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Abstract: This paper presents a new approach to constrained
trajectory generation dedicated to Advanced Driver Assistance
Systems. Based on the information provided by the digital map
database of a navigation system, the proposed solution is devoted to
a control-oriented trajectory generation approach taking account of
constraints which limit the behaviour of a common car, relative to the
road to be followed and finally linked to the driver. Characteristically,
these trajectories stay within the traffic lane borders; at the same
time, they minimize the energy along the path, and finally, they
are curvature continuous. The present trajectory generation has been
tested on a specific test track and the results show the efficiency of the
proposed solution.
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1 Introduction

The navigation domain has become quite popular in the last decade. For drivers,
it is now as natural to know their position on a map as to know the current time.
It gives the driver and passengers a feeling of greater comfort, as it prevents them
from losing their way.

Navigation systems also play an important role in Advanced Driver Assistance
Systems (ADAS). Indeed, navigation systems act as virtual sensors providing
information about both the current and upcoming road context contrary to other
sensors which only give information about the current road context. However,
navigation systems are not exempt of limitations: according to several projects
such as ACTMAP (Thomas et al. (2008)) or EDMAP (CAMP (2004)), current
navigation systems do not provide sufficient information for control-oriented
ADAS. This is due to the average reality approximation of digital map databases.
Indeed, for memory and cost limitations, navigation devices do not contain all road
context information. One of the consequences is that roads are vectorized, in other
words, represented by a succession of road centreline points.

A solution to overcome these digital map database limitations and inaccuracies
for control-oriented ADAS lies in the computation of trajectories. Indeed, this
solution, which has been widely used in different domains, can provide a set
of continuous information which is helpful for control-oriented applications. In
addition, most of the path generation solutions include constraints which help
to define the optimal or suboptimal trajectory, for example by taking a robot’s
geometric or dynamic limitations into account (Gomez et al. (2008)), or by
predicting a robot’s motion (Beji and Abichou (2009)). There are numerous
trajectory generation solutions, based on the use of several mathematical models.
Parametric Cubic Splines (De Boor (1978)) are used here, because they represent a
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straightforward interpolation, they have a curvature continuity property, and they
are adapted to all road contexts (bend, straight line, roundabout, etc.).

This paper presents a new constrained trajectory generation approach to
control-oriented ADAS, based on the information provided by a digital map
database. Considering the digital map limitations (CAMP (2004)), the proposed
solution is a map-based continuous trajectory generation formulated as an
optimization problem. Contrary to recent studies such as Li et al. (2008) or
Eidehall et al. (2007) which focus on road curve reconstruction and curvature
estimation, the present study is dedicated to the definition of a curvature-
continuous trajectory for ADAS control applications, such as Curve Speed
Assistance (Li et al. (2008)), Longitudinal Control (Daniel et al. (2009)), etc.

The main contribution of this paper lies in the integration and in the generation
process of different constraints related to the road, to the vehicle and to the driver,
while considering the digital map database limitations. This constrained generation
is formulated as a convex optimization problem which tends to minimize a given
cost criterion. If most optimizations minimize the time required to cover the
trajectory or the trajectory distance, here the strain energy of the trajectory is
minimized. As this criterion is directly linked to the curvature, its minimization
leads to the generation of smoother trajectories. To check the validity of the
present solution, tests were carried out using real road data provided by a
navigation system. The results have shown that this new method leads to the
generation of safe, smooth curvature continuous lane trajectories.

After the presentation of the work context in Section 2, Section 3 depicts
the considered constraints and the mathematical model used. This is followed by
the constrained trajectory generation proposal in Section 4. The results are then
presented in Section 5, followed by a conclusion.

2 Work Context

2.1 Digital Map Database overview

Nowadays, digital map databases contain numerous geographical, topological, and
informative attributes of the real driving infrastructure such as traffic signs,
intersection locations, number of driving lanes, etc. These attributes can have
different levels of abstraction. For example, the number of lanes is related to a road
portion while the presence of road signs is related to specific road points. Fig.1
presents a schematic but non exhaustive overview of current digital map database
composition. The road network vectorization, based on a succession of specific
points, is clearly shown. It indeed divides road into vectors, also called segments,
linked by nodes which usually correspond to intersections. Segments can also
contain shape points which give more precise information about the current road
geometry, specific attributes, etc. This figure also describes the Electronic Horizon
(EH) concept. An FH (light grey lines in Fig.1) is a road network containing the
set of possible roads (taking account of the driving rules) which the vehicle is
likely to use in the close future. It can be interpreted as a selection of the relevant
information in the large amount of data provided by the Digital Map Database.
This process is carried out by a so-called Electronic Horizon Provider (EHP) which
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Figure 1 Digital Map Database Contents

processes the map data in order to provide the Electronic Horizon. The latter is
generated relative to the vehicle position projected on the map using a vehicle-to-
map correlation technique (map-matching).

As roads are approximated by a succession of points, the road context
information is mainly related to these points. Consequently, the digital map
database reality approximation involves discretized and discontinuous information.
Moreover, it is important to note that shape points and nodes always refer to
the middle of the road; there is also no information about the current driving
lane. This may be problematic for control systems which require, for instance,
continuous in-lane curvature. Finally, note that digital map data are subject to
biases w.r.t real network. For current navigation systems an absolute error up to
5m and a relative error up to 2m are common. These errors correspond to the
difference between the digitalized points and their real position on the road (cf.
Fig.2 grey circles). Due to these errors, it is obvious that conventional interpolation
approaches, directly based on digital map shape points, are not effective.

To be used for control-oriented ADAS, limitations of digital map databases
have to be considered. For this purpose, several solutions are possible: to improve
the digital map database accuracy, to use additional sensors, etc. Here, the digital
map database is used as a virtual sensor for a trajectory generation which is
devoted to the selection of the best suited trajectory in a set of possible solutions,
i.e. a validity area. The latter is defined relative to the digital map database
inaccuracies.



Navigation-based Constrained Trajectory Generation for ADAS 5
2.2 ADAS Global Structure

The trajectory generation process is part of an architecture dedicated to
navigation-based control-oriented ADAS. In Fig.3, the different elements of a
classic navigation system can be found (GPS Receiver, Map-Matching Algorithm
and Digital Map Database). Map-Matching helps in the determination of the
Electronic Horizon which constitutes the source of information providing the
necessary data for:

o Situation Classification. This divides the current and upcoming road into
several situations such as straight lines, bends, tunnels, etc. and so, improves
the global view of the road context by providing context-aware information.

e Road Model Estimation. Using the information stored in the Digital Map
Database and relative to the middle of the road, an estimation of the road
profile (left and right lanes) is performed. This helps to define the different
constraints required for the Trajectory Generation process.

e Constraints Definition. Considering the information provided by the Road
Model Estimation and by vehicle sensors, this process defines the constraints
which are related to the road, to the vehicle and to the driver. They
constitute the information required by the Trajectory Generation process.

o Trajectory Generation. It generates constrained trajectories via a specific
convex optimization approach. These trajectories have the advantage to be
smooth and curvature continuous (with minimized curvature).

These four processes are the core of this study as they provide more complete
data for control-oriented ADAS.

2.8 Trajectory Generation: overview

Trajectory generation originated in the robotic domain, and more precisely
on studies focused on autonomous wheeled robots. The first studies defined
trajectories as a succession of straight lines and arc-circles (Dubins (1957)).
Even if this is a simple way to generate trajectories, it has been proved
that it was not suitable for wheeled robots as it does not provide curvature
continuity. An improvement to this solution was found through the introduction
of trajectory portions which have a polynomial curvature expression between arc-
circles and straight lines (Nagy and Kelly (2001)). For example, in Fraichard
and Scheuer (2004), clothoids which provide polynomial variations of curvature
along their arc-length, are a good solution for junctions. However, if this method
solves the problem of curvature continuity for arc-line junctions, it uses three
different mathematical models whose junctions have to be correctly defined. More
generally, trajectories which are based on polynomial curvature expression have
the advantage to directly act on the curvature representation and so, to provide at
least its continuity. However, this method requires a numerical double integration
of the curvature expression along the arc-length to get back to the trajectory
coordinates. Consequently, errors are introduced into the trajectory generation
process.
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In the last decade, increased computer power allowed more complex
mathematical models to be used. One of these models is the Spline model (De
Boor (1978)). A Spline is a piecewise polynomial interpolation whose junctions are
constrained by first and second derivatives continuities. This allows the generation
of smooth curvature continuous trajectories with low degree polynomials, and
low calculation time for a large number of interpolated points. Well known
Spline methods are Cubic Splines and Parametric Cubic Splines. Parametrization
gives more freedom to the trajectory shape as it allows the definition of multi-
dimensional Splines. Another Spline, often used in the literature, is the B-Spline
model (Gomez et al. (2008)). The latter is based on the same principle as the
Cubic Spline: a piecewise interpolation. The difference lies in the fact that B-
Splines use Bezier curves in each interval. However, B-Splines require the definition
of additional control points for all intervals. This implies an explosion of the point
number which must be defined to get a trajectory.

Another mathematical model is the polar polynomial model (Nelson (1989)).
This type of polynomial is defined in the polar referential and provides curvature
continuous trajectories which give good results in bends. As for Cubic Splines, they
use low order polynomials which are obtained according to continuity conditions on
the first derivative, the slope and the curvature of the trajectory. This model has
been successfully used for wheeled rolling systems trajectory generation (Pinchard
et al. (1996)) or for trajectory modelling of different types of automotive vehicle
drivers (Lauffenburger et al. (2003)). In addition, the use of such polynomials
requires the definition of the polar referential and translation between polar and
Cartesian coordinates. Furthermore, if polar polynomials are well suited for bends,
they are not adapted to straight lines and are then often associated to quintic
Cartesian polynomials (Nelson (1989)).

Among the presented models, the Parametric Cubic Spline has been
chosen. Indeed, this mathematical model provides smooth curvature-continuous
trajectories adapted to various road situations with no oscillations and no long
calculation time.

3 Constrained Trajectory Generation

3.1 Problem Statement

The present objective is to provide a reference trajectory which satisfies several
constraints linked to the Wheeled Rolling System (WRS), the road to be
followed and finally the driver by considering control-based constraints during
the generation. This allows the definition of a reference path which suits the
limitation of the controlled system. Fig.4 describes the situation to be solved:
giving a starting configuration qq = (z0, yo, 0o, ko, o) € R® defined by the WRS’s
Centre of Gravity (CoG) position (xg, yo), the W RS’s orientation (), an initial
curvature kg of the path to be followed by the CoG, its respective derivative
ko and a final configuration ¢, = (T, Yn,On, kn, fn), an optimization technique
defines the reachable path regarding the considered cost criterion. A trajectory is a
continuous sequence of reachable configurations (z,y, 0, k, k) defined with respect
to the constraints to be verified: normal driving conditions imply that the W RS
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stays in its current road lane. For car-like vehicles, this area is defined by the road
on which the vehicle is located. Consider the situation described in Fig.4 which
represents the vehicle in its driving lane with a total width of L. The reachable
driving area, considering the absolute and relative inaccuracies of the digital map
(cf. Fig.2) is then defined as VAW = L — (W +¢) with W the vehicle width and
€ the digital map inaccuracies. Finally, in the proposed approach, the road is
considered to be flat and only 2-dimensional parametric paths (z(t), y(t)) € R? are
computed. The sequence of reachable configurations is defined based on constraints
of different types (geometric, dynamic and kinematic).

Fig.5 is a schematic representation of the strategy used which is divided
into two parts: the Road Model Estimation and the Trajectory Generation. The
Road Model Estimation uses the shape points which are extracted from the EH.
However, the latter only gives information about the road centreline. To generate
the road boundaries, the first step is to use a geometrical translation which
estimates the road boundary points w.r.t. the information of the digital map
(lane width, number of lanes, etc.). The estimated points are then used by a
Spline algorithm which computes continuous road boundaries and so, provide the
required information for the Trajectory Generation process. This process first uses
the road model and the vehicle width to define the trajectory validity area (cf.
Section 3.2.1). This validity area is then used as a template for the optimization
process which also includes the other aforementioned constraints (cf. Section.3.2)
and which minimizes the trajectory strain energy.

3.2  Multiple Constrained Path Generation

W RS-like cars are known to be non-holonomic systems: not all the solutions
of the configuration space are possible and limitations in the directions of
motion have to be processed (Fraichard and Scheuer (2004)). An effective path
generation algorithm should consider these limitations when computing the
nominal trajectory the vehicle must follow.

This study considers three types of constraints. The first ones are geometric
constraints linked, on the one hand, to the configuration space in which the
W RS moves (to keep the vehicle in a prescribed driving area) and on the other
hand, to the mechanical limits of the W RS. Due to the non-holonomy property
of WRS, these vehicles are subject to kinematic constraints. This second type
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of constraints involves (linear and rotational) velocities and acceleration limits
of the kinematic variables describing the WRS (see Graettinger and Krogh
(1989) for a description of these limits in the robotic domain). Finally, the
third category of constraints are dynamic constraints which characterize the
performance of the vehicle (braking/accelerating capabilities, maximum lateral
acceleration, tyre/ground interaction etc.) and the actuators performance. They
restrict the overall performance of the WRS.

3.2.1 Geometric Constraints

The geometric constraints are of two types: limitations related to the configuration
space and limitations related to the mechanical conception of the W RS. The first
constraints define the area prescribed in the configuration space, i.e. the set of
possible configurations, in which the W RS' is allowed to move. This is represented
by the validity area in Fig.4.

Concerning the mechanical limitations of W RS, the limitations of the steering
system imply a minimum break radius of the vehicle R,,;,. This turning radius is
lower-bounded and consequently, the trajectory instantaneous curve radius must
be constantly greater than the lower bound vehicle turning radius:

1 < 1 (1)
S = Ktraject Kmazl = 55—
Rtrajectory rajectory e Rmzn

Finally, in order to avoid any steering function discontinuities and since
the steering angle is directly dependent on the instantaneous curvature of the
trajectory to be followed, a continuous-curvature trajectory is necessary. So, the
generated trajectories must be C? continuous.

3.2.2 Kinematic Constraints

The kinematic constraints depend on the speed profile along the trajectory. The
main kinematic constraint to be considered for WRS is the limitation of the
steering velocity. It is well known that the dynamic behaviour of the steering
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system is upper bounded. Since the steering velocity is related to the derivative of
the curvature, this implies that the trajectory instantaneous curvature derivative
is upper-bounded:

ktrajectory < kmaz (2)

3.2.83 Dynamic Constraints

These constraints are due to the limited and often nonlinear dynamic behaviour
of the WRS and its subsystems (bounded acceleration capabilities, variable
ground/wheel interaction, etc.). They mainly influence the longitudinal and lateral
accelerations and thus the velocities of the W RS. In order to provide safe
trajectories, the maximum centrifugal acceleration allowed for curve negotiation
is considered here. Different models which link the centrifugal acceleration to the
trajectory curvature are available. This paper focuses on a simplified model given
by:

Fmaz (3)

Rmazxz2 =
U2

with I';,4, the maximum allowed lateral acceleration and v the vehicle speed.
Note that in the automotive domain, the driver is sensitive to the accelerations and
mainly to the lateral acceleration. Considering a maximum value of acceleration
I'az, driver-dependent factors are taken in account.

This relation implies that the path curvature must be upper bounded in order
to ensure a limited centrifugal acceleration:

Rtrajectory < Kmaz2 (4)

Considering the different elements presented in this section, the constraints
upon the curvature can be summarized as follows:

Rtrajectory < min {Kmazla HmazQ} (5)
Rtrajectory < Kmagz

3.8 Parametric Cubic Spline Theory

As presented in Section 2.3, the Parametric Cubic Spline model has been chosen
among all the different mathematical models for the generation of 2-dimension
trajectories. A 2-dimension Parametric Cubic Spline is composed of two Cubic
Splines:

fo, @) =ay, t3+0by, > +cp, t+dy,
B0 = FUn @00 { () Sy T T

with t € [t;,t;11], ¢ = 1,2,...,n — 1, n the number of interpolated points, af,,
by, cf,, and dy, , coeflicients of x Cartesian coordinate Spline, ay, , by, , cf, . and
dy,., coeflicients of y Cartesian coordinate Spline and ¢ the parameter.

To ensure the smoothness of the trajectory and the continuity of the curvature,
Cubic Splines are calculated on conditions: each point to be interpolated represents
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a position condition. Moreover, continuity conditions on the first and the second
derivatives of the trajectory at each point must be provided, by solving a linear
equation system which computes the second derivative values (De Boor (1978)).

However, for one set of interpolated points, an infinite number of Splines is
available. These Splines are defined depending on two major elements: boundary
conditions and parameter values. As they can have strong effects on the Spline
shape, they have to be correctly predefined.

The definition of the continuity constraints an interpolation Spline curve must
satisfy at shape points is a crucial element. In the present solution, first and
second derivative continuities have been chosen. However, for the first and the
last points of the set of interpolated points, these constraints must be pre-defined.
Numerous boundary conditions are possible: equal to zero (natural conditions),
arbitrarily defined (generalized conditions), etc. (De Boor (1978)). A study on the
different boundary conditions solutions and on their effect on Spline interpolation
is available in Daniel et al. (2009). It shows that the Spline using the boundary
conditions which have been developed in this study has the best efficiency
compared to real road data.

Parametrization gives more freedom to the Spline, but it also adds another
variable to the computation process - parameter ¢ - whose values have to be chosen
appropriately. Indeed, the parameter expression has strong effects on the trajectory
shape as described in Floater (2008). Parameter values can be defined by:

e Linear relation:
ti=iwithie[0,n—1] €N (7)

e Chordal relation (distance dependent):

n—2

tit1 = Z ((Xi+1 — Xi)? + (Yig1 — Yi)2> with to =0 (8)
i=0

Nl

e Centripetal relation (square root of the distance dependent):

n—2 1
tig1 = Z ((Xi+1 - Xi)2 + (Yig1 — Yi)2> " with ty =0 9)
i=0

with X; and Y; the Cartesian coordinates of the i*" point to be interpolated.

To select the appropriate solution, these three different parameter definitions
have been tested based on the race track used in Section 5 (cf. Fig.6). The real road
data are based on centimetric accuracy measurements (provided by the race track
builder). The different Splines generated, based on the centreline shape points of
this race track, are compared to this accurate representation of the real road, and
the results are presented in Table.1.

This table confirms the performance of the Spline which uses centripetal values.
Indeed, the difference with the real road data is greatly reduced compared with the
Spline defined with chordal values. However, the improvement compared with the
Spline defined with linear parameter values is low: the Spline defined with linear
values is almost as efficient as the Spline defined with centripetal parameter values.
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Table 1 Impact of parameter definition on Spline efficiency

Parameter values Linear Chordal Centripetal
Maximum distance (m) 0.63 1.15 0.56
Mean distance (m) 0.26 0.34 0.24

4 Trajectory Generation Formulated as an Optimization Problem

4.1 Formalization

This Section describes the integration of the different constraints (presented in
Section.3.2) into the selected mathematical model. Considering that Splines have
polynomial expressions, the goal of the present trajectory generation process is
to find the optimal coefficients ay, , bys , crs, and dg, with: S; = [z, 3", i =
0,1,..,n—1 for the constrained trajectory fi(t) (cf. 6) with ¢ the parameter
defined in [t;, t;1+1] and n the number of considered points.

Based on the results presented in Section 3.3, linear parameter values are used.
This avoids the non-linear expression related to the centripetal expression and
generated good results. The different intervals [t;,¢;41] consequently corresponds
to: [0,1],[1,2],...[tn—1,ts] so that t;y; —t; = 1,Vi <n — 1. This problem is here
considered as referring n — 1 times to the problem of defining f;(¢) on the [0,1]
interval.

4.1.1  Inequality Constraints

Let g;(t) and e;(t) be the two boundary curves which describe the validity area.
The optimization consists in finding a Spline f;(¢) such that:

ei (t) < fi(t) < gi(t) (10)
with:

gi (t) {gSi (t) = Qgs, %+ bgsi %+ Cgsit + dgsi (11)
ei (t) {es; (t) = eg,t* + beg 1* 4 Cog, t + dess,

To generate a Spline which is constricted by the validity area boundaries, the
difference between the desired Spline and the upper and lower bounds must be
negative or positive respectively:

fi(t) = gi (1)
fi(t) —ei (1)

The question raised by (12) concerns more generally Spline positivity conditions
regarding its coefficients. The simplest way to ensure the positivity of a cubic
polynomial of the form f(t) =at® +bt> + ct +d with ¢ € [0,1] is when all the
coefficients a, b, ¢ and d are positive. However, this solution is highly conservative
and strongly restricts the set of possible polynomials. In the literature, several
studies have been carried out on the positivity of cubic polynomials. Particularly,

0
. (12)

IV IA
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Schmidt showed in Schmidt and HeB (1988) that a cubic polynomial f () defined
for t € [0, 1] can be equivalently transformed into:

f(s)=as®+Bs>+ys+0 (13)

with s € [0; +o00[, t = sy and with:

a=a+b+c+d

B=0b+2c+3d
vy=c+3d (14)
0=d

The positivity of (13) is then defined regarding the «, 3, v and ¢ coeflicients
such as:

f(s)>0= (a,B,7,0) € AU B,with
A={(a,3,7,6) :a>0,8>0,7>0,6 >0} (15)
B = {(a,3,7,0) : @ > 0,6 >0,4a7® + 463% + 27a26% — 180376 — 3*42 > 0}

A and B are the two solution sets for the different coefficients. The solution
subset A presents linear constraints and so, can easily be adapted to the present
context. Subset B is defined by a non linear expression involving that the set AU B
is rather complicated to be used in practice. In the present formulation of the
optimization process, the considered subset of possible solutions is limited to A.

Based on (13), the inequalities of the parameters a, b, ¢ and d for f(¢) are then
defined for ¢ € [0,1] such that:

f(t)>0= (a,b,c,d) € A with

A={(a,bye,d):a+b+c+d>0,b+2c+3d>0,c+3d>0,d >0} (16)

The combination of (12) and (16) leads to the set of linear inequalities
presented in (17). It can be noticed that the inequalities on dy; define a square
of possible solutions. These inequalities are directly related to the position of the
Spline points. In particular cases, this may lead to bound values which are very
close, so that dy, can only vary by a few centimetres. The considered inequalities
can thus be very conservative.

Qeg, + besi + Ces, + desj < afs, + bfsi + Cfs, + dfsj < ags, + bgsi + Cgs, + ngi
besi + 2865,; + 3d€S7: < bfs,., + ZCfSi + 3dfs7¢ < ngf, + QCgsi + 3dgs,;
Cesi + Sdesi S Cfsi + 3dfsl S CQS,; —+ 3d95i
desi S dfsl S ngi

(17)

4.1.2  Equality Constraints

In addition to the inequalities, the optimization process must fulfil the continuity
requirements. Consequently, it must provide C°, C' and C? continuities which are
obtained, for Parametric Cubic Splines, via the following relation:

fSi (tz’+1) = f.Si_,_l (ti+1) afs, + bfsi + Cfs, + dfsi = dfsi_H
f.Si (ti-‘rl) = -fSi+1 (ti-i-l) = 3afS,i + 2bei + Cfs, = cfSiJrl (18)
fsi (tiv1) = fsipy (tig1) 6ass, + 2bss, = 2bgs, |
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4.2 Cost Criterion

The cost criterion can be defined regarding various elements or parameters.
Common criteria are:

e No criteria. The solution of the optimization problem only considers the
constraints. In the current context, this kind of optimization leads to the
generation of a trajectory which only fulfils the geometric constraints given
by the validity area boundaries. Results based on this strategy will be
presented in Section 5.

e Trajectory length. This criterion is used in numerous robotic applications as
it allows the definition of the shortest trajectory which links the current
robot configuration to the desired robot configuration. For example, it can
be described according to the trajectory point coordinates x and y in the
following way:

szfmmmmww (19)

e Trajectory energy. In the proposed constrained trajectory generation, the
strain energy criterion is expressed according to the trajectory curvature
as follows (Delingette et al. (1991)):

E:/ﬁ% (20)

In this particular case, the curvature x corresponds to:

w (w(t),y(0), 1) = LD = F D50 (21)
(@2 (t) + 92 (t))>

This criterion is in accordance with the aforementioned constraints. In
addition, its minimization implies smoothing the trajectory curvature which
is directly linked to the energy consumption of the vehicle. For example,
a trajectory tracking system, with a smoother curvature, will require less
steering energy. Finally, this criterion is well adapted to the current global
context of power saving and power consumption reduction.

By replacing x(t) and y(t) functions into their formal expressions, (21) becomes
non-linear (and so becomes (20)). The optimal solution (20) is also hard to
formulate and to compute (Ye and Qu (1999)). To overcome this problem, a
suboptimal solution is determined. Considering the expression of z(t) = f,,(¢) and
y(t) = fy,(t), the objective is to simultaneously minimize the curvature of each
parametric curve s, and k, given by:

PO nd ey (1), 1) = — 2O (22)

’Qx(x(t)vt)zis 3
(1+a2(t))* (1+9%(@)®
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Considering that #(¢)? and g(t)? are small compared with 1, the energy of the
suboptimal solution which corresponds to the cubic interpolation Spline with C?
continuity, can be expressed by:

tn

E= / (#2 + §2) dt (23)

to

Regarding the Spline expression (cf. (6)) and its continuity properties, the
continuous expression of the energy E can be discretized using the classic Euler
method. Finally, according to Pollock (1999), the total is assumed to be of the

form:

n

n—2 2

~ 4hi /.5 9 4hi /.5 9

E - Z 3 (ble + bf"H bf1i+1 + bfTH,l) + 3 (bfyi + bf?/-; bf?/i+1 + bfyi+l) (24)
=1 i=1

4.8 Optimization

The trajectory generation presented in this section and formulated as an
optimization problem must fulfill the following conditions:

e Linear inequality constraints (cf. (17)).
e Linear equality constraints (cf. (18)).

e A discretized quadratic cost criterion (cf. (24)).

There are several optimization techniques which help to solve such systems
(Boyd and Vandenberghe (2004)). However, considering the different types of
constraints and the fact that they all have a linear or quadratic expression, the
convex quadratic programming optimization approach has been chosen; it is of the
following form:

©* =min ;07HO + 7O
S}
A© =B (25)

such that: {C@ <D

with © € RZ4 (=X the optimal coefficients of f;(t) interpolating n points
such that:

T
0= [afsl ) bf51 »Cfsyo dfsl v Afs bfsn_l ) Cfs,,,_lvdfsn_l] (26)

and A € R23(n-2]x24-(n-1)] B ¢ RR4-(m-2)]x[1] ¢ ¢ RI242(n-D]x[24-(n-1)]
Dc R[2-4-2-(n—1)]x[1]

To solve (25), the well known Dantzig- Wolfe algorithm has been used here.

It is clear that this approach is well suited for the present problem since:

e The equality and inequality constraints can respectively be written in the
AO = B and CO < D matrix form,
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e The energy criterion, due to its discrete formulation, is only expressed using
quadratic terms of the different by, and by, coeflicients. It can also be easily

expressed in the matricial expression @7 HO but, as there are only quadratic
elements, f7© =0,

e This optimization is convex quadratic, so there is only one global minimum,

e It does not need long calculation time which may coincide with real-time
constraints. Indeed, this constrained trajectory generation has been tested
in real-time conditions with a standard navigation system using a 1Hz
sampling frequency. In these conditions, the system is able to compute a new
constrained trajectory over a sliding horizon of a least 100m in front of the
vehicle. These results have been obtained using a Dual Core CPU computer
with 4Gb RAM.

4.4 Remark

It can be noted that geometric constraints (limitations of the configuration space
and continuity of the trajectory) are explicitly formulated in the optimization
through (17) and (18) and that the kinematic and dynamic constraints are
implicitly described by the criterion to be minimized (the minimization of
the strain energy should provide low curvature variations and values). These
hypotheses are post-checked after optimization. Note that the checking of the
curvature derivative is based on Fraichard and Scheuer (2004) which, considering
that the W RS moves on a plane surface with non-sliding wheels, defines & for a
constant velocity v such that:

: ¢

"7 obcos? (9) 27)

with b the wheelbase of the vehicle and ¢ the wheel angle.
As ¢ < ﬁh’d), expression (27) can be simplified in a more conservative way:
¢
_ 9 28
h=— (28)

5 Test Results

This section presents the results of the trajectory generation presented in Section
4. Further to the study of the road model estimation results, the comparison of
three trajectory generation techniques on different roads is described.

5.1 Road Model Estimation Results

Since the road model is used to define the geometrical constraints of the
optimization, it is important to validate the results obtained. The road model
is composed of three continuous curves: the road middle curve, the left road
boundary curve and the right road boundary curve. The two boundaries are
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Figure 6 Complete Road Model Estimation

determined using the geometric translation of the middle road curve by several
metres to the left and to the right of the road centrelane.

To validate the road model estimation, comparison tests were carrried out with
real road data which correspond to a race track. These data were obtained via
topological measurements with a centimetre accuracy. The goal is now to compare
the real road data with the road model defined by Splines. Note that all the
generated trajectories presented in this section have been computed using linear
parameter values based on the shape points of a digital map database (black points
in Fig.6). Fig.6 presents the results of the road model estimation along the entire
race track. It is difficult to distinguish any difference between the real data and
the Spline. This is confirmed by Fig.7 top plot which selects a portion of the race
track. The squares Area 1 and Area 2 are specific road portions used to compare
the different trajectories in the following section.

In Fig.7 bottom plot, the results of the error study between corresponding
curves (real left curve against estimated left curve and real right curve against
estimated right curve) show that the error is close to or lower than 50cm with a
mean value of 29c¢m in both cases. This confirms that, with only the information
of the digital map database, accurate results in the road profile reconstruction can
be obtained considering precise shape point locations.

5.2 Constrained Trajectory Generation Results

For clarity reasons, the figures presented in the next Sections correspond to
a focus on relevant parts of the race track. Only the validity area boundaries
and the trajectories to be compared are represented (the road boundaries have
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Figure 7 Road Model Estimation Focus

been removed). The considered driving lane is the right lane: the validity area is
computed in this part of the road.

Fig.8 corresponds to results obtained in Area 1. This figure presents - on the
one hand - the results of the constrained trajectory generated without energy
minimization (WOEM) and - on the other hand - a Spline which interpolates
shape points located in the centre of the lane (C'L). Note that for clarity reasons,
the figure has been rotated by 90°. First, it is important to notice that both
trajectories are kept in the validity area and so, provide the geometric constraints
linked to the road. Secondly, it is clear that there is hardly any difference between
them: they are both located near to the middle of the lane. This is confirmed
by the curvature comparison depicted in Fig.9. These figures tend to show that
the WOEM trajectory (which only provides the constraints) gives results similar
to those of the CL trajectory (normal Spline interpolation). However, the major
difference lies in the approach: if the normal Spline interpolation requires the
accurate location of the different shape points and so, defines a unique solution
based on a priori knowledge, the constrained trajectory generation looks into
all the possible trajectories allowed by the validity area and selects a trajectory.
Consequently, the constrained trajectory is less sensitive to positioning errors and
to digital map database errors. There is also less a priori information required.

5.8 Energy Minimization Results

As mentioned in Section 4.2, the trajectory energy is the cost criterion of the
present constrained trajectory generation. It should help in the definition of
trajectories which have better properties in terms of smoothness compared with
those presented in the previous section. To validate this aspect, the present section
is subdivided into two parts corresponding to the areas marked Area 1 and Area
2 in Fig.6.

Fig.10 presents the results of the WOFEM trajectory and the trajectory which
minimizes the energy (WEM) in Area 1. Contrary to the previous figure (Fig.8),
the differences are here more visible as the W EM trajectory uses the available
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Table 2 Energy Comparison

Ecr Ewoem Ewem Effcr Effwoem
Area 1 0.0391 0.0386 0.0364 6.8% 5.6%
Area 2 0.0248 0.0241 0.0222 10.6% 7.9%

lateral area with greater efficiency than the WOEM trajectory: it is located
alternately in the interior and in the exterior of the validity area. Note that both
trajectories are still kept inside the validity area. The curvatures, depicted in
Fig.11, also present more visible differences. Indeed, the curvature of the WEM
trajectory has lower amplitudes and is smoother than the WOFEM trajectory
curvature, especially in the first bend (between 25m and 100m).

Fig.12 presents the WOEM and W EM trajectories in Area 2. Here again, both
trajectories are within the validity area. Moreover, as for the previous test, the
W EM trajectory uses the available lateral area more efficiently while the WOEM
trajectory stays close to the centre of the lane. This is confirmed by the curvature
plot (Fig.13) which shows an improvement of the curvature shape as curvature
fluctuations are smoothed. Remember that the objective is not to estimate the real
road curvature represented by a dashed/dotted line in Fig.9, Fig.11 and Fig.13 but
to generate a bounded trajectory based on digital map data. However, even with
the minimization of the energy, the W EM trajectory presents a peak at the end.
This is mainly due to the shape of the validity area which does not correspond to
reality on this particular section.
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Table.2 presents the different energies computed respectively for the centrelane
trajectory (E¢yr,) and for the constrained trajectories generated without (Ewogpn)
and with (Ewga) the energy minimization in Area I and Area 2. In addition,
the reduction efficiency is described (Effor = W and Fffwoem =
W) It must first be noted that the integration of the energy criterion
has a positive impact on the energy value as it is reduced in each test. Then,
the energy reduction is significant as it goes up to 10.0% in these cases. The
effectiveness of the solution depends on the initial smoothness of the road
geometry. In fact, the test results described in this section were obtained in circular
bends. The CL and WOFEM trajectories which are located near the centre of the
validity area (so near the centre of the lane) are also already close to the minimum
energy curve. This may explain the reduction values of 5.6% and 6.8% for the
considered race track sections. Finally remember that the search area is limited to

subset A. Better results could be expected, considering AU B.

The results presented in this section show the good properties of the trajectory
generated under constraints with the minimization of the energy compared with
real data. Indeed, the minimization of the energy provides trajectories which
is always located in the validity area and so, in the current driving lane.
Moreover, these trajectories make a more use more efficient use of the lateral area
available in the validity area for energy reduction purposes. The advantage of this

minimization lies in a smoothed curvature shape.
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Table 3 Post-checking of the constraints for Area 1

kmaz(m™") fimaz(m™ts7h) Crmaz(m.s2)
CL 0.055 0.005 3.8
WOEM 0.053 0.005 3.7
WEM 0.046 0.003 3.2
Threshold 0.090 0.038 3.0

Table 4 Post-checking of the constraints for Area 2

Emaz(m™") fmaz(m~ts7h) Crnaz (m.s™2)
CL 0.068 0.011 4.7
WOEM 0.062 0.010 4.3
WEM 0.055 0.006 3.8
Threshold 0.090 0.038 3.0

5.4 Post-checking of the Curvature and Curvature Derivative Constraints

As mentioned in Section 4.1, post-checking of the constraints on the curvature (cf.
(1) and (3) with (4)) and on its derivative (cf. (2)) was carried out for each test.
The results of this checking are available for Area 1 and Area 2 respectively in
Table.3 and Table.4. A threshold of 0.09m~! was taken for the constraint linked
to the minimum curve radius of the car (1). It corresponds to an average turn
radius of 11m. The threshold of the constraint linked to the curvature derivative
is of 0.038m~1.s7l. It was obtained using (28) with a wheelbase b of 2.5m, a
speed v of 30km.h~! (speed based on the configuration of the bends ), and
a maximum steering angle speed of 15.7rad.s™! obtainable with an electrically
driven steering wheel for lateral control (Pouly (2009)). Finally, the threshold of
the constraint linked to the car acceleration (4) was fixed to the common lateral
acceleration value used for comfortable driving: 3m.s~2. These three constraints
are respectively marked Kkmaz, Fmaz and I'yee in the tables. On the one hand,
these tables clearly show that the first constraint which corresponds to the
maximal curvature allowed by the car geometry, is respected by all trajectories.
This is also the case for the second constraint which is linked to the maximal
steering speed. On the other hand, the effect of the energy minimization can also
be noticed in these tables. Indeed, the maximum curvature and the maximum
curvature derivative of the WM FE trajectories are always reduced compared with
the others.

However, the third constraint which is linked to the maximal allowed
acceleration, is not provided by any trajectory for a fixed constant speed of
30km.h~!. Nevertheless, Fig.14 shows that this constraint is globally satisfied
and that there is only a transient overshoot at the entrance of the first bend
(around 50m). Note that a small reduction of the speed, respectively 1km.h~! and
4km.h~"! for Area 1 and Area 2, would help to satisfy the constraint on the whole
trajectory. Also note that if the third constraint is not provided, it can be due
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to the average definition of the validity area. In fact, for Area 2, the end of the
second bend which presents a curvature peak, also presents a validity area of a
shape which does not correspond to reality: the validity area width is not constant.
The trajectory generated under constraint is also strongly dependent on the road
geometry and on the quality of the validity area. Nevertheless, the benefits of the
present trajectory generation are shown through the reduction of the curvature
maximal value coupled to the reduction of its derivative maximum.

5.5 Using Classical Digital Map Data

In the previous sections, the comparison of three trajectory generation techniques
was studied on a test track composed of regular bends separated by straight lines.
This section is devoted to the comparison of trajectories on open roads digitalized
with the inaccuracies described in Section 2.1. As for previous figures and for
clarity reasons, only the boundary curves, the WOEM and the W EM trajectories
are presented in Fig.15.

Similarly to the results presented in the previous sections, both trajectories are
kept within the validity area and the W EM uses the area available more efficiently.
The corresponding curvatures presented in Fig.16 show an important smoothing of
the curvature. These figures show similar results and similar benefits of the W EM
trajectory compared with conventional approaches (CL and WOEM). This is
confirmed by Table.5 which, in addition to the energy values of the trajectories
presented in Fig.15 (Test 1), shows the energy values for additional roads of
different compositions. These roads correspond to a right bend (7est 2), a country
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Table 5 Energy Comparison

Test 1 Test 2 Test 3 Test 4 Test 5
Ecr, 0.0117 0.0223 0.0506 0.141 0.0354
Ewoewm 0.0119 0.0228 0.0507 0.145 0.0356
Ewewm 0.0106 0.0165 0.0452 0.113 0.0270
Effer 9.1% 26.3% 10.5% 20.1% 23.9%
Effwoem 10.5% 27.8% 10.8% 22.0% 24.4%

road (Test &) and an in-city road composed of multiple bends and straight lines
(Test 4), and finally a roundabout followed by a straight line (Test 5).

The integration of the energy criterion has a positive impact on the energy
value as the energy is reduced in each test. Then, the energy reduction is variable
as it passes from 9.1% to 27.8%, but in nearly each case, it is higher than the
reduction values presented in the previous sections. This is due to the non-regular
shape of the test considered here and to their diverse composition (succession of
opposite direction bends, roundabouts and straight lines, etc.).

6 Conclusion
This document has presented a new approach to trajectory generation for control-

oriented Advanced Driver Assistance Systems. Based on the inaccuracies of the
digital map database, a template which defines the set of possible trajectories is
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generated. The trajectory generation, defined as an optimization problem, searches
for a suboptimal solution, included in the template, which satisfies geometric,
kinematic and dynamic constraints. The convex optimization is performed through
the minimization of the trajectory strain energy.

Tests were carried out to validate the improvements of the present approach.
Real data of a race track were used to compare three trajectory generation
methods: basic Spline interpolation, constrained trajectory generation without
energy minimization and finally constrained trajectory generation with energy
minimization. The study of the different trajectory shapes, curvature and energy
has shown that the present approach gives better results than the simple
interpolation approach. In addition, the present constrained trajectory generation
is a good solution for control-oriented ADAS as it provides a set of continuous
information about the current and the upcoming road context, thus overcoming
the described limitations of the digital map database. At the same time it directly
integrates - into the trajectory generation process - control-based constraints
related to the road geometry but also constraints related to the kinematic and
dynamic properties of the car, which are commonly included in control systems.

Future research work will concern the integration of the dynamic and
kinematic constraints presented in (5) directly into the optimization formulation.
Furthermore, additional constraints related to the vehicle (wheel/road interaction,
etc.), to the road profile (elevation), and to the driver will be considered.



Navigation-based Constrained Trajectory Generation for ADAS 27

References

Beji, L. and Abichou, A. (2009) ‘Trajectory generation and tracking of a mini-rotorcraft’,
Proc. of the 2009 Int. Conf. on Climbing and Walking Robots (CLAWARO09),
Istanbul, Turkey.

Boyd, S. and Vandenberghe, L. (2004) ‘Convex Optimization’, Cambridge University
Press.

CAMP (2004) ‘Enhanced digital mapping project final report’, United States Department
of Transportation, Washington D.C., USA.

Daniel, J., Pouly, G., Birouche, A., Lauffenburger, J-P. and Basset, M. (2009)
‘Navigation-based speed profile generation for an open road speed assistant’, Proc. of
the 2009 IFAC Symposium on Control in Transportation Systems (CTS09), Redondo
Beach (CA), USA.

Daniel, J. and Truong, C. and Lauffenburger, J-P. and Basset, M. (2009) ‘Real-time
Trajectory Generation for Advanced Driver Assistance Systems Applications’, Proc.
of the 2009 IEEE Int. Forum On Strategic Technologies (IFOST09), Ho Chi Minh,
Vietnam.

De Boor, C. (1978) ‘A practical guide to spline’, New-York Springer-Verlag.

Delingette, H. and Hebert, M. and lkeuchi, K. (1991) ‘Irajectory Generation with
Curvature Constraint based on Energy Minimization’, Proc. of the 1991 Int.
Workshop on Intelligent Robots and Systems (IROS91, Osaka, Japan.

Dubins, L.E. (1957) ‘On curves of minimal length with a constraint on average curvature,
and with prescribed initial and terminal positions and tangents’, American Journal
of Mathematics, Vol. 79, pp.497-516.

Eidehall, A., Pohl, J. and Gustafsson, F. (2007) ‘Joint road geometry estimation and
vehicle tracking’, Control Engineering Practice, Vol. 15, pp.1484—1494.

Floater, M.S (2008) ‘On the deviation of a parametric cubic spline interpolant from its
data polygon’, Computer Aided Geometric Design, Vol. 25, pp.148-156.

Fraichard, T. and Scheuer, A. (2004) ‘From Reeds and Shepp’s to Continuous-Curvature
Paths’, IEEE Transaction on Robotics and Automation, Vol. 20, pp.1025-1035.
Gémez-Bravo, F., Cuesta, F., Ollero, A. and Viguria, A. (2008) ‘Continuous curvature
path generation based on 8$-spline curves for parking manoeuvres’, Robotic

Autonomous Systems, Vol. 56, pp.360-372.

Graettinger, T.J. and Krogh, B. H. (1989) ‘Evaluation and time-scaling of trajectories
for wheeled mobile robots’, Journal of dynamic systems, measurement, and control,
Vol. 111, pp.222-231.

Lauffenburger, J.P. and Basset, M. and Coffin, F. and Gissinger, G.L. (2003) ‘Driver-aid
system using path-planning for lateral vehicle control’, Control Engineering Practice,
Vol. 11, pp.217-231.

Li, K., Tan, H.S., Misener, J. and Hedrick, K.J. (2008) ‘Digital map as a virtual sensor
- dynamic road curve reconstruction for a curve speed assistant’, Vehicle System
Dynamics, Vol. 46, pp.1141-1158.

Nagy, B. and Kelly, A. (2001) ‘Trajectory Generation for Car-Like Robots Using Cubic
Curvature Polynomials’, Proc. of the 2001 Conference Field and Service Robots
(FSRO01), Helsinki, Finland.

Nelson, W. (1989) ‘Continuous-curvature paths for autonomous vehicles’, Proc. of the
1989 Int. Conference on Robotics and Automation (ICRA89), Scottsdale (AZ), USA.

Pinchard, O. and Liegeois, A. and Pougnet, F. (1996) ‘Generalized Polar Polynomials
for Vehicle Path Generation with Dynamic Constraints’, Proc. of the 1996 Int. Conf.
on Robotics and Automation (ICRA96), Minneapolis (MN), USA.



28 J. Daniel et al.

Pollock, D.S.G. (1999) ‘Smoothing with Cubic Splines’, Handbook of Time Series
Analysis, Signal Processing, and Dynamics, Academic Press, pp.293-322.

Pouly, G. (2009) ‘Analysis and synthesis of advanced control laws for vehicle ground
guidance’, PhD dissertation, Université de Haute-Alsace.
Schmidt, J.W. and HeB, W. (1988) ‘Positivity of cubic polynomials on intervals and
positive spline interpolation’, BIT Numerical Mathematics, Vol. 28, pp.340-352.
Thomas, B., Lowenau, J. , Durekovic, S. and Otto, H.U. (2008) ‘The actmap - feedmap
framework, a basis for in-vehicle adas application improvement’, Proc. of the 2008
IEEE Intelligent Vehicles Symposium (I1V’08), Eindhoven, Netherlands.

Ye, J. and Qu, R. (1999) ‘Fairing of Parametric Cubic Splines’, Mathematical And
Computer Modeling, Vol. 30, pp.121-131.



