empirical Mode Decomposition has then been applied on simulated CR signals to extract cardiac activity. It has been shown that EEMD was a promising nonlinear method for efficient cardiogenic oscillations extraction in simulated CR signals.

In this article, we propose then to apply EEMD on real RIP measurements for extraction of cardiogenic oscillations. Validation of the proposed approach is carried out by comparing stroke volume estimations obtained from RIP signals with those simultaneously determined from thoracic electrical impedance (Kubicek *et al.*, 1966; Moshkovitz *et al.*, 2004; Tang & Yong, 2009). In this first study we will not take into account motion artifacts susceptibility, which have to be considered in exercise exploration protocols.

MATERIAL AND METHODS

Subjects and protocol

Four healthy seated volunteers participated in the study. Subjects were asked to make spontaneous calm respiration during 10 min. They were asked not to move during recording in order to avoid any motion artifacts on signals. Participants provided informed consent. The study was approved by the relevant ethics committee (CHU Grenoble).

Material

Thorax and abdomen cross sectional area changes were recorded with a computer-assisted RIP vest (Visuresp®, RBI, Meylan, France). During the 2 last minutes of the recording, breathing was recorded simultaneously with a flowmeter (Fleish head no.1) and a differential transducer (163PC01D36, Micro Switch) placed on a face mask. Electrocardiogram (ECG) was also recorded.

Figure 1. Computer-assisted RIP vest (Visuresp®, RBI, Meylan, France)

Simultaneous measurements were made with a thoracic electrical bioimpedance monitor (PhysioFlowTM, Manatec Biomedical, Paris, France). This device is based on analysis of instant impedance variations using six electrodes: two for ECG measurement (CM5 position) and four for thoracic impedance cardiograph. The PhysioFlow concept has been described in details in Charloux *et al.* (2000). In our study, the six electrodes were taped to the skin under the RIP vest. The stroke volumes values (SV_{ICG}) were continuously estimated from the impedance signal by the PhysioFlow system

Methods

The synchronous acquisition of all signals was realized using a PowerLab data acquisition system and Chart software (ADinstruments). All signals were sampled at 100 Hz.

Starting from the thorax and abdomen cross sectional area changes and the airflow, the method used in Eberhard *et al.* (2001) was applied to obtain a calibrated respiratory inductance plethysmographic volume signal (V_{RIP}). The signal was filtered to eliminate frequencies higher than 10 Hz (200-order FIR).

Empirical Mode Decomposition was then applied on 60 second sequences of V_{RIP} signals. We applied the modified EEMD method, proposed by Yeh $et\ al.$ (2008) and named Complementary EEMD (CEEMD). In EEMD, the intrinsic mode functions are defined as the average over a set of tests; each test is the EMD of original signal added to a white noise, with the intention that we obtain a collection of white noises which cancel each other. Therefore, only the real components can survive and persist in the final average. In CEEMD, two sets of averaged IMFs with positive and negative residues of added white noises are generated. The averaged IMFs without the residue of added white noises are the final result of CEEMD. A set of N=200 white noise signals with an amplitude of 1.6 times the rms of RIP signal was used. This EEMD optimization has also the advantage to reduce the number of tests and therefore, the computation cost.

Figure 2 and Figure 3 show the result of CEEMD application to one 60 second sequence of one V_{RIP} signal. We consider that:

- -IMF1 and IMF2 are likely composed of noise
- -the cardiac signal is spread over IMF3, IMF4, IMF5 and IMF6
- The remaining IMFs concern respiration and other body movements.

Therefore we define the extracted cardiac signal as the sum of the cardiac IMFs, it is noted V_h and can be observed Figure 4.

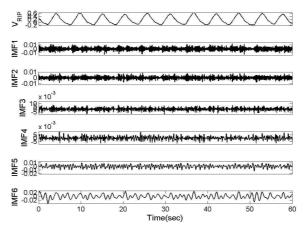


Figure 2. IMF1-6 obtained after the application of CEEMD to one real V_{RIP} signal.

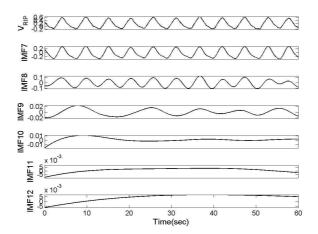


Figure 3. IMF7-12 obtained after the application of CEEMD to one real V_{RIP} signal.

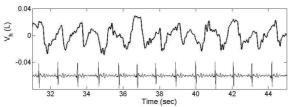


Figure 4. Cardiac signal V_h (bold line) extracted from the previous real V_{RIP} signal: V_h is the sum of IMFs 3 to 6, generated by CEEMD on V_{RIP} and considered as cardiac. ECG signal is shown to indicate each cardiac cycle.

From the extracted cardiac signals V_h , estimations of beat-to-beat stroke volumes, noted SV_{RIP} , are carried out, as the difference between maximum and minimum (Figure 5) of each cardiogenic oscillation (Bloch *et al.*, 1998), detected by the R waves of the ECG.

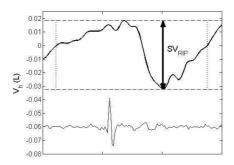


Figure 5. Extracted cardiac volume V_h and ECG signal for one cardiac cycle (defined by the dotted vertical lines). The stroke volume SV_{RIP} is estimated as the difference between the maximum and the minimum of the cardiogenic oscillation.

For preliminary results, we limit our study to sequences where Empirical Mode Decomposition separates efficiently the cardiac and respiratory modes ("no scale mixing") and where there are no ambiguities to decide which IMFs are cardiac. The sequence considered on Figure 2 is a "good" one: IMFs generated by CEEMD are easily attributed to cardiac or respiratory information. On the contrary, CEEMD applied on the signal shown Figure 6 generates some IMFs which present scale mixing. This is the case for IMF6 which is clearly composed of cardiac and respiratory components. In this preliminary study, such a sequence is excluded from the analysis. For all sequences taken into account (for the 4 subjects), beat-to-beat SV_{RIP} values are then continuously estimated, in parallel with those determined by impedance cardiography (SV_{ICG}).

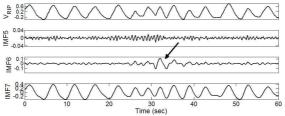


Figure 6. Another sequence of V_{RIP} signal. CEEMD applied on this signal generates IMF6 which shows scale mixing (pointed out by the black arrow).

All subjects taken together, 24 sequences of 5-beats are considered and values of SV are averaged over each sequence. To validate our measurements, we follow a procedure similar to many comparative studies (Charloux *et al.*, 2000; Kemps *et al.*, 2008; Tordi *et al.*, 2004). The relation between these 24 averaged values of SV_{RIP} and SV_{ICG} is first made using linear regression. The statistical test of Bland and Altman (Bland & Altman, 1986) is also used to compare the 2 types of measurements and evaluate whether there is agreement or bias.

RESULTS

A positive correlation is found between SV_{RIP} and SV_{ICG} (r=0.76, p < 0.001, Figure 7). This coefficient is satisfactory compared to other values reported in the literature (from 0.65 to 0.95 depending on the method used (Warburton *et al.*, 1999)).

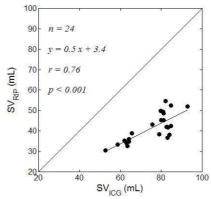


Figure 7. Comparison between the stroke volume values obtained using CEEMD on RIP signals and that obtained using the impedance method. Correlation plot between SV_{RIP} and SV_{ICG} in the same individuals (n=24). The identity line is represented.

Limits of agreement between SV_{RIP} and SV_{ICG} (Figure 8) are \pm 23%. These limits of agreement are consistent with the recommendation of Critchley & Critchley (1999) for cardiac output measurements, which says that "acceptance of a new technique should rely on limits of agreement (95% confidence limits) of up to \pm 30%".

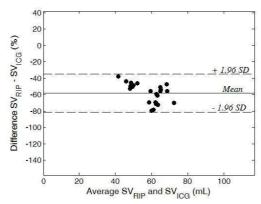


Figure 8. Comparison between the stroke volume values obtained using CEEMD on RIP signals and that obtained using the impedance method. Bland and Altman representation (n=24): graphic representation of the difference between the two measurements (SV_{ICG} - SV_{RIP}) versus the mean of the two measurements ($(SV_{ICG} + SV_{RIP})/2$) for each measure. The solid line represents the mean difference between the tests, and the dashed lines indicate the 95% confidence intervals of the difference.

The observed bias (-58%) indicates that SV_{RIP} are systematically under-estimated, compared to SV_{ICG} and in accordance with classic physiological data (Guz *et al.*, 1987). This can be explained by the location of the thoracic and abdominal measures during RIP measurements. These locations are not optimal to capture the cardiac thoracic movements. Indeed,

thoracocardiography relies on a single loop positioned at transverse level of xiphoid process (Sackner *et al.*, 1991. Moreover, part of the under-estimation has to be attributed to the fact that part of the cardiac contraction is converted into airflow instead of thoracic movements (Abdulhay & Baconnier, 2007).

CONCLUSION

Our results demonstrate that stroke volumes can be estimated from cardiac activity present on Respiratory Inductive Plethysmography signals. This study suggests that RIP can be used as an integrated and non-invasive tool to investigate cardio-respiratory interactions, as it delivers quantitative and synchronized assessment of ventilatory and stroke volumes.

This study is also a proof of the concept that wearable solution can bring multi-dimensional and complex information.

Further steps of validation are considered with more subjects and various recording protocols. We also intend to validate the estimation of the beat-to-beat variation of the stroke volume. In that purpose, improvements in our RIP signals processing are necessary. Even if the EMD solution is well adapted to non-stationary signal analysis, limitations due to scale mixing imposed us to limit our results to sequences where cardiac IMFs identification could be made without ambiguity. Improvements of the algorithm in terms of robustness and definition of an automatic criterion for the IMF choice are our future steps of development.

REFERENCES

Abdulhay, E., & Baconnier, P. (2007). Stroke volume estimation by Thoracocardiography is better when glottis is closed. *Engineering in Medicine and Biology Society, EMBS 2007, 29th Annual International Conference of the IEEE,* 1074–1077.

Abdulhay, E., Guméry, P-Y., Fontecave-Jallon, J., & Baconnier, P. (2009) Cardiogenic Oscillations Extraction in Inductive Plethysmography: Ensemble Empirical Mode Decomposition. *Engineering in Medicine and Biology Society, EMBS 2009, 31st Annual International Conference of the IEEE, 2240–2243.*

Balocchi, R., Menicucci, D., Santarcangelo, E., Sebastiani, L., Gemignani, A., Ghelarducci, B., & Varanini, M. (2004). Deriving the respiratory sinus arrhythmia from the heart beat time series using empirical mode decomposition. *Chaos. Solitons and Fractals*, 20, 171-177.

Bland, J.M., & Altman, D.G. (1986) Statistical methods for assessing agreement between two methods of clinical measurement. *Lancet*, 1, 307-310.

Bloch, K. E., Jugoon, S., de Socarrez, H., Manning, K., & Sackner, M. A. (1998) Thoracocardiography: Noninvasive monitoring of left ventricular stroke volume. *Journal of Critical Care*, 13, 146-157.

Bradley, J.M., Kent, L., O'Neill, B., Nevill, A., Boyle, L., & Elborn, J.S. (2010). Cardiorespiratory measurements during field tests in CF: Use of an ambulatory monitoring system. *Pediatric Pulmonology*.

- Bu, N. Ueno, N., & Fukuda, O. (2007). Monitoring of Respiration and heart beat during sleep using a flexible piezoelectric film sensor and empirical mode decomposition. *Engineering in Medicine and Biology Society, EMBS 2007, 29th Annual International Conference of the IEEE,* 1362-1366.
- Chadha, T.S., Watson, H., Birch, S., Jenouri, G.A., Schneider, A.W., Cohn, M.A., & Sackner, M.A. (1982). Validation of respiratory inductive plethysmography using different calibration procedures. *American Review of Respiratory Disease*, 125(6), 644-649.
- Charleston-Villalobos, S., González-Camarena, R., Chi-Lem, G., & Aljama-Corrales, T. (2007). Crackle sounds analysis by empirical mode decomposition. *Engineering in Medicine and Biology Magazine*, *IEEE*, 26, 40-47.
- Charloux, A., Lonsdorfer-Wolf, E., Richard, R., Lampert, E., Oswald-Mammosser, M., Mettauer, B., Geny, B., & Lonsdorfer, J. (2000) A new impedance cardiograph device for the non-invasive evaluation of cardiac output at rest and during exercise: comparison with the "direct" Fick method. *European Journal of Applied Physiology*, 82(4), 313-320.
- Critchley, L. A. H., & Critchley, J. A. J. H. (1999) A Meta-Analysis of Studies Using Bias and Precision Statistics to Compare Cardiac Output Measurement Techniques. *Journal of Clinical Monitoring and Computing*, 15, 85-91.
- Eberhard, A., Calabrese, P., Baconnier, P., & Benchetrit., G. (2001). Comparison between the respiratory inductance plethysmography signal derivative and the airflow signal. *Advances in Experimental Medicine and Biology*, 499, 489–494.
- Grossman, P., Wilhelm, F.H., & Brutsche, M. (2010). Accuracy of ventilatory measurement employing ambulatory inductive plethysmography during tasks of everyday life. *Biological Psychology*, 84, 121–128.
- Guz, A., Innes, J.A., & Murphy, K. (1987) Respiratory modulation of left ventricular stroke volume in man measured using pulsed doppler ultrasound. *Journal of Physiology*, 393, 499-512.
- Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shin, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., & Liu, H. H. (1998). The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis. *Proceedings of the Royal Society Mathematical, physical and engineering sciences*, 454, 903-995.
- Kemps, H., Thijssen, E., Schep, G., Sleutjes, B., De Vries, W., Hoogeven, A., Wijn, P., & Doevendans, P. (2008) Evaluation of two methods for continuous cardiac output assessment during exercise in chronic heart failure patients. *Journal of Applied Physioloy*, 105, 1822-1829.
- Kubicek, W.G., Karnegis, J.N., Patterson, R.P., Witsoe, D.A., & Mattson, R.H. (1966) Development and evaluation of an impedance cardiac output system. *Aerospace Medicine*, 37, 1208-1212.
- Lalande, S. & Johnson, B.D. (2010). Breathing strategy to preserve exercising cardiac function in patients with heart failure. *Medical Hypotheses*, 74, 416-421.
- Lanatà, A., Scilingo, E.P., Nardini, E., Loriga, G., Paradiso, R., & De-Rossi, D. (2010). Comparative evaluation of susceptibility to motion artifact in different wearable systems for monitoring respiratory rate. *IEEE Transactions on Information Technology in Biomedecine*, 14(2), 378-86.

- Liang, H., Bressler, S. L., Desimone, R. & Fries, P. (2005). Empirical mode decomposition: A method for analyzing neural data. *Neurocomputing*, 65-66, 801-807.
- Lymberis, A., & Dittmar, A. (2007). Advanced wearable health systems and applications. *IEEE Engineering in Medicine and Biology Magazine*, 26(3), 29-33.
- Marcora, S.M., Bosio, A., & de Morree, H.M. (2008). Locomotor muscle fatigue increases cardiorespiratory responses and reduces performance during intense cycling exercise independently from metabolic stress. *American Journal Physiology Regulatory, Integrative and Comparative Physiology*, 294(3), R874–R883.
- Milledge, J.S., & Stott, F.D. (1977). Inductive plethysmography A new respiratory transducer. *Journal of Physiology*, 267, 4-5.
- Moshkovitz, Y., Kaluski, E., Milo, O., Vered, Z. & Cotter, G. (2004) Recent developments in cardiac output determination by bioimpedance: comparison with invasive cardiac output and potential cardiovascular applications. *Current Opinion in Cardiology*, 19(3), 229-237.
- Rilling, G., Flandrin, P., & Gonçalvès, P. (2003). On empirical mode decomposition and its algorithms," 2003 IEEE-EURASIP Workshop on Nonlinear Signal and Image processing.
- Sackner, M. A., Hoffman, R. A., Stroh, D., & Krieger, B. P. (1991) Thoracocardiography part 1: non-invasive measurement of changes in stroke volume; comparisons to thermodilution. *Chest*, 99, 613-622.
- Tang, W.H., & Yong, W. (2009) Measuring impedance in congestive heart failure: Current options and clinical applications. *American Heart Journal*, 157(3), 402-411.
- Tobin, M.J., Jenouri, G., Lind, B., Watson, H., Schneider, A., &Sackner, M.A.(1983). Validation of respiratory inductive plethysmography in patients with pulmonary disease. *Chest*, 83(4), 615-620.
- Tordi, N., Mourot, L., Matusheski, B., & Hughson, R.L. (2004) Measurements of cardiac output during constant exercises: comparison of two non-invasive techniques. *International Journal of Sports Medicine.*, 25, 145-149.
- Warburton, D.E., Haykowski, M.J., Quinney, H.A., Humen, D.P., & Teo, K.K. (1999) Reliability and Validity of Measures of Cardiac Output During Incremental to Maximal Aerobic Exercise: Part I: Conventional Techniques. *Sports Medicine*, 27, 241-260.
- Wu, Z., & Huang, N. E. (2009) Ensemble Empirical Mode Decomposition: a Noise Assisted Data Analysis Method. *Advances in adaptive data* analysis, 1, 1-41.
- Yeh, J-R., Lin, T-Y., Shieh, J-S., Chen, Y., Huang, N.E., Wu, Z., & Peng, C-K. (2008) Investigating complex patterns of blocked intestinal artery blood pressure signals by empirical mode decomposition and linguistic analysis. *Journal of Physics: Conference series*, 96.