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Korn Inequalities for the Sphere and Circle

B. BERNSTEIN & R. A. TOUPIN

1. Introduction ™

Let ® be a given region in either two or three dimensions. Let ¥” denote
the class of all vector fields u(«), continuous in the closure & of ® and # times
continuously differentiable in ®& such that the Dirichlet integral

D(u) =(5fu,-’ju,-l,-dv (1.1)
is finite. Let d,; and w;; denote the symmetric and antisymmetric parts of the

gradient of u:
dj =ty =150 ;+2%,),

(1.2)
;= thy; 51 =5 (15— W ;).
We shall also use the abbreviated notation
dz:di]'dii’ wzzw,-ja)”, trd=dkk: (1.3)

The summation convention, Cartesian coordinates, and Cartesian tensor
notation will be used throughout.

A Korn inequality states the existence of a number K which depends only
on the shape of the region & such that

wa*dv§Kmfd2dv (1.4)

for all vector fields which satisfy one or more side conditions. That an inequality
of the form (1.4) cannot hold for arbitrary vector fields in € follows from the
existence of pure rotations, #,=¢;;, x; 4, h = constant vector, ¢, 53=1, ¢;;, =€, 4-
_— o~

* While this paper was being written, the authors were in touch with L. E. PAYNE
& H. F. WEINBERGER, who, by using a variational approach, were able to obtain
extrema for the expression (1.6) in the second case for the sphere and the circle.
But they were not at that time able to prove that their largest extremum was actually
the supremum of (1.6) and hence Korn’s constant in the second cese. However,
after this paper had gone to press, the authors were delighted to learn that PAYNE &
WEINBERGER had succeeded in formulating a proof of this, and thus KorN’s constant
mm the second case is now known to be 43/13 for the sphere and 3 for the circle.
PavyNE & WEINBERGER will publish their work in a subsequent issue of this Archive.

The authors were dissuaded from withdrawing this paper in the light of the
results of PAyNE & WEINBERGER because, although the numerical values of upper
bounds for KorRN’s constant contained herein are no longer of value, the remainder
of the work remains a contribution. Also the adaptation of the method of FRIEDRICHS
contained herein is applicable to more general regions, whereas PAYNE & WEINBERGER
presently feel that their method is not.



We define, with FRrRIEDRICHS [1], Z° to be that subset of %' consisting of
those fields *u which vanish outside some compact subset of &, and 2° to be
the set of fields u in " for which fields *u in £® may be found to make D (u — "u)
arbitrarily small.

Korn inequalities for a class of regions, called 2-domains by FRIEDRICHS [I],
are known to exist. For a definition of the class of £2-domains the reader is re-
ferred to [I]. It suffices here merely to note that this class of regions includes
the sphere and the circle. Moreover, for an £2-domain, Korn inequalities exist
under three types of side conditions. Following Kor~ and FRIEDRICHS, we
consider separately the three sets of side conditions which, using the terminology
of FrIEDRICHS, we call the three cases:

First case: uc2°,

Second case:  [w,;dv=0, uCE, (1.5)
&

Main Case:  [w,dv=0, uc®¥, and d,;;=0.

If a Korn inequality exists for a given region &, subject to a given one of
the side conditions (1.5), then the set of real numbers which are the values of

Jw?dv

%ﬁ (1.6)

&
subject to the given side conditions, has an upper bound, and hence a least
upper bound. We call this least upper bound Korw’s counstant for the region &
in the first case, the second case, and the main case respectively. We denote these
dimensionless positive numbers by K§, K%, and K. Any number greater than
or equal to K%, Q=1, 2, M, will be called an upper bound for K%, and any
number smaller than or equal to K§ will be called a lower bound for K§. Sub-
stitution of any upper bound for a Korn constant in (1.4) yields an inequality
valid for all vector fields satisfying the appropriate set of side conditions (1.5).

The proof of the existence of a Korn inequality in the first case for an £-

domain follows immediately from the identity

fowrdv= fd*dv— [ (trd)*dv, (1.7)
& & &

which is shown by FrieDricHs [1] to hold for all u in 2° when @ is an 2-domain.
Clearly, then, for the first case -

wazdvgmfdga'v, (1.8)

and K% <1 for all @. Moreover, since it is easy to construct vector fields € 2°®
for which trd=0, we see from (1.7) that K} =1 for any £2-domain.

The useful role of the identity (1.7) and of KORN’s inequality in the first
case which follows from it in studies of the displacement boundary value problem
of linear elasticity theory is made apparent in the papers of Korwn [2, 3] and
FRrRIEDRICHS [1].



To prove the existence of a Korn inequality in the second and main cases
is not so easy. As shown by FRIEDRICHS and in Section 4, the second case follows
easily from the other two, whence the name, the ‘““main case”. We base our
understanding of the main case on the paper by FrIEDRICHS. With him we
confess inability to follow KORN’s original treatment.

The constructive proof in [I] of the existence of a Korn inequality in the
second and main cases provides a technique for computing, at least in principle,
upper bounds for the Korn constants K§¥ and K% for any £2-domain. But to
our knowledge, no one has found a value for the Korn constants K% or K
for any region. Nor have we seen in the literature any upper bound for these
numbers for any region whatsoever. Our curiosity was aroused as to just how
large or how small the Korn constants might be for even a region so simple
as a sphere or a circle. For these regions it turns out that FRIEDRICHS'S construc-
tion for the second and main cases can be simplified somewhat, though we retain
its essential ingredients. To the simplified proof for the sphere and circle we
add a determination of the following upper and lower bounds: '

For the sphere: 3 < K%Z <20, 3<K¥ <17

For the circle: 4<K2<6, K{<4. (1.9)

It is our belief that the method developed below for the sphere and the
circle can be extended to more general regions.

2, Lower bounds for Korn’s constants

a) The case of three dimensions. For the purposes of this section let & be
any region for which the centroid and moment of inertia tensor about the centroid
{EULER’s tensor) have meaning. Let the origin of the Cartesian coordinate system
x, coincide with the centroid of &, so that the moment of inertia tensor about
the centroid is given by

I,j=6fx, x;dv. (2.1)

Let h be a constant unit vector field, 4,4, =1, and consider the vector field
;= (B, %)) €5 Pty %, (2.2)
Viewed as a displacement field of an elastic body say, the field u represents

a uniform twisting in which each particle in a plane normal to h remains in
that plane but is displaced in a direction normal to h and its position vector a.
We obtain for the vector field (2.2)
fd2dv = %(6” —_— h1 h,) I‘,‘,
]
fw?dv= [d2dv+2hh 1,
& &

d.

i, = 0,

from which it follows that
’ [w2dy
&

S vro
G

4155 h; by

= Gy hih) Iy 23)



Also, since the derivatives of #, are linear and homogeneous in x,, and since
the origin is at the centroid of &, (1.5), is satisfied. Furthermore, since 4, ; ;=
our example belongs to the main case.

In general, the right-hand side of (2.3) will vary with the choice of the direc-
tion h. As can be shown by the method of Lagrange multipliers, it will have
extrema when h is in the direction of the principal axes of the moment of inertia
tensor for the region. The largest we can make the right-hand side by varying
the unit vector h is 4 Tmax

1+ Inea+Imin ’ (24)
where I .,=1 0= 14, are the eigenvalues of the moment of inertia tensor.

Considering different regions now, (2.4) will have the smallest value for a
region for which the three eigenvalues are all equal, in which case its value
will be 3. Thus for any region in three dimensions K¥ >3, KZ=3. Since (2.4)
yields a lower bound for K¥ (and K2) for any given region we may make the
following observations:

1. There is no single number K which will yield a Korn inequality in the
second or main cases for all three-dimensional regions—i.e., the set of Korn
constants in the second and main cases for three-dimensional regions has no
upper bound.

2. Given any region & in three dimensions, one can find a sufficiently long
and thin right circular cylinder ® whose Korn constant K4, exceeds K% .
b) The case of two dimensions. Next we establish a lower bound for Korn’s

constant K§ for regions in the plane. For this purpose we compute the ratio
(1.7) for the 2-dimensional vector field u having the form

u, = (b %) €, %;. (2.5)
All indices now take the values 1 and 2, and ¢;,=1, ¢,;;=¢;,. Again we assume
the origin of the coordinate system coincides with the centroid of the planar
region and let T :Gfxf %;dv (2.6)

denote the moment of inertia tensor of the planar region & about its centroid.
For a vector field having the form (2.5) we get

2fd2dv=2tr] Jilh,,
wazdv—4]” s

from which it follows that
2d
(5fw v _ 4]’7'h,'hj, (2 7)
[ddv ~ 2t )— Jihik .
6

The maximum value of the right-hand side of (2.7) is attained when h is an
eigenvector of J,; corresponding to its maximum eigenvalue. Thus the maximum
value for the ratio in (2.7) is 4 Jmax

fmax"‘z.]min ’
which lies between % and 4. It follows that for any region in the plane K%i=
The lower bounds announced in Section 1 are established.

(2.8)



3. Some differential identities and algebraic inequalities

In what follows we shall make repeated use of the identities

0,51 =dp; p—dyy 5, (3.1)
\
A rrt Arij— &g 1— =0, (3.2)
and of the inequality,
(trd)2 < nd?, (3.3)

where # is the dimension of the space. The differential identities (3.1) and (3.2)
are well known in elasticity theory. The latter are the familiar compatibility
conditions that d,; be expressible in the form (1.2);. Inequality (3.3) follows
easily from CaUcCHY'S inequality, 2ab<a?{¥2, in a frame of reference where
d;;1s diagonal. Since both members of the inequality are invariant under ortho-
gonal transformations, (3.3) is valid always.

From (3.1) we get
0,5 04, = 2 1 Ay p — dijadi ). (3.4)

We shall be concerned in particular with vector fields which satisfy the
differential equations 4,, ;=0 of the main case. For this class of vector fields
we get from (3.1) and (3.2):

72(1)”- =w”-,kk = 0,
Wy, = = Byji (3.5)

d:;,kk = dkk,;’y-

4. Upper bounds for K in terms of an upper bound for Kg

That every upper bound for KoRN's constant in the main case determines
a corresponding upper bound for KORN’s constant in the second case was shown
for an 2-domain by FRIEDRICHS [I]. We wish to present here a slight variation
or refinement of his result which is necessary for us to establish upper bounds
for K% as small as those announced in Section 1.

In this section we take ® to be an £2-domain to which the divergence theorem
applies. As shown by FRIEDRICHS, any vector field in €, satisfying the side
conditions (1.5), of the second case, may be uniquely decomposed into a sum

u="u+"u, (4.1)
where ‘uc€2°, and ""u satisfies the side conditions of the main case, namely,
"uc®s, d;;=0, ["w;dv=0, (4.2)

®

where "d;; and "w;; are the deformation and rotation measures of "u. This
follows from the known uniqueness, existence, and differentiability properties
of solutions of (4.2) with prescribed data for “u on the boundary, and the fact
that [ ‘w,; dv=0 for all u.

6

Let K" be an upper bound for K¥, so that we have
Jrwrdv< K" ["ddv. (4.3)
(3 ®



Now given a field #€%?, decomposed as in (4.1), let *u be any field in €2N 2*
and define
*u=‘u-t+"u. (4.4)
Then
[*w2dy = f['w2 + "0+ 2 0wy "o, ] dv
& (4.5)
—f[d2 (tr'd)2 4 K" "d®*4-2*u, ;"w,,] dv.

In (4.5) we have used (1.7) to eliminate ‘w? and (4.3) to eliminate w2 Using
the identity (3.5), and the fact that *u vanishes outside some compact subset
of &, we can transform the last term in (4.5), with the aid of the divergence
theorem, as follows:
2 f ‘uu- ”w,-,- dv=2 f [(.Mi ”(,()1 1’),1 - 'u, "w,-i,,] dv
& G
=2 ud;;dv=—2f (tr'd) (tr"d) dv
J f (tr'd) (trd) (4.6)

17,%

< [[(tr*d)? + (tr "d)?] dv,
®

where the last line follows from CAUCHY's inequality. Substituting (4.6) into
(4.5) and applying (3.3) yields

J*0?dv< [ d2dv+ (K" +n) [ "d?dv. (4.7)
6 6 6
FRIEDRICHS [I] has shown that
[*@dv= [ ["d®+"d*)dv, (4.8)
& 6
and thus (4.7) and (4.8) yield
J*0?dv< (K" +n) [ *a2dv. (4.9)
G 6

Now, as remarked by FRIEDRICHS, any ‘& 2® as well as its first derivatives
may be approximated uniformly by a ‘u€ 2*N%% Thus (4.9) holds for all fields
(4.4), where *u€ 2®. Moreover, since 'uc2°, we may find a *‘u€ 2* to make
D(*u—u)=D (‘u—"u) as small as desired, and since

D(uy=[d*dv+ [wtdv
& &
for any u, it follows from (4.9) that
fw2dv< (K’ 4-n) fd?dv (4.10)

&
for any u satisfying (1.5)2.

Therefore if K" is an upper bound for KorN’s constant in the main case,
hen K gi
then K given by K—K'4n (4.11)

is an upper bound for KoRN’s constant in the second case.
FrIeEDRICHS showed that if K" is an upper bound in the main case, then
K given by K =2max(1, K") (4.12)

is an upper bound in the second case.



Since we have established that, in three dimensions, K’ =3, the upper bound
for the second case as given by (4.11) is never worse than the upper bound (4.12)
for any allowed value of K" if the dimension of the space be three. In two
dimensions, since we do not know if K’'=2, we are unable to make a similar
comparison.

5. The main case for the sphere and the circle

In this section we consider only wvector fields u satisfyin‘g the differential
equation &;; ;=0 of the main case.

Our proof of a Korn inequality in the main case and our calculation of
upper bounds for the Korn constants K¥ for the sphere and the circle rest ulti-
mately on the construction of a function y defined in the sphere & {or circle €)

of radius R with the following properties:
1°9>01in & (in €).
2° y and its first derivatives are continuous in & (in €).

3° There exists a sphere & (a circle §;) concentric with & (with €) of radius
R;< R such that

a) In &; (in &) v is equal to a function which is twice continuously differen-
tiable in @d (ln @6)'

b) In & — &, (in € —G,) w is equal to a function which is twice continuously
differentiable in the closure of & —&, (of €—T,).

4°Viy=h(x) in & (in C) where h=1in €—&; (in €—C;) and h=—¢,
in &; (in €,) where ¢, is a positive constant.

5°w and its first derivatives vanish on &, the boundary of & (on €, the
boundary of €).

By GREEN’S theorem and properties 4° and 5°, it will follow that the mean
value of %#(x) over & (over €) must be zero; hence, the constant ¢, is not at
our disposal but is fixed by the radius R;.

For the sphere o is given by

p=3%["*+2R%r —3R?] in € — &, (5.1)

p=§[(R — R*) r*/R; + 3R*(R — R,)|R;] in &,. (5.2)
For the circle y is given by

p=3["—R*+ R:In(R%r?)] in € —G,, (5.3)

p = 1[(R; — R*) */R} + R*In(R*R})] in G,. (5.4)

For the remainder of this section, and in Section 6 until (6.18) as well as in
Section 7 until (7.9), we add to the requirements (1.5); the restriction that the
first and second derivatives of #; be continuous in & (in §). We remove this
restriction after (6.18) and after (7.9).

The objective of the remaining calculations of this section is to obtain in-
equality (5.19), which we shall use in the following two sections to obtain Korn
inequalities for the sphere and circle. We shall understand below that, although
we ostensibly are treating the sphere, we may, in the rest of the calculations
of this section, replace &, &;, efc., by €, G, efc.



Although any choice of R; between zero and R will yield functions y for
(5.1) and (5.2) or for (5.3) and (5.4), we shall leave the choice of R, arbitrary
in this section, for not until Sections 6 and 7 will it be apparent how R; may
be most advantageously chosen.

Although we are dealing with the main case, not until after equation (5.15)
shall we assume that the mean value of the vorticity (w;;) vanishes, and until
then our relations will be independent of this condition, though they will depend

on the condition 4,, , =0.
From 4° we have
[ wtdv=c fo?dv+ [ha?dv. (5.5)
G-GCg Gy ]

By repeated use of the divergence theorem, dropping boundary terms because
of 5°, and by using (3.5);, we get

thwzdvzéfw,kkw,jw,idvzZGftpw,-,-,kw,»,ykdv. (5 6)
Then adding [ w?dv to both sides of (5.5) and using (5.6), we obtain
Ss
ngdvz(1+cl)(3£w2dv+26fy)w,-,-,kw”-,kdv. (5.7)
Using POINCARE’s inequality [4] in the form

waza’v<P(,fw,,kw,,kdv+w V., (5.8)
Zs

where P;>0 depends only on the region &;, Vs is the volume of &;, and

— i
2_-— —_— — .
F=gogr Go= [outr (59
S

é

we get from (5.7)

efw‘-’dvé<1+cl)Rsefw,,-,kw,',-,kdv+26fww,,~,kw.,-,kdv+<+c1) bet  (5.10)
4

Now since >0 in &, p has a positive minimum in &;, say c,R?. Then
Y . o~
1< m n o,
and hence
éfwzdvg [(1+¢;) Pyfc, R3] fl/)&);, p 0 dv 42 fva,, 2@, A0+

4+ (1+¢) Vs "ZSC:;fy)w”kw”kdv-g—“_!_cl) 660, (5.11)

where
¢s= (1+¢1) Ble, Rj+ 2. (5.12)

From (5.11) and (3.4) follows

wazdvézcsef'W(dq,kd,]'k 1] kdkl ]) dv+w (1+cl) (513)



Using the divergence theorem, remembering that y=0 on 6, and d;; =0,
we get from (5.13)

éfwzd”§2036f [—39,:(@%),2 — v nad, + 9,0 &5 i 5] dv+w®Vy(1+c). (5.14)

Next we use the identity (3.5); and the fact that both ¢ and y , vanish on &
to obtain from (5.14)

éfwz dvs C3ef (9,02 8% + 29,5 (drr dij — iy dpy) | dv + @*Vo(1 +a). (515)

Now suppose that % also satisfies the second side condition (1.5); of the
main case. If we define
*u; = u; — x, C?ifr
we shall have
=4,  Fog=o;—a;,

17 ]
[ *w;;dv=0. (5-16)
Ga

Thus *d;; ;=0, and we may substitute (5.16) into (5.15) to get

éf *otdv< Caéf- (¥,62 B+ 29,;i(drr 4, — d;3.dp;) ] dv. (5.17)
But since (1.5)3 holds for w,;,

ngdv =6f *?dy — V@zgg *w2dv, (5.18)

where V is the volume of &.
Thus from (5.17) and (5.18) we conclude that

waz dvs Csef [,k @+ 29,5 (der d;; — d,n &) dv, (5.19)

which is the relation we sought in this section. An inequality of the form (5.19)
holds also for the circle.

6. An upper bound for Korn’s constant for the sphere in the main case

We proceed now to use the results of the previous sections to obtain an upper
bound for KoRrN’s constant for the sphere in the main case.

To simplify the notation we set

A=R[R,, A>1. (6.1)
For the function y defined in (5.1) and (5.2) we have
Vi =3[0;;(1 — R%}r%) +- 3 (R¥r¥) m;m;] in & —&, (6.2)
where
n=xfr, wmmn=1, (6.3)
and
'l,U’,']' = %‘(2.3 -— 1) 6,- in @d‘ (6.4)

From (6.4) and 4° we have
a=—yu=@*—1) in &, (6.5)



Now the minimum value of g in &;, which is, by definition, ¢, R}, is assumed
on €, and is given by

3 2
QRy= 230 gy (6.6)
Thus ¢, as given in (5.12) has the value
613
O3 = 7 23 3At 1 Rz +2. (6.7)

Insertion of (6.3), (6.4), and (6.5) into (5.19) yields

fwravs 3f[—cldz—z(trd2]du+53f[dhw trd)2+2 A, mn| dv, (6.8)
] Ss S-S5
where

Aj=—(trd)? 6, + a8, + 3dy, d,; — 34, dy,. (6.9)

Since the first integral on the right-hand side of (6.8) is negative, we may drop
it to obtain, using inequality (3.3) in the second integrand,

fw2dv< 2 f[7d2+ ~-~—A,7%tn7 dv. (6.10)
G %6

Consider now the form 4;,#, #; at one point in © — &,. If there we diagonalize

d,;, getting diagonal components d,, dy, d3, we have, remembering that », n,=1,

ifs
Aginn;=dydy(1 — 3n3) +dpds(1 — 3m3) +dgdy (1 — 303). (6.11)
By the method of Lagrange multipliers, we see that the extrema of the

form (6.11) are attained when #; has the form (1, 0, 0), (0,1, 0), or (0,0, 1).
In the first case, using CAUCHY's inequaljty, we get

A,jnon, = —2dydy +dydy 4 dydy < df + df +

EY Rt 41
_.rg’%%;d% T d%zd% _ 3d%+3§%+zd§ g-g-dz.

(6.12)

Inequalities similar to (6.12) may be obtained for the other extrema of (6.11),
so that for all #; we have
Ainm < §d2 (6.13)

But (6.13) is invariant to orthogonal transformations of the coordinates, and
thus it holds for all Cartesian systems.
Putting (6.13) into (6.10) yields
faﬂde—— (7+3 )dzdv (6.14)
<] G Ss

Now in &€ — &; we have R3;r® < 23, so that from (6.14) we may conclude that

fwzdvs (7432 [ddv<2 (7437 fdzdv (6.15)
S-Ss



A Korn inequality for the sphere in the main case is proven under the restriction
that the first and second derivatives of #; are continuous in €. There remains
the problem of determining the best, .e., the smallest value of the coefficient
in (6.15).

The coefficient ¢, in (6.15) is an increasing function of P;/R3 where B is the
number introduced into the calculation by our use of PoINCARE’S inequality
(5.11). Now it can be shown that, for a sphere,

B, 1
RE T 2019°

(6.16)

We say a word about how this number is obtained. It canbe shown [4] (Chap. VII,
§ 7) that P;?, which is the infimum of

Jtitidv
)

Jrdv
[<F]

for all square-integrable functions f with average value zero and with piecewise
continuous first derivatives such that f,; f,; is integrable, is the smallest positive
number u? for which there exists a square-integrable function g, with piecewise
first and second derivatives, such that g ; g, is integrable, satisfying

P2+ ug=0

in &,, with zero normal derivative on the boundary. By the method of eigen-
function expansions, it can be shown [§] that g is a product of three functions,
one each of the three spherical coordinates, and in particular, the radial function,
say g(r), satisfies the spherical Bessel equation

1 4 deo nint1)]
Aot e T a |e=0
with # an integer, d g/d7=0 on the boundary and
R Rg
Jortdr<oo, [ r(doldr)2dr < oo.
o ¢

From this it follows that g is the smallest positive number satisfyingtan (u R,)
= (uR,), from which u2R%<20.19, and hence (6.16).

Using (6.7) and (6.16), we get from (6.15),
Jordv<c(d) fd2dv,
é &
| —3[ 3k +2](7+ pe
“l) =7 | @ er—3m51) 34)
Inequality (6.17) holds for all 1> 1, since we have left R, arbitrary, but smaller
than R. Thus, in particular, it will hold for the smallest value of ¢;{4), A>1.
The minimum of ¢4(4), A>1, occurs at about A=1.4 and gives an inequality

for the sphere of the form (4.3) for all ""u satisfying (4.2} whose second derivatives
are continuous in ©, with

(6.17)

K" =17 {(6.18)
to the best integer.



Now we remove the restriction that the first and second derivatives of #,
be continuous in €, maintaining the side conditions of the main case, (1.5),.

Let &, be a sphere concentric with & and of radius R,<<R. Then the first
and second derivatives of #, are continuous in €,. Thus defining

Yy — — - 1
(32:(317({.}”) (gu:_l/:r'.[wzidv: I/;:fdv: (6.19)
€
and defining
Fu,=u,— g, 5, (6.20)

we see that the corresponding strain and rotation measures are given by

#duzdt]' #wu:wﬁ_@ﬂ: (6.21)
and hence, using (6.19) and (6.21),
6{ *w,, dv=0. (6.22)

Thus from our foregoing analysis we get

6f+wzdv§1<"efd2dvgK"Gfdzdv, (6.23)

and nence, using (6.21), (6.22) and (6.23), we obtain

fordv= fw%iv»{— f wzdv< f’"“aﬂdv—{—sz—i— J wdv
© S S (6.24)
=K”fd2dv+V%,2+ f wtdv.

But since f o,, dv=0, w may be made as small as desired by choosing R, close

enough to R. Hence (6.23) implies an inequality of the form (4.3) for all "u

satisfying (4.2) with K""=17. In other words, 17 is an upper bound for Korn’ s
constant in the main case and, from (4.11), 20 is an upper bound for Korn’s
constant in the second case. The upper bounds announced in (1.9), are established.

7. An upper bound for Korn’s constant for the circle in the main case

For the circle, using (5.3) and (5.4), we obtain
v, =3[R nyn; + ( %) 4,], in C—C, (7.1)

and

p,,=—%A2—1)¢,;, in G,. (7.2)
From (7.2) and 4° follows
== p=~A—1, in G,. (7.3)

As in the case of the sphere, the minimum of y in G is assumed on G, and is
given by
o R} = (1) (1— A2+ 221n A%) R}. (7.4)

Thus, using (5.12), ¢; becomes

422
(8= 17+ A%In A2 P+2, (7.5)



where P=P,/R?. It may be shown that P is independent of R;, either by simple
dimensional considerations or by evaluation of P in a manner similar to that
used for the sphere.

Substitution of (7.1), (7.2}, and (7.3) into (5.19) yields
fw2d'u< cs f [— (e2f2) @2 — (¢)2) (trd)2] dv +

+€3€ {[trd + (R¥r?) 4;;mmi]dv, (7.6)
—Ts

where
A;=—(trd)?0,; +d*6,; + 24 dp — dip dj- (7.7)
Now to our surprise and delight, 4;;=0, which can be shown most easily by
referring all quantities to a frame of reference in which d;; is diagonal. Thus,
observing that the first integrand on the right-hand side of (7.6) is non-positive
and using (3.3), we get

fwzdvg[——}_f—_%fw—l—dr}fdzdv. (7.8)

Since (7.8) holds for all A>>1, it holds as A—> oo, in which case we get
fordv<4fd2dv. (7.9)
[ (o

The restriction that the first and second derivatives of % be continuous in T

may be removed in the same manner as for the sphere.,

Thus we have proven that 4 is an upper bound for KorN’s constant for the
circle in the main case and, by.(4.11), that 6 is an upper bound in the second
case. All of the bounds announced in (1.9) are now proven.

We close with some remarks on the extension of the above analysis for the
circle to more general plane regions, namely, those onto which € is mapped
conformally by a function { (z)=£&4-17, z=2x414y, which is regular in €. If we
denote such a region by ¢ (€) and express y, defined in the x, y plane by (5.3)
and (5.4), as a function of £ and 5, we may note the following:

a) The boundary of ¢(G) is £(€).

b) Since y, and y, are linear combinations of ¢, and y ,, it follows that

w and its derivatives are both zero on the boundary of {(€).
c) The Laplacian of y transforms according to

Veyp=|0(2)| "2y

d) Because of the regularity of {(z) in €, [£'(2)|? has a positive maximum and

minimum in €. Thus there are positive numbers, say b and B, b, and B, such

that b<Vip<B in C(C—G6)
— By<Vtp<<—18; in [(Gy).

Thus the function % defined in the &, # plane satisfies conditions 1°, 2°, 3°,
and 5°, but 4° must be replaced by @°. Using y (£, n), then, we may carry through
an analysis for £(G) similar to that in Section §, except that equations and in-
equalities which follow from 4° must be replaced by equations and inequalities
implied by 4°. .
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