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Stress Tensors in Elastic Dielectrics

R. A. TouriN

1. Introduction

In a previous paper [I] we presented a theory of the finite deformation of
an elastic, electrically polarizable material. As originally presented, the theory
divides a symmetric total stress into two asymmetric components which we
called the local stress and the Maxwell stress. Such a decomposition is not
necessary but is made for the purpose of introducing a constitutive relation
between the local stress and the deformation and polarization of the material.
It is the purpose of this note to clarify the theory presented in [1] and to exhibit
a number of equivalent formulations of its basic equations. In these equivalent
formulations, a variety of ‘‘stress” tensors appear, and we shall attempt to make
clear the relations between them and the stress tensors introduced in [1].

The problem of elastic dielectrics affords a simple model of a classical field
theory based on a variational principle. Results on this model serve as a guide
to the more complex and general dynamical theory of the electromagnetic field
in a moving and deforming material which must contain the present statical
theory as a special case. MINKOWSKI[2] and ABRAHAM [3] many years ago
proposed different expressions for the electromagnetic stress, energy, momentum,
and energy flux in materjal media. We do not cite the extensive literature which
supports one or the other of these expressions. As emphasized by M@LLER [5]
and GYorGyI [4], in a material medium, the electromagnetic field forms only
part of the physical system. Any division of energy, momentum, stress, and
energy flux into electromagnetic and mechanical components is bound to be
somewhat arbitrary, and it is fruitless to attempt an independent theory of
either component. We trust that the considerations to follow will illustrate
these ideas concretely in a simple case where the physical principles are easy
to grasp and intuition is trustworthy.

2. Some preliminary formalism

a) The divergence theorem. If {*is a contravariant vector density, i.e., a
relative tensor of weight 1, then its natural divergence is a scalar density*.

divi=o,f, o =-°. (2.1)
ox'

* The natural divergence is defined independently of any definition of covariant
differentiation. In metric or affinely copnected spaces with symmetric affine connec-
tion, ¥ {* = ¢;{* provided f is a density. Cf. Scuouten {6, Ch. II].



If s is a surface enclosing a region » where f is continuously differentiable,
then

$Fds,= [divide, (2.2)

which is the divergence theorem [6, p. 97].

Suppose # is a region divided by a surface ¢ across which f has a discontinuity
[{] =7 — I~ where §* and §~ are the limiting values of | on ¢. Then if § satisfies
the smoothness conditions of the divergence theorem in the two parts of &, and
if the limits §* and §~ exist, we have

$Fdo,=[divide + [ [f1ds;, (2.3)
¢ v sMr
where d 4; points into »*.
h) Motions. Let . ) X .
=X, X1=X1(¥ 2
iy (2.4)
X) = det ||— 0
(@/X) = det | 27|+

be a one parameter family of non-singular continuously differentiable mappings
(point transformations) where the indices 4,7, ... 4, B, ... have the same range
1,2,...,n. In the applications, the variables X“ will be material coordinates,
the «* will be spatial coordinates, and # will equal three. We may think of A
as the #ime though this is not a necessary nor even desirable interpretation in
purely statical considerations. It is preferable to regard A simply as an index
set which labels the configurations of a given set of material points {X}. In
these preliminaries, we need not assume that the dimension of the space is 3
nor that the space with coordinates x* is metric in the sense of Riemannian
geometry. This will allow application of the general formulae to be derived to
problems other than the particular problem of elastic dielectrics considered in §4.

We set

o = oxt }‘{A — ax4
Y Y (2 5)
o= 07 x4 ox*
4 ox4”’ ! ax'
and record the identities™
v = — x% X4 }‘("’:—X‘flv"
k) 1 )
A Xp =, 4 XP = 8, 26
2(x/X 2(x/X ; '
T =@ X, SRk = — @)
4 i
ax4 : o7 .
a;-:—X;‘X?, aX‘;i:—x}ng.
XB ]

¢) Invariant derivatives. Let fi/(x, A) denote a tensor field of arbitrary
rank and weight whose components may be functions of the parameter 4 as

* Cf. TRUESDELL [7].



well as the coordinates . Let
of

ATN
Foe e
or=—5

(2.7)

The Lie derivative of f with respect to v* is a tensor field of the same type
as f with components given by *

Efl =0, il = 0, R — B, T — L Rl w B, i, (28)

where w is the weight of f.

Any set of quantities I‘Q, £2=1,2,..., N which transform by a linear law
with coefficients determined by the transformation and its derivatives is called
a geometric quantity [6, Ch.II, §3]. The definition of the Lie derivative may
be extended to arbitrary geometric quantities and has the general form**

f/!):vmamfn_Fgramv"fA) (29)

where the F§ ™ are constants determined by the law of transformation of the f°.
Formula (2.8) is a special case of (2.9). For example, when f is a contravariant
vector density, Fin,= 070}, — 0:0%. The notation of (2.9) is that used by Berc-
MANN [&8]. .

In a space with symmetric affine connection I} and when f?is a set of tensor

components, we have
V" =0,/ + FinIn . (2.10)

where the F7 will have the same values as in (2.9) for corresponding tensors
or sets of tensor components f2.

In affinely connected spaces we define the material derivative of f by

P=P21r0mp, A (2.11)
The convective A dersvative of f is defined by
* \
fP=F+£° (2.12)

In a space with symmetric affine connection, the partial derivatives of v*
and /2 which occur in the definition (2.8) or (2.9) of the Lie derivative may be
replaced by covariant derivatives [6, p. 152],

£ =0Vt — PRV, 0", (243)

provided, of course, that /* is a tensor field or set of tensor fields for which the
covariant derivative is defined. We ‘hen have the identity

P=f—Fav, o, (214)

A geometric quantity /7 together with its first partial derivatives 9,f? is a
geometric quantity (7, 9;/%). In the sense explained Ly SCHOUTEN [6, p. 105],

* [6, Ch. II, § 10].
** Cf. Yano [10].



Lie differentiation and ordinary partial differentiation are commutative:
%6,~f"=3,-§f“. ' (2.15)
Thus, so also do the operators 9; and (*) commute:
af=op. (2.16)
However, the Lie derivative of an affine connection is given by
£ =V, V0" + R, "o, (2.17)

where R is thg curvature tensor based on I' and we assume 1"[';:,,]=0. Taking
the Lie derivative of equation (2.10) and using (2.15), we get

£V, — Vit =Fi L7, (2.18)
from which it is apparent that, evenin flat spaces where Rj;,™=0, Lie differentia-
tion and covariant differentiation do not commute. It follows that covariant
differentiation and convected A differentiation do not commute: 4

—x__ * On *m 4
Vit =V f°=Finm . (2.19)
As a consequence of the identities (2.6) and the definitions (2.9) and (2.12)
we have the useful identities,

XE_XK=0, Xf=0, ¥ =o0, (2.20)

where the fields X¥ are treated as absolute scalars.
It follows from (2.20) that if we define the scalars F£%~ by
FiBo =@/ X)" XA XP .. ok il (2.21)
then
filr =@/ X)|=" x x? ... X5 ... F{E~ (2.22)

where f is a tensor of weight w, and
. o .
flr =/ X)| ™ 2y g XE .. FED (2.23)

* .
since, for scalars, F=F. If the F#%~ are expressed as functions of the material
coordinates X4 and of 4, then F= %-I;— It is easy to see that the formulas (2.21)

to (2.23) can be written in the abbreviated form

-1
fD=AQAFA, F4= 44 /°,

. (2.24)
;9 = ADA F A:

where the coefficients A%, are certain rational functions of the x*;. In (2.24),
the f? may also stand for the ordered set of components of more than one tensor
field.



d) Lagrange identities. The field equations which follow from a variational
principle are determined by assigning a scalar density % as a function of the
components (9, 8;/7, 8,8,f”, ...) of a geometric quantity:

&L= L% 8,1%...). (2.25)
The condition that £ transform as a scalar density, i.e.,
&' = |(wfx)|* £ (2.26)

under general transformations of the coordinates ® leads to a set of algebraic
and differential identities satisfied jointly by &, 0.£/8f?, 0.2/2(5,/%),

8,f%, ... as shown by ScHoUTEN [6, Ch.II, §11]* We restrict attention here
to the case where % depends only on the f? and their first partial derivatives
8,#°. This implies no loss in generality since the geometric quantity (f2, 6,f°
8 8,2 . 8, 1% can always be regarded as the geometric quantity (g7, 9;¢7)
where g% = (f" %/° ...,8,0,...6, f°. However, in the applications, the
geometric quantity /2 which appears in (2.27) below is assumed to have a linear
homogeneous law of transformation corresponding to the special case where f?
stands for the ordered set of components of a set of fensor fields. Thus we assume

he f
that % has the form P f” /_o (2.27)

£$ (&) = - .28
k( a]l!)vfo_*— 3/‘9" (2 )

We then have

which must hold for arbitrary v*. In (2.28) and henceforth we use the notation

f?=19,/?. By equating coefficients of v¥, 9,,4*, and 8,,0,v* on both sides of (2.28),
we get the identities **:
3.?

0, F = == 2 .
k o af" % (2.29)
7 83’ A
Sg—0L @ _F + :
7 6f9f7 Ay(afgf afk k) (230)
0=2Z Fgop. (2.31)

ot

In field theories based on a variational principle with Lagrangean % the set of

quantities, ; ; o
CtjEéfg—“ 3f‘g 7, (232)

is called the canonical stress matrix. In dynamical theories where the underlying
space of points @ includes one dimension of time, ct, is called the canonical
stress-energy-momentum matriz. Only in special cases will ct’ transform as a
mixed tensor density of weight 1 under general transformatlons of the coordi-
nates x".

* Cf. also THomMmas [9, Chs. VI, VII].

** The non-trivial identities (2.30) and (2.31) were obtained by EiNsTrIN [13] for
the case when f? is a symmetric, non-singular, second order absolute tensor. The
generalization of these identities to an arbitrary geometric quantity 79 upon which
the remaining identities of this section rest was given by BERGMANN [8]. Various
special cases of these identities are well known in differential geometry. See, e.g.,
TroMas [9] and ScHOUTEN [6].



On computing the natural divergence of ct’; and using the identity (2.29),
we find that

& (cty) = Loff, | (2.33)
where Ly is the Lagrange derivative of & with respect to /2 defined by
oL
L, — 9, 2.34
T (af"> (234

The Lagrange derivative of .# with respect to a tensor of weight w is a tensor
of weight 1—w. Integrating the last term in the identity (2.30) by parts, intro~
ducing the Lagrange derivative (2.34), and making use of the identity (2.31),
we get the identity ‘
N i . y .
cfy=—LaF3i/*— 0 ('a—gF?}] fd)- (2.35)
afe
If one now computes the divergence of ct the last term contributes nothing
because of its antisymmetry in the 1nd1ces 7 and % and one gets using (2.33)

Loff + a(LaF§if4) =0, (2.36)
which is BERGMANN’S identity [8]. Equivalently, if we put ’
T = of - Lo P _ak@f FA,.f") (237)
Tk

we see that (2.36) is equivalent.to the identity
%% =0. (2.38)

Given any scalar density function of.a geometnc quantity /2 and its derivatives
f4, formula (2.37) constitutes a general rule for the construction of an array
of n? quantities whose divergence vanishes identically as a consequence of the
assumed law of transformation for .#. The f“ need not be a set of tensor fields
but may also include more general geometnc quantities such as an affine con-
nection.

Special interest is attached to the case where one of the quantities included
in the set /7 is a symmetric, non-singular tensor g,,, which we may think of as
the metric tensor for the underlying space, though this is not a necessary inter-
pretation for the present ana1y51s In this cdse, we indicate the functional de-
pendence of & by writing

L= '?(gmm 01 Emns (PQ': (Pgay) ‘ (239)

and separating the tensor g,,, éxplicitly from the total set 2. If 2 is a geometric
quantity, the remaining set of components ¢ is also a geometric quantity
whose Lie derivative we denote by

€07 =o' 0,07 — BT 18,0 . (2.40)
We introduce the special notation ™" for twice the Lagrange derivative of Z

with respect to g,,,: :
0Z K4
— 8, } 2.4
=2 [agmn oo (@(8}, Emn) ) (2-41)




BERGMANN’s identity (2.36) applied to a Lagrange function having the form
(2.39) yields TRAUTMAN’S identity [11]:

Viti=Loof +8(Ly PT;9"), (2.42)

where t"]-= ik t**, and I, denotes covariant differentiation based on the Christoffel
symbols of the tensor g,, .

The Lagrange derivative of . with respect to an absolute tensor field is a
tensor field of weight 1, 7.e., a tensor density. For reasons to appear later in the-
application of these general formulae, we shall call the symmetric tensor density
t7 defined in (2.41) and the associated absolute tensor #7=f"/}|detg,,,|, the
Cauchy stress. From (2.42) we see that a sufficient condition for the covariant
divergence of the Cauchy stress to vanish is that L, =0, ¢.e., that the Lagrange
derivative of £ with respect to each of the remaining f1e1d components (p .
vanish. From (2.33) it is apparent that L,=0, which, in the case of a Lagrangean
having the form (2.39), includes the condition t""=0, is a sufficient condition
that the ordinary divergence of the canonical stress matrix vanish. We have
previously noted that the ordinary divergence of the tensor Iii vanishes identi-
cally.

Henceforth we restrict attention to the case where £ is independent of the
partial derivatives of g,, ,:

L =L (Gpn ¥ ) (2.43)

When # has this form we can solve the identity (2.30) for the Cauchy stress.
t.= ot + @i (2L g 8L "). 2.44
i=ctj+ A1(6¢9‘P +a¢;’% ( )

Now, by definition, the Cauchy stress is symmetric.

il =9, (2.45)

which, by (2.44) implies that
Y AP (—-: 2 o

0% 4\
o tp,,,) =0. (2.46)

Thus, in general, the canonical stress ct'/= g/* .t is not symmetric. Equation
(2.46) is an explicit formula for its antisymmetric part when the Lagrangea.n has
the special form (2.43).

3. Field equations and boundary condition of a variational brinciple
Let . have the special form (2.43) and consider the integral
E({).Sfdo(l) (3.1)

where ¢7 =¢7 (2, 1) but the metric components g,,,,(®) are assumed to be in-
dependent of A. The region of integration #(4) in (3.1) corresponds to a fixed



set of material points X* and thus depends on the parameter A. Let »(4) be
divided by a surface of discontinuity &(4) where we assume that & (4) corresponds
also to a fixed set of points X*. The metric will be assumed continuously differ-
entiable throughout #(4), but the fields ¢ will be assumed continuously differ-
entiable only in each of the regions #* and 2~ and may have ordinary discon-
tinuities at #(4). Under these conditions we have

6.? * 0F *qo 0% V
Ldo= 2= oY Nde. 2
f v = agmn n+ aq)g (P + a¢¥, (Pm) L (3 )

Since 92 =8,,¢7, and §,,,=8,,v"g,,+ ,9"g,,x, We can integrate certain of the
terms in (3.2} by parts and apply the divergence theorem (2.3) to get

dl _ [ ((_p m % Lo m & 0L g _
ﬁf”f( Vp " 0* + Lo & )dv+<ﬁ( Lo+ Wﬁ«p )do
(33)
j‘[tm vk+ "]d.?
L4t ’"

Let the derivatives (variations) »* and ¢ be subject to a set of N constraints
0=C"=a%v" 4+ 0% ¢%, w=1,2,...,N. (3.4)

By introducing the Lagrange‘ multipliers #,, in the usual way we obtain the
result:

A sufficient condition that the integral 1(3) have a stationary value for arbitrary
variations (v*, §7) consistent with the constraints C* =0, vanishing on the boundary
6(2) of »(A), and continuous at F(A)=0, i.e., [P*]=0, [§%1=0, is that the field
equations

~ Pt +n,a%=0,

-5
Lo +n,b% =0, 3-5)

be satisfied at each interior point of the regions »* and »~ and that, at the surface
of discontinuity &, the boundary conditions

[tmk] Ny — Ny awk =0,

0¥
[a "]" =0

be satisfied at each point of F(R) interior to » (A).

(3-6)

Remarks. Suppose that the ¢? are the components of a set of tensor fields

and introduce the scalars di"':A}Q'A, ¢* asin (2.24). Then one has ¢¥ =A%, &*
and from (2.6);, v*=— 2% X4. Thus the assumption that the variations (+*, ¢?)
are continuous at &(4) is seen to be equivalent to the assumption that the
variations (@7, X4) are continuous at #(4) provided one assumes that [4%4]=0
which holds when the X# are continuous. A different set of boundary conditions.



arises if we write dI/d A in the form given by WEiss [12],
I 0
o f{i+ 6k(vk$)}du

.—f(”’“’+ S )d +43v$dak [[u.z’]dy

FAv

(3-7)
- [L,yap”dvﬂj‘) 0% ‘”’+v .z’}do —f[ag’ o7 4o y]w;
" ey Pr
- ngqo dv+<§{ '"'+ctk,-vf}dak~f{[ ot ¢"']+[ct",~v"1}m,
F et d &

where in the last equatlon of (3.7), the variation ¢7 = ¢+ 1*9, ¢ is not a
tensor unless all the ¢ are absolute scalars and therefore, in general, has no
particular geometric significance*. One then sees from (3.7) that a sufficient
condition that I(A) have a stationary value for all variations (¢7,v ) which
vanish on ¢ and are continuous in #(4) is that L, =0in »* and »~ and [ct’;]#;=

[ :‘i, ] n,=0on F(4), provided there are no constraints on the variations (¢7, v ").
Pr .

4. Elastic dielectrics

The formalism of §2 and §3 will now be applied to a special case to reproduce
the equations of the theory of large elastic deformations of a solid dielectric
material considered previously in [1].

Let the space of points & be Euclidean three-dimensional space, and let the
Lagrangean function have the form-

'?: %(XK, XGKr ;’Bi, gv;i) + ('Bi a“P - (60 Va/z g',a;?’a;q’ (41)

where g;;. are the components of the Euclidean metric tensor, ¢ is an absolute
scalar field called the electric potential, ' is a contravariant vector density with

the transformation law, o
P = (/)| i P, (4.2)

called the polarization density, and B is a scalar density we call the energy density
of elastic deformation and polarization. Note that B is independent of ¢ and its
derivatives, the central term in (4.1) is independent of the deformation gradients
X%, and the last group of terms in (4.1) depends only on g;;and ;. & is a constant,
and, as usual, g denotes the determinant of the metric. Since we assume that
the metric is Euclidean, there exist coordinate systems, the rectangular Carte-
sian frames, for which g;;=4¢;; everywhere. However, it is to be noted that

*

8;;=0 except for rigid varjations. In some works on electromagnetic theory it
is customary to represent the polarization field by the absolute vector field
P'=%'/J/g. Actually, it is more convenient to work with the vector density P*

* WEiss [12, p. 105] states that the ¢ are “‘more fundamental” than the varia-
tions @7 and gives a reason we do not understand. The variations %, on the other

hand, have an invariant significance even in non-metric or non-affinely connecied
spaces. ’



which has the transformation law (4.2). . If one restricts the coordinate trans-
formations to the unimodular ones, no distinction need be maintained between
tensor densities and absolute tensors. The scalar density 8 is related to the
absolute scalar function X introduced in [I] by

B = go(/X)2 T (4.3)

where g is the density of mass in the undeformed or natural state of the material.
A material characterized by the field equations and boundary conditions (3.5)
and (3.6) with a Lagrange function having the form (4.1) will be called a perfecily
elastic dielectric provided the constraints do not include the condition $==0.
The canonical stress in an elastic dielectric is given by
ct'j =82 — —Z%‘Pi — %—Xf(

i 0B i o i ” (43)

where we have introduced the electric field, E;= — 8¢, E*=¢"'E; - E=P'E,,
elc.
Now in [] we introduced the absolute scalar field 2* defined by

_ o' = (@X) Ble, (4.4)
and wrote X' in the form
Z=X(X% i, = gij) - (4.5)
We then introduced a local stress tensor \t; and a local field | E; defined by
i ¥ i - £y
LU*-QE;‘Z"A, £ = L (4.6)

where p= |(®/X)|™ g, is the density of mass in the present configuration. From
(4.2), (4.4), (4.5), (4.6) and the identities given in § 2 we derive the identities:

i a% K __ . .

B __ 4.7)
—r = T Ly
2P

Substituting these relations into (4.3), we get
cfj=1f, + B+ & Vo E'E;— &) (B +.B)- B — (5 Vu/2) /B2, (48)

which exhibits an explicit relation between the canonical stress and the local
stress. ’

For elastic dielectrics, the symmetric Cauchy stress as given by (2.44) turns
out to have the form

i ‘ i n i sny 0L oam
ti=ctf+(am6i—6i6m);§?$ ’

. o (4.9)
= ct — (Ej+E)) B+ §(E + E) - ¥.



Substituting from (4.8) for the canonical stress in (4.9), we get
ty =t — BB + 6 YA E'E; — (e,]/8/2) & B2 = 2% Gime  (410)
?

The field equations and boundary conditions are obtained from the general

formulae of §3 as follows. First note that X =0, )*(;4 ==0, so that the constaints
(3.4) corresponding to these conditions have a simple form. We then consider
a region #(A) filled with elastic dielectric which might consist of two disimilar
materials with the common boundary &(4). In 2* and »~ we assume the varia-

* .
tions B* and @ are arbitrary. We then get the field equations and boundary
conditions:
V7t7k =0 )
E,+E;=o0, (4.11)
& |/sV2o—divg=0,

which must hold at each point of * and »~, and

[t n =0, l&|aE + $]n=0 (4.12)

which must hold at each point of &% contained in .

When the field equation (4.11), is satisfied, the Cauchy stress tensor (4.10)
reduces to the form

t) =1t + E; B+ (& )/9/2) & E? (4.13)

given in [1]. Thus the field equations and boundary conditions (4.11) and (4.12)
are equivalent to those of [1]. When the field equation (4.11), is satisfied, it
follows from (4.9), that the Cauchy stress and the canonical stress are equal
in elastic dielectrics.

From the symmetry of the Cauchy stress and (4.10) we conclude that

U7 Bl — o, (4.14)

which is equation (10.36) of [1]. The derivation of (4.14) given in [I] shows
how this identity follows from the invariance of 2’ under rigid motions.
It is natural to introduce still another stress temsor in elastic dielectrics
which we define by N o
mt'! = 87 — (BT P (4.15)
Let us call i/, the material stress. By (4.14) it is always symmetric. Thus
the Cauchy stress can be given the alternative decomposition
17 = wt'? + m?, (4.16)
where

m' = &, |/g(E*E' — ¢ E?) (4.17)

is a type of Maxwell stress tensor, or elgctromagnetic stress tensor, which is
symmetric and has the same form in all materials.



As shown in [I], a stored energy function X which is invariant under rigid
motions must reduce to a function of the quantities

X =5(Cyp. II*, X4,
CABEg,-jxi, x’,, (4.18)
I = |(@/X)| X1 %0,

each of which is an absolute scalar under general transformations of the spatial
coordinates x*. One can then show that the material stress tensor yt'/ is given by
oE

Mt =20 e x «lg, (4.19)

analogous to the formula of ordinary finite elasticity theory (¢f. TRUESDELL
[7, Eq. (39.2)]).

Following this deluge of formalism and definitions of stress tensors in elastic
dielectrics, perhaps it is best that we restate our position. The fundamental
entity from the point of view of mechanics is the Cauchy stress #/ which is a
certain function of tHe fields X*, X¥ ¢,, ¥, and g;; fixed by tne functional
form of W (XX, XK, ¥ g;;). The field equations and boundary conditions are
(4.11) and (4.12). These equations are obviously independent of any decomposi-
tion of the Cauchy stress into a mechanical and an electromagnetic component.
Decompositions of the type (4.13) and (4.16) may be used as intuitive guides
in the construction of admissible constitutive equations for % but are other-
wise irrelevant, A distinguishing feature of the decomposition (4.16) is that m*
is independent of $ and of the deformation and has the same form in every
material. It need not vanish in a vacuum where =% =0. On the other hand,
the material stress ut*’ is a function only of the polarization $ and the deformation
and depends on these variables in a way which is characteristic of the material.

Cottsider next the Lagrange derivatives of . with respect to the field variables
X%, B, and ¢. Let us denote them by

oW PiY
Q= — ) — Q= E,+E,
KT ox¥ (aX" iR
(4.20)
L= eol/g V2p —div§.
For elastic dielectrics, TRAUTMAN’s identity (2.42) takes the form
Vit =Q XK — Q,0, R — QE; + (07" 8, — 8! o) 3;,(,, 1. (4.21)

Since det X,K =0, it follows from (4.21) that the field equations (4.11) are equi-
valent to the set of Lagrange equations £=0, ¥,=0, 8=0. That is, the field
equation V,t";=0 may be replaced by the equation €;=0 in the set (4.11).
Finally, we consider briefly the problem treated in [1] of an elastic dielectric
placed in a vacuum. The variational principle of §3 still applies provided we
take into account the constraint =0, =0 outside the dielectric. Here we
let the discontinuity surface %(4) correspond to the boundary between the
dielectric and vacuum. The field equations interior to the dielectric retain the
form. (4.10), but owing to the constraints B=TW =0, exterior to the dielectric,



we get the field equations

V,fy=0, &}aPte=0. (4.22)
But when B =%=0, t; has the form
tj= e Yo (E'E; — § 6 E¥) (4.23)
and TravTyax's identity reduces to the trivial one
Vity = & a2 g E,. (4.24)

Thus the field equations (4.22) are not independent, and we may take the simple
scalar equation (4.22), as the single vacuum field equation.
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