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Abstract. Modeling multimodal face-to-face interaction is a crucial step in the 

process of building social robots or users-aware Embodied Conversational 

Agents (ECA). In this context, we present a novel approach for human behavior 

analysis and generation based on what we called “Incremental Discrete Hidden 

Markov Model” (IDHMM). Joint multimodal activities of interlocutors are first 

modeled by a set of DHMMs that are specific to supposed joint cognitive states 

of the interlocutors. Respecting a task-specific syntax, the IDHMM is then built 

from these DHMMs and split into i) a recognition model that will determine the 

most likely sequence of cognitive states given the multimodal activity of the in-

terlocutor, and ii) a generative model that will compute the most likely activity 

of the speaker given this estimated sequence of cognitive states. Short-Term 

Viterbi (STV) decoding is used to incrementally recognize and generate behav-

ior. The proposed model is applied to parallel speech and gaze data of interact-

ing dyads. 

Keywords: Face to face interaction, behavior model, action-perception loops, 

cognitive state recognition, gaze generation, HMMs, Online Viterbi decoding, 

latency. 

1 Introduction 

Face to face interaction is one of the most basic forms of communication for the hu-

man being in daily life [1]. Nevertheless, it remains a complex bi-directional multi-

modal phenomenon in which interlocutors continually convey, perceive and interpret 

the other person’s verbal and nonverbal messages and signals [2]. Indeed, co-verbal 

cues [3] – such as body posture, arm/hand gestures (e.g. beat, deictic and iconic), head 

movement (e.g. node and tilt), facial expressions (e.g. frowning), eye gaze, eyebrow 

movement, blinks, as well as nose wrinkling and lips moistening – are largely in-

volved in the decoding and encoding of linguistic and non-linguistic information. 

Several authors have notably claimed that these cues strongly participate in maintain-

ing mutual attention and social glue [4][5]. 

Hence, social robots or conversational agents capable of ensuring a natural and 

multimodal communication should cope with complex perception-action loops that 

should mimic complex human behavior. In other terms, the social robot must be able 

to accomplish two main functionalities: (1) interaction analysis and (2) multimodal 



behavior synthesis. In this context, we present a statistical modeling framework for 

capturing regularities of multimodal joint actions during face-to-face interaction, 

which allows us to achieve both interaction analysis and behavior synthesis. More 

precisely, this framework is based on the assumption that reactions to other’s actions 

are ruled by the estimation of the underlying chaining of the cognitive states of the 

interlocutors.  

The paper is organized as follows: The next section reviews state-of-the art of face 

to face interaction nonverbal analysis and then the behavior generation systems. Our 

modeling framework and its current implementation are introduced in section 3. Sec-

tion 4 illustrates its modeling performance using speech and gaze data collected in a 

previous experiment [6] and shows the results. Finally, discussions and our conclu-

sion are presented in section 5. 

2 Related work 

Face to face interaction analysis represents an emerging research area due to the in-

creasing awareness of the scientific challenge and the diversity of applications. Actu-

ally automatic analysis treats many issues [7], among which can be mentioned: ad-

dressing, turn taking, activity recognition, roles, degree of interest or engagement, 

state of mind (e.g. neutral, curious, confused, amused) and dominance. A large num-

ber of models were proposed to cope with these problems. For instance, Otsuka et al 

[8] estimate turn taking ("who responds to whom and when?") with a Dynamic 

Bayesian Network consisting of three layers: (1) at the bottom, the behavior layer 

(contains head gestures and utterances); (2) in the middle, the interaction layer (con-

tains gaze patterns); (3) at the top, the regime layer (contains conversations regimes). 

Only the first layer is observable, the others are latent and need to be estimated. To 

recognize group actions, Zhang et al [9] proposed a two layered HMM, where the first 

layer estimates individual actions from raw audio-visual data. The second one esti-

mates group actions taking in consideration the results of the first layer. Conditional 

Random Fields are used in [10] for automatic role recognition in multiparty conversa-

tions. First, speaker diarization is applied to list turns; second, acoustic features are 

extracted from turns and finally, features vectors are mapped into a sequence of roles. 

More complete reviews on issues and models related to nonverbal analysis of social 

interaction can be found in [11][7]. 

In the context of multimodal behavior generation, several platforms have been pro-

posed for humanoid robots and virtual agents. Cassel et al. [12] notably developed the 

BEAT ("Behavior Expression Animation Toolkit") system which allows from textual 

input to synthesize appropriate and synchronized behaviors with speech such as iconic 

gestures, eye gaze and intonation. The nonverbal behavior is assigned on the basis of 

linguistic and contextual analysis relying on a set of rules extracted from research on 

human conversational behavior. Krenn [13] introduced the NECA ("Net Environment 

for Embodied Emotional Conversational Agents") project which aims to develop a 

platform for the implementation of emotional conversational agents for Web-based 

applications. This system controls a complete scene generator and provides an ECA 



with communicative (e.g eye brow raising, head nodes) as well as non communicative 

behavior (e.g physiological breathing, walking/moving from one location to another). 

Another major contribution of the NECA project is Gesticon [14] which consists of a 

repository of predefined co-verbal gestures and animations that can be accessed via 

functional descriptors. Gesticon is based on a general specification that may drive 

both physical and virtual agents. Another interesting system called "MAX", the "Mul-

timodal Assembly eXpert", has been developed by Kopp [15]. The system allows 

interacting, in virtual reality environment, with a virtual agent and doing collaborative 

tasks. MAX is able to generate reactive and deliberative action using synthetic 

speech, gaze, facial expression, and gestures.  

These different systems have many similarities: multimodal actions are selected, 

scheduled and combined according to rules that describe a sort of grammar of behav-

iors. The SAIBA framework [16] is an international effort to establish a unique plat-

form and therefore speed up advancements in the field. It is organized into three main 

components: "Intent planning", "Behavior planning" and "Behavior realization". 

SAIBA adopted the Gesticon from the NECA platform and introduced two novel 

Markup Languages, the Behavior Markup Language (BML) [17] and the Functional 

Markup Language (FML) [18]. It is important to notice that SAIBA offers a general 

framework for building behavioral models. In fact, the processing within each com-

ponent and its internal structure is treated as a "black box" and it is the researchers’ 

responsibility to fill the boxes with their specific transducers. Through FML and 

BML, SAIBA aims at normalizing data types and information flows between different 

levels of representation of the behavior and bridge the gap between different modules: 

FML represents the output of the “Intent planning” component and BML the output of 

the “Behavior planning” one. Many systems have adopted the SAIBA framework, 

notably SmartBody [19] and the GRETA platform [20]. 

Human interactions are paced by multi-level perception-action loops [21] and one 

major missing aspect of the SAIBA was the perception dimension. The Perception 

Markup Language (PML) [2] has been recently introduced to fill this gap. It is the 

first step towards a standardized representation of perceived nonverbal behaviors. 

PML was inspired by the previous efforts in the field of non verbal behavior genera-

tion (FML and BML) and was designed in synergy with these standards.  If PML has 

been equipped with the capability to carry uncertainty but the link between the uncer-

tain perceptual representations and actions remains an open question. In the next sec-

tion we will present our general behavior model which combines PML, FML and 

BML levels into a joint multimodal representation of task-specific human behavior. 

But unlike pre-mentioned rule-based models (BEAT, NECA, etc), this model relies 

on machine learning to organize sequences of percepts and actions into so-called joint 

behavioral states using Hidden Markov Models (HMMs). 

3 General behavior Model 

This section presents a probabilistic/statistical approach for designing a dynamic 

model for the generation of pertinent multimodal behavior for a humanoid robot or an 



ECA engaged in a collaborative task with a human partner. This model should thus be 

able to perceive and understand the partner’s actions on their joint environment and 

generate adequate actions that should reflect its current understanding of the evolution 

of the joint plan. 

A complete interaction can be seen as a sequence of discrete tasks, sub-tasks or ac-

tivities [11]. In the following, we will consider a situated conversation as a sequence 

of cognitive states that structure the joint behaviors of the conversation partners. In 

our model, we dispose of P cognitive states; each cognitive state is modeled by a 

single Discrete Hidden Markov Model (                     whose n hidden 

states model the co-variations of the partners’ behaviors. The proper chaining of these 

HMMs obeys to a task-specific syntax and results from lawful mutual attention and 

collaborative actions. Hence, the whole interaction is modeled by a global Discrete 

HMM (           that concatenates the different single models. Thus the global 

DHMM   is composed of N hidden states (N=nP). As a matter of fact, the selection 

and sequencing of these HMMs is equivalent to the ordering of instructions in the 

FML level within the SAIBA framework. Consequently, the problem of ‘intent plan-

ning’ is solved by the process of HMM states decoding [22], usually performed by the 

Viterbi algorithm. 

As mentioned before, HMM states are associated with homogenous joint sensory-

motor behaviors: the observation vector              is in fact composed of two 

streams: (1) the sensory stream    
 
  collects perceptual cues and roughly correspond 

to the low-level PML level in the SAIBA framework; (2) the motor stream    
   is 

responsible for initiating actions and roughly corresponds to the BML level in the 

SAIBA framework. The observation vector is then defined as follows: 

       
 
   

    (1) 

Note that the sensory stream may include sensory consequences of actions. These 

may be of different natures: efferent copies of actions, accompanying proprioceptive 

or exteroceptive signals. Compared to the Gesticon, our sensory-motor states (Fig. 1) 

intrinsically associate actions and percepts and do not differentiate between the per-

ceptual responses of an action and motor responses for a perceived event that are 

appropriate to the current joint cognitive state. 

 

3.1 Training, sensory-motor state alignment, cognitive state  recognition, and 

action generation 

The training process is as follow: Each individual model is trained separately; then 

from single HMMs we get local emission Matrices            and simply concatenate 

them to build the global emission matrix B. Like-wise, The global transition matrix A 

is built from the different trained intra-HMM transitions matrices (           . In 

addition the inter-HMMs transition probabilities are trained in order to complete this 

matrix A. Note that more sophisticated syntactic models such as n-grams can be used. 

In practice, at an instant t, only perceptual information is available and actions are 

emitted according to these input cues. For that reason, once we get the global trained 

HMM, two models are extracted: a recognition model    and a generative model    



with a modified structure for the emission matrix B. For    only perception observa-

tions are selected (i.e.        
 

) and for    only action observations are selected 

(i.e.       
 ). The perception for action loop combines recognition and synthesis: 

   decodes percepts and performs the sensory-motor states alignment while    further 

generates the adequate actions. 

 

 

Fig. 1. Management of perception-action loops in a probabilistic scheme linking observation, 

states and task syntax (sequence of cognitive states) 

3.2 Incremental Discrete Hidden Markov Model 

The Viterbi algorithm allows estimating of the most likely state sequence    accord-

ing to an observed sensory stream   and a HMM model  : 

          
 

        (2) 

This alignment between observations and states is usually performed in two steps: 

1. A forward step computes the partial likelihoods    and stores the best predecessor 

for each state at each time frame in a matrix of backtracking pointers   . 

2. A backtracking step on    builds the optimal path from the end of the observation 

sequence. 

In order to exploit partial backtracking for on-line decoding, several solutions have 

been proposed that use a fixed sliding or overlapping window [23] [24] [25] [26]. It 



consists of dividing the sequence into fixed-size inputs and then decodes them inde-

pendently. An alternative approach consists of using an expending window and com-

paring partial paths until convergence to the same trajectory [27] [28] [29]. The cen-

tral idea of the Short-Time Viterbi (STV) algorithm [28] and its variants is that the 

window is continuously expending forward until a convergence/fusion point is found. 

When this is the case, it shrinks from behind. The main advantage of this method is 

that the solution is strictly equivalent to the full Viterbi algorithm. The major draw-

back is that the fusion point can be very far ahead.  

In this paper, we adopted a bounded version of the STV (BSTV): we set up a 

threshold beyond which the path with maximum likelihood up to a given number of 

frames ahead of the current frame is retained when there is no fusion point within that 

horizon. The BSTV algorithm is described briefly as follow: 

1: initiate   ;   ; a=1; 

2: for each new frame b 

3:  for each state j=1:N 

4:    calculate       and      ; 
5:    backtracking:     

         with t=b:a+1; 
6:    save the local path; 

7:  end 

8:  given all local paths find fusion point f; 

9:  if (b-a<threshold and f exists) 

10:    local path for t=a:f is selected; a=f+1; 

11:  else if (b-a>=threshold) 

12:    path with max likelihood is selected; 

13:    f=b;a=b; 

14:    b=b+1; 

15:  else b=b+1; 

16: end 

Although, the optimal solution is not always selected, the latency is fully con-

trolled. We will show that short latencies obtained in practice do not degrade signifi-

cantly the performance of the decoder. 

In the next section, we apply this Incremental Discrete Hidden Markov Model 

(IDHMM) to multimodal experimental speech and gaze data of computer-mediated 

dyadic conversations. 

4 Experimental results 

We used the dataset of Bailly et al. [6], who collected speech and gaze data from dy-

ads playing a speech game via a computer-mediated communication system that ena-

bled eye contact and dual eye tracking. The experimental setting is shown in Fig. 2: 

the gaze fixations of each subject over 5 regions of interest (ROI: face, left & right 

eye, mouth, elsewhere) are estimated by positioning dispersion ellipsis on fixation 

points gathered for each experiment after compensating for head movements. The 

speech game involved an instructor who read and utter a sentence that the other sub-



ject (respondent) should repeat immediately in a single attempt. The quality of the 

repetition is rated by the instructor. Dyads exchange Semantically Unpredictable Sen-

tences (SUS) that force the respondent to be highly attentive to the audiovisual signal. 

The experiment was designed to study adaptation: one female speaker HL interact-

ed with ten subjects (6 female colleagues, 3 female students and one male student), 

both as an instructor for ten sentences and as a respondent for another ten sentences. 

 

 

 

Fig. 2. Mediated face-to-face conversation [6]. Top: People sit in two different rooms and dia-

log through couples of cameras, screens, microphones and loudspeakers. Gaze of both interloc-

utors are monitored by two eye-trackers embedded in the TFT screens. Note that pinhole cam-

eras and seats are positioned at the beginning of the interaction so that the cameras coincide 

with the top of the nose of each partner’s face. Bottom: four regions of fixation are tracked on 

each speaker’s face: left and right eye, mouth and face (mainly the nose ridge). 

4.1 Data 

The observation sensory streams consist here of discrete observations: the voice 

activity (cardinality 2: on/off) and ROI (cardinality 5) of the two speakers. The 

cognitive states (CS) have been labelled semi-automatically and corrected by hand. 

We distinguish between seven CS: reading, preparing to speak, speaking , waiting, 

listening, thinking and else (laughing, etc). These CS may occur for each speaker in 

three different roles: initiator, respondent or none (free interaction before, after and 

when exchanging roles). 

http://en.wikipedia.org/wiki/Cardinality
http://en.wikipedia.org/wiki/Cardinality


 

Fig. 3. Recognition (left) and generation (right) performance. Top: the performances of inter-

locutor-independent (II: dark red), interlocutor-dependent (ID: boxplots and maximum with 

light red) and self DHMMs (dark blue) are displayed for each interlocutor. Bottom, a MDS 

projection of the performances of the ID models cue proximities between interlocutor-specific 

behaviors: note its coherence with the a priori clustering of their social relations with HL. 

4.2 Behavioral models  

We tested the ability of DHMMs and IDHMM to estimate the cognitive state of the 

main subject "LN" given her voice activity (v1), gaze (g2) and voice activity of her 

conversational partner (v2), and predict her gaze behavior (g1). Consequently, we use 

the recognition model    to decode               and next    to generate the 

gaze (g1). 

4.3 Results using DHMMs  

We build and test different models in an offline mode using HTK [30]: for interlocu-

tor-dependent (ID) vs. interlocutor-independent (II) models. For each interlocutor, the 

corresponding II model is trained on the other 9 interactions. Results are illustrated in 

Fig. 3: the mean recognition and correct generation rate of II models are respectively 

93% and 56% (compared to a random assignment at 23% taking into account a priori 

distributions of ROI). 

A multidimensional scaling analysis based on Kruskal’s normalised STRESS1 cri-

terion was performed on ID cognitive state recognition and gaze prediction errors (see 

bottom of Fig. 3). This analysis of proximity of behaviors nicely mirrors the a priori 

social relationships between HL and her interlocutors. Gaze is a very social signal and 



no doubt that social determinants of interaction such as personalities and dominance 

relations are mirrored in gaze behaviors: such by-product of modeling deserves fur-

ther research. 

 

 
Fig. 4. Recognition path (for a specific interlocutor "Marion") using the incremental model 

(top) vs. ground truth (bottom). 

 

Fig. 5. Recognition and generation results using the incremental model 



4.4 Results using IDHMM 

HMMs are trained with HTK, then the BSTV algorithm and the global HMM are 

implemented in Matlab using PMTK3 toolkit [31].  The mean recognition rate of 92% 

shows that STV is able to capture the structure of the interaction (see Fig. 4 and Fig. 

5).  It confirms also that STV performance is as good as an offline processing. How-

ever, the problem with STV is mastering the output delay. We observe that ~80% of 

latencies are fewer than 5 frames. However, maximum values could be very im-

portant. In our case, for the all subjects, the maximum latency was 259 frames which 

represent an unsuitable delay for real-time application. BSTV is used to control these 

delays. Theoretically, an optimal trade-off ought to be sought because of the inverse 

relationship between performance and latency. In our case, results (Fig. 5) have 

shown that our IDHMM is able to estimate the Viterbi path with low thresh-

olds/latencies as well as for a long term processing (e.g. 90% for a threshold equal to 

2).  Moreover the mean generation performance (49%) is not affected and remains 

practically the same at all thresholds. While the full connectivity of the state transition 

matrix explains why almost 80% of latencies are fewer than 5 frames (i.e. deviations 

of the local path to the global path may be rapidly reconnect when robust cues are 

encountered), another important factor is the syntax of the task: the chaining of sub-

tasks is very regular and highly constraints the alignment of cognitive states. 

5 Conclusions 

We have proposed a modeling framework for the recognition and the generation of 

joint multimodal behavior. Sub-task sensory-motor HHM are trained and split into 

sensory HMM for sub-task recognition and motor HMM for motor generation. Short-

term Viterbi with a limited horizon is used to perform incremental recognition and 

generation. We showed that even with low thresholds, performances of the model 

were not significantly degraded.  This first model will be extended to the joint model-

ing of discrete and continuous observations, notably taking into account the strengths 

of trajectory HMM. 

A noteworthy property of these statistical behavior models is the estimation of be-

havioral proximities/distances between subjects. This could be exploited for social 

evaluation but also to organize and select behavior models most adapted to an un-

known interlocutor. 

Due to lack of space, many technical details such as the initialization and training 

of Markov models for discrete observations and fully-connected states deserve in-

depth analysis and require more research effort. In particular, performance would 

largely benefit from the modeling of state durations (here related to gaze fixations). 
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