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Abstract 

The article presents a method for adapting a GMM-based 

acoustic-articulatory inversion model trained on a reference 

speaker to another speaker. The goal is to estimate the 

articulatory trajectories in the geometrical space of a reference 

speaker from the speech audio signal of another speaker. This 

method is developed in the context of a system of visual 

biofeedback, aimed at pronunciation training. This system 

provides a speaker with visual information about his/her own 

articulation, via a 3D orofacial clone. In previous work, we 

proposed to use GMM-based voice conversion for speaker 

adaptation. Acoustic-articulatory mapping was achieved in 2 

consecutive steps: 1) converting the spectral trajectories of the 

target speaker (i.e. the system user) into spectral trajectories of 

the reference speaker (voice conversion), and 2) estimating the 

most likely articulatory trajectories of the reference speaker 

from the converted spectral features (acoustic-articulatory 

inversion). In this work, we propose to combine these two 

steps into the same statistical mapping framework, by fusing 

multiple regressions based on trajectory GMM and maximum 

likelihood criterion (MLE). The proposed technique is 

compared to two standard speaker adaptation techniques based 
respectively on MAP and MLLR.   

Index Terms: articulatory inversion, voice conversion, 

speaker adaptation, GMM, computer assisted pronunciation 
training, biofeedback 

1. Introduction 

In the context of speech therapy and computer-assisted 

pronunciation training (CAPT), systems of visual biofeedback 

can be used to increase the articulatory awareness of a learner 

by displaying the position of his/her tongue and lips. These 

systems can be divided into two categories:  

• Systems using motion capture instrumentation to capture 

directly the motion of the speech articulators (mainly the 

tongue) such as electro-palatography as in [1], or 

ultrasound as in [2], [3].  

• Systems aiming at estimating articulatory trajectories 

directly from the speech audio signal. In [4], Engvall 

proposed a semi-automatic system in which the learner’s 

pronunciation was first evaluated by an expert in 

phonetics. Then, the corresponding articulatory 

trajectories were automatically presented via a virtual 

orofacial clone, able to display simultaneously the 

motion of tongue and lips. In our previous work [6], we 

described a fully automatic system of visual 

biofeedback, based also on an orofacial clone [7]. In this 

approach, the orofacial clone, composed of tongue, lips, 

and jaw 3D models, is animated automatically from the 

speech audio signal using acoustic-articulatory inversion 

(figure 1). The present work focuses specifically on the 

speaker adaptation problem.  

 

 

Figure 1: System of visual articulatory feedback. 

We address the problem of adapting a statistical acoustic-

articulatory model trained on a reference speaker to any other 

speaker, referred to as the target speaker. This is a critical 

issue for the design of a multi-speaker system of visual 
biofeedback, based on acoustic-articulatory inversion. 

The problem of acoustic-articulatory inversion, which 

consists in recovering the dynamics of the main speech 

articulators (tongue, lips, velum, jaw) from the speech audio 

signal, has been addressed in many studies using either 

codebook-based approaches, as in [8], or statistical mapping 

techniques, as in [9] [10] [11] [12] (based respectively on 

ANN, SVM, GMM and HMM). However, only a few studies 

have addressed the problem of speaker adaptation of the 

acoustic-articulatory inversion model. In [19], Dusan and 

Deng proposed to compensate the difference of vocal tract 

length between the target speaker and the reference speaker on 

which the inversion model was trained. In [20], Hiroya 

proposed a speaker adaptation technique for an HMM-based 

acoustic-articulatory inversion model (initially introduced in 

[12]). The adaptation method is an iterative procedure 

composed of the 2 following steps: 1) estimating the 

articulatory trajectories from the target speaker acoustics and 

the reference inversion model and 2) finding the parameters 

that maximize the likelihood of the inversion model for both 

the target speaker acoustics and the estimated articulatory 

trajectories. In [21], we described a statistical inversion 

technique also based on trajectory HMM. Unlike [12], local 

dependencies between acoustic and articulatory parameters 

were modeled for each HMM state by Gaussian distributions 

with full covariance matrix rather than linear regression 

functions. In that study, the problem of speaker adaptation was 

preliminary addressed by introducing a GMM-based spectral 

conversion step before the acoustic-articulatory inversion step. 

The goal was to adapt the acoustic observations rather than the 

model parameters (feature-based instead of model-based 

speaker adaptation). The spectral features of the target speaker 

were mapped onto the reference speaker’s acoustic space.  

In this paper, we propose a new approach which merges 

both the voice conversion step and the acoustic-articulatory 

inversion step into a single GMM-based mapping framework. 

In this work, we adopted the framework introduced by Toda in 

[17] which is based on an explicit modeling of the parameter 

dynamics (trajectory GMM) and maximum likelihood 



criterion (MLE). The proposed technique is compared to two 

standard speaker adaptation techniques based respectively on 

maximum-a-posteriori (MAP) and maximum likelihood linear 
regression (MLLR).   

The article is organized as follows. Section 2 details the 

acoustic-articulatory inversion technique based on trajectory 

GMM. The theoretical aspects of the proposed speaker 

adaptation techniques are presented in section 3 (state-of-the-

art speaker adaptation techniques based on MAP and MLLR 

are also briefly recalled). Section 4 describes the data 

acquisition protocol and details the practical implementation 

of the mapping techniques. Experimental results are presented 

and discussed in section 5. Conclusions and perspectives are 
presented in the last section. 

2. Acoustic-articulatory inversion  

based on trajectory GMM 

The following section briefly recalls the theoretical aspects of 

the acoustic-articulatory inversion technique based on 

trajectory GMM [11]. Sequences of spectral and articulatory 

feature vectors for the reference speaker are noted respectively 

x and y, and are defined as: x = x
1
, ..,x

t
, ...,x

T
[ ]  and 

y = y
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where  is the parameter set of the model,  is a 

normal distribution with mean  and covariance matrix , 

M is the number of mixture components, and !m is the weight 

associated with the m
th

 mixture component. Given a training 

dataset of feature vectors for the reference speaker, the 

parameters of a GMM (weights, mean vectors and covariance 

matrices for each component) are estimated using the 

expectation-maximization (EM) algorithm (the initial 

clustering of acoustic-articulatory space is obtained using the 

k-means algorithm). For the mapping stage, a conditional pdf 

p(Y
t
| x

t
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,!)  is derived, for each frame t, from the joint pdf 
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(the mathematical basis of this derivation can be found in [18], 

p.337) where m̂ = m̂
1
, .., m̂

t
, ..., m̂

T
[ ]  is the suboptimum 

sequence of mixture component defined as

m̂ = argmax
m
{P(m | x,!}  and determined using the Viterbi 

algorithm (in our experiment, and similarly to what was 

reported in [11], similar results were obtained using a forward-

backward approach which takes into account in a probabilistic 

manner the contributions of all mixture components). 

Articulatory trajectories ŷ  are finally estimated by solving the 

following equation:  
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and , a [2DxT-by-DyT] matrix representing the relationship 

between static and dynamic feature vectors, defined as:    

 

       (4) 

Like the MLPG algorithm introduced by Tokuda in [13] for 

HMM-based speech synthesis, this method determines the 

sequence of feature vectors that maximizes the likelihood of 

the model with respect to a continuity constraint on the 
predicted trajectories.  

3. Speaker adaptation of an  

acoustic-articulatory inversion model 

Sequences of spectral feature vectors for the target speaker are 

noted  !x  and are defined as: 
 
!x = [ !x

1
, ..., !x

t
, ..., !x

!T
]  where 

 
!x
t  

is a Dx dimensional vectors of spectral features observed at the 

time t ( 
!T is the sequence length). In this paper, we focus on a 

supervised mode of speaker adaption, i.e. we assume that a set 

of audio recordings of both the target and the reference 

speaker pronouncing the same text is available. The adaptation 

dataset contains audio data only; no articulatory data of the 

target speaker is available.  

3.1. Speaker adaptation of an acoustic-articulatory 

model based on MAP and MLLR 

We investigate first the use of state-of-the-art speaker 

adaptation techniques to adapt the acoustic parameters of the 

acoustic-articulatory inversion model of the reference speaker, 

i.e. the mean sub-vector µ
m

x

 and the covariance sub-matrix 

!
m

xx

 for each component m of the GMM (this parameter set is 

called !
x

). We focus on MAP-based and MLLR adaptation 

techniques.  

The basic principle of the MAP-based adaptation [22] is to 

find the model parameter set  !
!x

 that maximizes the posterior 
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probability 
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the acoustic GMM trained on reference speaker data !
x

, as a 

prior probability distribution over models parameters, such as: 
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Parameter set  !
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 is determined using the EM algorithm, 

using the following re-estimation equations (to be concise, we 

recall only the equation used to update the mean vectors; see 
[22] for the priors and covariance-related equations):  
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The hyperparameter !  is a heuristic factor which controls the 

balance between the ML (maximum likelihood) estimate of 

the mean using the adaptation data, and its initial value. In our 

implementation, the value of this parameter is shared across all 
the GMM components.   

Maximum-Likelihood Linear Regression (MLLR) is 

another standard adaptation technique typically used in speech 

recognition systems [23]. In this technique, model parameters 
are adapted using an affine transform, such as: 
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The likelihood function of adaptation data is maximized with 

respect to transform parameters (A,b,H) using the EM 

algorithm. In our implementation, the parameters of the affine 

transform are shared across all GMM components. This results 

in a significant reduction of the amount of parameters to be 

estimated compared to the MAP approach.  

3.2. Proposed speaker adaptation technique  

The proposed speaker adaptation technique consists in 

combining spectral conversion and acoustic-articulatory 

inversion into a single mapping framework. The basic idea of 

the proposed method is to use the acoustic-articulatory model 

of the reference speaker, as prior knowledge’s for clustering 

the adaptation data and estimating the parameters of the 

spectral mapping model.  

In the adaptation stage, time-alignment is performed for 

each target/reference speaker pair ( !x / x ), using dynamic time 
warping (DTW). We note q(t )  the warped time axis given by 

DTW. For each target acoustic observation 
 
!x
t
, the conditional 

probabilities of the acoustic-articulatory GMM given the 

corresponding acoustic-articulatory observation 
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where !  is the parameter set of the acoustic-articulatory 

GMM (we use the same notation m for representing both the 

m
th

 acoustic-articulatory class and the m
th

 GMM component). 

The adaptation dataset is then clustered by assigning to class m 

all the acoustic observations for which the conditional 

probabilities P(m | z
q ( t )
,!)  is maximum across all mixture 

components. This clustering is used to initialize a so-called 

spectral mapping GMM  
!! , which models the joint pdf of 

target/reference speaker’s  acoustic observations, such as:  
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In order to have an acceptable (i.e. well-conditioned) 

estimation of the covariance matrix for classes with few 

adaptation data, we use the shrinkage method described by 

Ledoit and Wolf in [24]. Besides, an iterative procedure is 

used to refine the DTW-alignment and thus the estimation of 

spectral mapping GMM. At each iteration, a spectral 

adaptation of the target signal  !x  is achieved using the current 

estimation of the spectral mapping GMM. This spectral 

conversion step reduces the acoustic distance between the 

target and reference speaker and facilitates the DTW-

alignment.  

The presented training procedure imposes that the spectral 

mapping GMM  
!!  and the acoustic-articulatory inversion 

GMM !  share the same structure, i.e. both models have the 

same number of components (M) and there is a one-to-one 

correspondence between each component of the two models. 

In the inversion stage, the suboptimum sequence of 

mixture component m̂ = m̂
1
, .., m̂

t
, ..., m̂

T
[ ]  defined as 

 
m̂ = argmax

m
{P(m | !x, !!}

 
is first determined using the 

Viterbi algorithm, from the acoustic observations of the target 

speaker and the spectral mapping GMM. A conditional pdf 
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By combining equation 9 (spectral mapping) and equation 2 

(acoustic-articulatory inversion), we derive a conditional pdf 

of the articulatory observation of the reference speaker Y
t

given an acoustic observation of the target speaker 
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finally, we obtain: 

 

!E
m̂
t

Y
= µ

m̂
t

Y
+ !

m̂
t

Yx
!
m̂
t

xx
"1

!
m̂
t

x!x
!
m̂
t

!x!x
"1

( !x
t
" !µ

m̂
t

!x
)   (10) 

The proposed mapping method is called cascaded Gaussian 

mixture regressions in reference to the product of cross-

covariance matrices !
m̂
t

Yx
 and 

 
!
m̂
t

x!x
. It projects an acoustic 

observation directly from the acoustic space of the target 

speaker, to the articulatory space of the reference speaker.  

4. Experimental protocol 

Articulatory data of the reference speaker were recorded 

synchronously with the audio signal using the Carstens 2D 



EMA system (AG200). Six coils were glued on the tongue tip, 

blade, and dorsum, as well as on the upper lip, the lower lip 

and the jaw. Sequence of articulatory features were 

downsampled from 200 Hz to 100 Hz and low-pass filtered at 

20 Hz. The recorded database consisted of two repetitions of 

224 VCVs, two repetitions of 109 pairs of CVC real French 

words, and 88 sentences (approximately 17 minutes of speech, 

long pauses being excluded). In order to evaluate the speaker 

adaptation technique, a second database of audio data only, 

was recorded by two target speakers (one male M1 and one 

female F1). These  speakers were asked to pronounce the same 

text material as described above. The audio speech signal was 

downsampled to 16 kHz and parameterized by 13 MFCC 

coefficients (Blackman window, 25 frame length, 10 ms frame 

shift). In order to take into account the dynamic constraints on 

acoustic parameters, we adopted the approach described in 

[11] which consists in concatenating consecutive acoustic 

frames in one single feature vector. The optimal number of 

frames to concatenate was found to be 5. The dimensionality 

of the constructed vector was reduced to 25 using PCA, by 

keeping the eigenvectors carrying at least 90% of the variance 

of the training set.  

For the inversion experiment on the reference speaker, the 

acoustic-articulatory database was divided into 5 partitions of 

equal size. A 5-fold cross-validation technique was employed 

for evaluation. One list was used for testing and the remaining 

4 lists were used for training the acoustic-articulatory GMM 

and estimating its hyperparameters (the number of consecutive 

acoustic frames to take into account in the acoustic feature 

extraction process, the number of GMM components which 

was found to be 128 (16,32,64,128,256 were tested), the 
hyperparameter !  for MAP-based adaptation). The accuracy 

of the acoustic-articulatory inversion for the reference speaker 

was measured by calculating, for each partition, the root mean 

square error (referred to as µRMS) between the measured and 

the estimated EMA parameters. However, this quantity could 

not be calculated for the speaker adaptation experiments since 

no articulatory data was available for the target speakers. 

Therefore, the articulatory recognition paradigm, described in 

[6], was used: an HMM-based phonetic decoder trained on the 

articulatory data of the reference speaker (using a standard 

training procedure of context-dependent (triphone) tied-state 

HMM), was used to decode the synthetic articulatory 

trajectory at the phonetic level. The obtained recognition 

accuracy Acc
art
% = 100 ! (N " D " S " I ) / N  (where N is the 

total number of phones in the test set, S, D and I are 

respectively the number of substitution, deletion, and insertion 

errors) was considered as a measure of the accuracy of the 

synthetic trajectory. In order to alleviate the problem of 

insertion/deletion errors due to the absence of a language 

model, this evaluation procedure was used only on VCV and 

CVC sequences (in that case, the decoder was forced to 

recognize VCV and CVC only).  

5. Results & Discussion 

For the acoustic-articulatory inversion experiment on the 

reference speaker, we obtained µRMS=1.3mm and 

Accart=94%. This result is compatible with the literature on 

acoustic-articulatory inversion using statistical approaches 

(such as [16] or [17]). Two series of speaker adaption 

experiments were conducted. In the first one, the audio-only 

database was divided into 5 partitions of equal size. One 

partition was used for adaption (i.e. 1/5 of the recorded 

database; ~2mn of speech); another partition was used for test. 
Results are presented in Table 1.  

Table 1. Recognition accuracy for speaker M1 and F1  

(confidence interval was  ±2%).   

Speaker No 

adaptation 

MLLR MAP Cascaded

-GMR  

M1 50% 85% 87% 90% 

F1 56,78% 73% 78% 89% 

Best performance for both speakers was obtained using the 

proposed speaker adaptation technique based on cascaded 

Gaussian mixture regressions (GMR). The most important 

improvement was observed for the female speaker F1 for 

whom the acoustic distance with the reference speaker (a 

male) was likely to be the greatest. The second series of 

experiments focused on how the performance was affected by 

amount of available adaptation data. Figure 2 shows the 

performance for different sizes of the adaptation dataset for 

speaker F1 (similar tendencies were observed with speaker 
M1).  

 

Figure 2: Recognition accuracy as a function of the 

amount of adaptation data (speaker F1). 

The reduction of the amount of adaptation data affected more 

the proposed cascaded-GMR technique and the MAP-based 

technique than the MLLR approach. However, even with a 

very small amount of adaptation data (less than 30 VCV 

sequences), the proposed technique still outperformed MAP-
based and MLLR approaches.  

6. Conclusions and Perspectives 

The article introduces a new method for adapting a GMM-

based acoustic-articulatory inversion model trained on a 

reference speaker, to another speaker. The goal is to estimate 

the articulatory trajectories in the geometrical space of a 

reference speaker from the speech audio signal of another 

speaker. This method is developed in the context of a system 

of pronunciation training based on a 3D orofacial clone. The 

proposed technique which combines spectral conversion and 

acoustic-articulatory inversion into a single GMM-based 

mapping framework outperforms standard speaker adaptation 
techniques such as MAP and MLLR.  

In future work, the proposed approach will be evaluated on 

a larger number of target speakers. Objective evaluation of the 

estimated articulatory trajectories by expert phoneticians will 

also be conducted. Finally, the adaptation of acoustic-

articulatory inversion model to foreign speakers and speakers 

with speech disorders will be investigated.  
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