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Linear Functional
Electromagnetic Constitutive Relations and Plane Waves
in a Hemihedral Isotropic Material

R. A. TouriN & R. S. RivLIN

1. Introduction
In any Lorentz frame of reference (%', f), where x* (i =1, 2, 3) are rectangular
Cartesian spatial coordinates and ¢ is the time, MAXWELL’S equations in a
stationary, polarizable and magnetizable medium can be written in the form

9 _
g_t.fB.daJr(ﬁE.dl_o, (1.1)
zﬁB da=0, (1.2)
cf)H dl—f [D da = [JF da, (1.3)
4
$D. da——fQde (1.4)
D=¢E+P, H=u"B—M, (1.5)

where B is the magnetic flux density, E the electric field, H the magnetic intensitv,
D the electric displacement, Jy the density of free current, Qp the density of free
charge, P the polarization, M the magnetization, and ¢, and y, are fundamental
constants whose product e, uo=c2 where ¢ is the velocity of light in vacuum.
dl denotes an element of an arbitrary closed contour £ in space and da an
element of a surface &7 bounded by Z.

The system of equations (1.1) to (1.5) is underdetermined, and to obtain a
determinate system of equations amongst the twenty-two unknown field com-
ponents (B,, E;, H,,D,, P, M,, Jr, Q) it is necessary to supplement the basic
Maxwell equations with certain comstitutive relations. The form of these con-
stitutive relations depends on the nature of the material medium in which the
electromagnetic field (E, B) resides. The great mathematical variety of these
electromagnetic constitutive relations makes possible a great variety of physical
phenomena embraced by and consistent with MAXWELL’s framework of equations
(1.1) to (1.5).

The simplest of all media, vacumm, is characterized by the constitutive

lati
relations Je=0p=M=P=0. (1.6)



The next simplest medium is the rigid, linear, stationary, non-conducting
dielectric, for which the constitutive relations

QF=JF=0:
D=e-E, B=p -H,

were given by MAXWELL [1873, § 784]. Here € and p. are constant second order
tensors, proportional to the unit tensor if the medium be isotropic. As is known,
constitutive relations of this simple type do not account for the observed absorp-
tion and dispersion of electromagnetic waves in non-conductors, nor does
MaxweLL’s device of including a linear law of conduction, Jg=C - E, replacing
(1.7), suffice to account for the observed magnitude of the “‘dielectric losses”
when a material is placed in a variable electric field (Cf. WHITEHEAD [1927,
Lecture 1]).

Horxinson [1877], following a suggestion of MAXWELL, proposed a con-
stitutive relation for the electric displacement in a dielectric having the form

(1.7)

D) =B+ [ plt — 7) E(x) dr, (1.8)

where the function ¢(u), #=0, is a decreasing function of ». By suitable ad-
justment of the memory function ¢, HOPKINSON was able to correlate his data
on the residual charge of Leyden jars. In proposing (1.8), HOPKINSON was
guided by the earlier mechanical constitutive relation of BortzmManN [1874] in
which the torque and twist of a wite are related by a formula identical with (1.8).-

MaxweLL (cf. RAYLEIGH [1899]; WHITTAKER [1951]) initiated also the
method which enjoys current favor of deriving electromagnetic constitutive
relations froin a molecular model of a material medium and the laws of mechanics.
Elaborate theories of electromagnetic absorption and dispersion of this general
type were developed by DrRUDE [1893, 1902], VoIisT [1899], and many others.
A detailed and modern theory of electromagnetic constitutive relations as derived
from the dynamics of an ionic crystal lattice, including an appropriate appli-
cation of quantum mechanics, is given in the book by BorN & HuanG [1954)].

VOLTERRA [1912] extended the HoPKINSON'S relation (1.8) to the nonlinear,
anisotropic, and magnetic case. VOLTERRA’S most general expression of the idea
took the form of the equations:

D(x,t)=¢-E(x,{ +F[E(a;. 7],
e (1.9)
B(x,t)=p H(x, ) +PHx )],

where (1.9), reduces to (1.8) if the functional F is linear, isotropic, and satisfies
certain other conditions of which we shall say more later. VOLTERRA’S theory
was developed further by GrRAFFI [1927, 1928].

VOLTERRA'S paper, though it treats the general anisotropic case and expresses
a very general view, makes the traditional a priori separation of electric and
magnetic effects characteristic of MAXWELL's simple relations (1.7). That this
separation is inadequate to account for numerous known phenomena such as
optical activity and the rotation of the plane of polarization of light by a strong
magnetic field (Faraday effect) should have been apparent from the earlier



theory of VOIGT cited above. In this paper we wish to explore some of the more
obvious consequences of electromagnetic constitutive relations having the general
form :

D(x,t) =®[E(x, 1), B(x,7)],

-—00

; (1.10)
H{x,t)=Y[E(x, 1), Bz, 1)].
—n0
We shall show that if VOLTERRA’S relations (1.9) and the relations (1.10) are
both linearized, then, for holohedral isotropic materials, they coincide so that
there is, for these materials, a separation of effects; however, we shall show that
the phenomenon of optical activity, which does not occur in holohedral isotropic
materials, depends in an essential way upon the appearance of B in (1.10), or
of E in (1.10),. We shall show that, so far as the dispersion and absorption of
plane electromagnetic waves is concerned, /inear functional constitutive relations
of the form (1.10) which are consistent with VOLTERRA'S principe du cycle fermé
{(explained in § 2) lead to dispersion formulae similar to those obtained by Borx
& HuaNG from a molecular model. The simple and direct mathematical reasoning
we apply to the relations (1.10) should have application in any theory of the
electromagnetic field in stationary matter which leads ultimately to relations
consistent with (1.10). The physical idea expressed by these relations is simply
that, in a stationary medium, the values of the electric field E{®, 7) and the
magnetic flux density B(x, 7) for all times 7 <¢ preceding the instant ¢ uniquely
determine the values of the electric displacement D(x,f) and the magnetic
intensity H (%, ¢) at the time ¢.

2. Restrictions imposed on the constitutive relations
by material symmetry

If the material considered has some symmetry, the constitutive relations
(1.10) must be form invariant unde1 the group of transformations {8} describing
the symmetry. For solids, the group of material syminetry transformations {S}
is either the full orthogonal group or a subgroup of it. Let S=||s,, || be a generic
transformation of this group. Then the functionals on the right-hand side of
(1.10) must satisfy the equations

¢

@,[E(r), B(v)] =s,; @,[E(7), B(7)],

T - (2.1)
— t__ ¢
¥ [E(r), B()] =det S5, B[E(r), B(x)],
where
E,=s, E, E,:detSs,]B]-, (2.2)

for every element S of {8}. The factor det S= 41 appears in (2.1); and (2.2),
because, as one can recall from elementary electromagnetic theory, the invariance
of MAXWELL’S equations requires that D and E transform as absolute vectors
under time-independent orthogonal transformations if the current and charge
are absolute quantities, while B and H must transform as axial vectors under
this group.



In this paper, we shall treat only the case where @ and W are linear functionals.
This will exclude the more interesting non-linear phenomena such as the Faraday
effect, but we choose to dispense with the simpler linear theory first. In the
literature on dielectrics (cf., e.g., WHITEHEAD [1927]), linearity of the functional
@ is justified by what is called the principle of superposition. Actually, we
shall make the more restrictive assumption that @ and W are linear functionals
having the form

? |4 [ t
b) =§0a.-E‘"’ (@) +§ocv-B‘”’ (&) + [p(t,7) - E(v)dT + [ @y (t,7) - B(v) d,

? 14 ¢ [ .
H(t) = ZodrE"’ )+ 2b-BY() + [ 4 (t,7) B(z)dx +_f (1) E(v) dv, (2.3)

y=g

arA

) —

AV = de’

where @,, b,, ¢,, and d, are constant tensors and the kernels ¢p,, ¢z, {,, and ¢,
are continuous tensor functions of ¢ and 7 such that each satisfies an order

condition of the form C
<p1(t,‘t,)<m, e>0. (2.4)

Thus, in VOLTERRA'S terminology [1930, Chap. I], ® and W are linear functionals
with order of continuity p having ¢ as an exceptional point. Now VOLTERRA
[1912] has proven that, with the order condition (2.4), D(f) and H(¢) will be
periodic functions of ¢ whenever E(¢) and B(f) are periodic functions (principe
du cycle fermé) if and only if the kernel functions ¢, ..., $, depend on the two
variables ¢ and 7 only through their difference {—7. Again, we shall delimit
the class of materials under consideration-by assuming (2.4) and that D and
H are periodic when E and B are periodic. This latter assumption rules out
something like an ‘‘ageing’ ot deterioration of the material. Heredity of the
nature we assume here is also called snvariable heredity.

For the linear functionals (2.3), the restrictions of symmetry (2.1) are satis-
fied if and only if the second-order tensors which completely determine the
functional relations (2.3) satisfy the restrictions:

Sa,S'=a, SbS'=b, S¢,S1=¢, SPSi=y,
(det 8)Se,S1=c¢, (detS)Sd, S1=d,, (2.5)
(det ) Sep, ST =gp,,  (det S) S, S =1,

for each element S of the group of orthogonal transformations {S}. In other
words, @,, b,, ¢;, and ¢, must be invariant absolute second-order tensors under
transformations of {8} and ¢,, d,, @,, and ¢, must be invariant axial second-
order tensors under transformations of {§}. One can, in principle, determine
the most general solution of the invariant theoretic problem posed by (2.5) for
any group of orthogonal transformations by methods which are known.

If {8} is the full orthogonal group, the material is called holokedral isotropic,
there are no invariant axial second-order tensors, and the absolute invariant
second-order tensors are all proportional to the unit matrix. Thus, for holohedral
isotropic materials, the constitutive relations (2.3) must reduce to.VOLTERRA'S



[1912] form

D(t)= i a, E¥ () + f P (t— 1) E(r)dT,
r=0 - (2.6)

M-

H() = 25,B9() + [yt — 1) B(x) d.

0

v

Thus we see that linearity and holohedral isotropy are sufficient conditions to
eliminate B from (1.10); and E from (1.10),, as had been assumed possible by
VOLTERRA for a material of general symmetry.

If {S} is the proper orthogonal group, consisting of all orthogonal trans-
formations with positive determinant, then all of the tensors in (2.5) may be
arbitrary multiples 6f the unit matrix and the constitutive relations (2.3) reduce
to the form

v=0

? ? t
D) =2 a,EY )+ 2 ¢, BY(t) + [ [p(t — 1) E(r) + ¢ (t — 7) B(v)]dT,
v=0 —o0
» » ; (2.7)
H() =2 d,E¥(t) + 25, B (1) + [ [y1(t —7) B(1) + yp(t — 7) E(v)] dv.
p=0 y==0 —oo
A material with this symmetry is called hemihedral isotropic. A sugar solution
containing unequal amounts of right- and left-handed sugar molecules may serve
as an example of a hemihedral isotropic material. The examples (2.6) and (2.7)
suffice to indicate how one may proceed to obtain explicit representations for
the linear functionals (2.3) for the case of an arbitrary symmetry group {S}.

3. The propagation of an infinite plane electromagnetic wave
in a hemihedral isotropic material

An infinite plane progressive vector wave A(®, ?) is a time-dependent vector

field having the form A1) = Raetn-e-on, (3.1)

where a=a*+ia" (i=}—1, @* and a" real vectors) is a complex vector called
the amplitude of A, k=k*+ik", k*>0, is the complex wave number, n is a real
unit vector called the direction of propagation, and w>0 is the angular frequency
measured in radians per unit time. The symbol # denotes the real part of the
complex quantity placed after it.

For each fixed value of &, 4 is a periodic vector function of time and the
locus of A is an ellipse or one of its degenerate forms, a circle, or a straight line.
The major axes of the ellipse, the radius of the circle, or the length and direction
of the straight line are determined by the complex vector amplitude a. If
a-a=a*-a*—a -a +2ia*-a =0, the real and imaginary parts of @ are
perpendicular to each other and of equal length, and the locus of 4 is a circle.
If a*=a* —ia~ denotes the complex conjugate of @, and a* xa=2ia* xa =0,
the real and imaginary parts of @ are parallel and the locus of 4 is a straight
line. In all other cases, the locus of A is an ellipse.

In electromagnetic theory (¢f. CoNDON & OpisHAW 1958, Chap. VI), if the
electric field E (=, t) is a plane wave, then its amplitude e determines its polari-
zation. An electromagnetic plane wave is said to be circularly, linearly, or
elliptically polarized according to whether the locus of E is a circle, a straight



line, or an ellipse*. Circularly and elliptically polarized waves are further
classified as left-handed or right-handed according to the rule

>0 —right-handed,

+ (- —Ta* a-
a@'-(a xn) =[a’, ", n] < 0 —left-handed.

If @a- n=0, the wave is called transverse, and if @ xn=0, the wave is called
longitudinal. All other waves will be called skew.

The field equations which follow from MAXWELL'’S equations (1.1) to (1.4) are

%5; +curlE=0, divB=o0,

i (3.2)
col H— 20 =g, divD=0;.

In this section, we shall consider plane electromagnetic waves in a non-conducting
hemihedral isotropic medium for which Jz=Q@z=0, and for which the linear
_ functional constitutive relations (2.7) are valid. Thus we seek plane wave

solutions,; )
E(x,{) = Rectnz—ol)
x

, t) =Rb el(kﬂ-.’l.‘—wl)’
D(w,t) =Rdetn-e-o,
H(x,t) =R he ool

(3.3)

of the system of integral and differential equations (2.7) and (3.2).

Introducing vector fields of the form (3.3) into (2.7) and (3.2), we find that
they will constitute a solution if and only if the amplitudes e, b, d, and h, the
wave number %, and the frequency w satisfy jointly the system of equations

n-b=0, n-d=0, (3.4)
knxe—wb=0, (3.5)
knxh+od=0, _ (3-6)
d=a(w)e+yw)b, (3.7)
h=8{(w)b+dw)e, (3.8)
where » P
w(w) = goa,(—iw)” +0f ¢ {w) € du,
P o0
y(w) = ZOC,(— tw)” +g.972(“) etdu,
" - (3.9)
Blw) = _‘ob,(—iw)’-Fof%(u) e du,
b{w) = Zpdv(—iw)’-kfowz(u) et du.

Ly
I
=]

0

* Linearly polarized electromagnetic waves are also called plane polarized waves,
but this seems to overwork the word ‘“‘plane’.



From (3.4), (3.7), and (3.8) it follows that E, B, D, and H are transverse. Since
we assume k*>0, w>>0, so that the wave travels in the positive direction of n,
equations (3.4) will be satisfied as a consequence of (3.5) and (3.6). Thus it is
sufficient that we consider the four homogeneous vector equations (3.5) to (3.8)
in the four unknowns e, b, h, and d. In order for there to exist non-trivial
solutions, the determinant A(k, w) of the 12x12 matrix of coefficients must
vanish. Thus the complex wave number % is some function of the angular
frequency w, and this function, whatever it may be, is called the dispersion

b &
z z
z b
Right ~circularly polorized 8 Left-circularty polorized 8
Fig. 1

relation. To determine this relation and other properties of the solution we
proceed as follows. First eliminate d and h from (3.6) using (3.7) and (3.8) to get

knx(fb+de)+w(xe+yb)=0. (3.10)

Now eliminate e from (3.10) using (3.5) and n-e=0 to get
(ﬂ—a%’;)nxb+(-;’—)(a+y)b:o. (3.11)

The scalar product of (3.11) with b then yields the condition

(0+9)b-b=0. (3.12)

Thus either the coefficient 0+y=0 or the magnetic flux B must be circularly
polarized. But if B is circularly polarized so also are E, D, and H, as follows
from (3.5) to (3.8).

Let us assume that (y+d) ==0 so that B is circularly polarized. Since it is
also transverse, b*, b, and n» are mutually orthogonal, so that one of the two
geometrical relations in Fig. 1 holds.

From Figure 1 it is easy to see that

nxb—l" i1b for right-circular polarization,
+1b for left-circular polarization.

Using this result and (3.11) we then see that the dispersion relation is

I ST S
'Zz—i?——ﬁ —?—0, (3.13)

where the upper sign in the linear term holds for right-circular polarization and
the lower sign for left-circular polarization.



Thus far we have imposed no restrictions on the real constants 4,,9,,¢c,, d,,
or on the real memory functions ¢ (), @o(%), ¥, (%), and y,(#), other than the
order condition (2.4). We shall now assume that 2*>0 and 2 =0. It has
already been pointed out that the first assumption implies that the wave travels
in the positive direction of n. Subject to £*>0, the second assumption implies
that a wave of frequency w and small amplitude does not build up, resulting
in an unstable situation. We may then express the root of (3.13) which satisfies
k*>0, B~ =0 in the form

k ™ SBE L ydd

o=V~ ) T i (-14)
where the upper sign in the bracket holds for right-circularly polarized B and
the lower sign for left-circularly polarized B, and the square root taken in each
case denotes the determination for which k2*>0, 2~ =0.

The wave length is then given by A=2m/k*, the speed of the wave by v=w/[k*,
and the absorption coefficient by k~. From (3.14) we see that, unless the quantity

=g (2 :
Blw) =7 (112 (3.15)
vanishes, the speeds of the right and left-circularly polarized waves will be
different so that the medium is optically active (see DRUDE [1902]). Unless the
quantity

> = R(Y +6 .

#(0) =270 (3.16)
vanishes, the right and left-circularly polarized waves will have different ab-
sorption coefficients, as has been observed in some real materials.

4. Comparison with the Born-Huang theory
Beginning with a model of an ionic solid consisting of a set of charged mass
points, the dynamics of which may be treated either classically or quantum
mechanically, BorN & Huanc [1954, 1, Chap. VII] derive a relation between
d and e having the form:

d=ek,w)-e, k=kin, (4.1)
where the dielectric tensor € 1s Hermitian.
&,k 0)=¢}(k o), 4.2)
and satisfies also the relations
&, (ko) =" (—kw). 4.3)
Thus if we put
e=¢"t1i€,

the conditions (4.2) and (4.3) are satisfied if and only if



Now from our equations (3.5) and (3.7), we get a relation like (4.1) with
k
ezj(kzw):a61i+'ya)'e1kjnkr (45)
where e, ;, is the completely antisymmetric axial tensor with ¢,,,=1. Thus we get

k+
&, =a"0;;+ (v A)* €y Py

) poEe
R (4.6)
&, =a 0, o Gy My
The four conditions (4.4) are satisfied if and only if
{y')*=0, a =0. (4.7)

It is obvious that these conditions are not met by an arbitrary assignment of
the constants a,,b,,¢c,,d,, and the memory functions ¢, @,, ¥, and y,. In
the special case of our relations for which « (@), B(w) are real and positive and
the functions y (w) and 6 (w) are pure imaginary, % is real, there is no absorption,
and the conditions (4.7) are both satisfied.

Further comparison of the two theories is not warranted since even the
partial overlapping of results outlined above is hardly more than accidental.
In the Born-Huang treatment, absorption is represented by a transfer of electro-
magnetic energy to mechanical energy of lattice vibrations, while in the simple
phenomenological theory presented here, any motion or deformation of the
medium has been ignored; moreover, we have assumed that the medium is
homogeneous, while the treatment of BorN & Huanc is based on a highly
inhomogeneous material medium, namely, a system of mass points.
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