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Lattice of Partly Permanent Dipoles
E. A. Tourm,* Neval Research Laboralory, Washington, D. C.

AND
M. Lax,* Bell Telephone Laboratories, Murray Hill, New Jersey

The electric susceptibility of a lattice of partly permanent dipoles is determined as a function of the
temperature and molecular parameters. The calculation is based on the spherical model approximation.
The susceptibility has a discontinuous slope at o critical temperature T.. Numerical techniques are de-
veloped for the evaluation of T which may have application elsewhere in the statistical theory of
lattices, The theory predicts a critical temperature of 98°K for solid hydrogen bromide which corresponds

to a measured value of 89°K.

1. INTRODUCTION

N a previous paper! the statistical behavior of a
lattice of permanent dipoles was determined to
within the spherical model approximation. It was shown
that such a model exhibits cooperative behavior and
possesses a critical temperature at which the slope of the
susceptibility as a function of the temperature suffers a
discontinuity. Recent measurements on the suscepti-
bility of solid hydrogen bromide* indicate that this
material might serve as an appropriate application
of the theory; however, most real materials of interest
in this respect, possessing a permanent electric dipole
moment in crystalline form, in addition have appreci-
able molecular polarizability. As the calculations on
the spherical model presented here bear out, this in-
duced component of the total dipole moment at each
lattice site can be expected to modify the cooperative
behavior due to the permanent component. We have
found that the susceptibility of a lattice of dipoles
possessing both an induced and permanent component
of electric dipole moment is determined parametrically
through the relations,

x=(t—4xL’)-! (1.1)
npt/3kT =na(1—naf)+ (1—nat)*F (), (1.2)

where n is the volume density of lattice sites, u the mag-
nitude of the permanent moment, « the polarizability,
and L' is a constant whose value depends on the lattice
structure. The critical temperature T'; is determined by

npt/ 3k T = na(1 —nedar) + (1 —neda)?F (M), (1.3)

where Ay is another parameter whose value is fixed by
the lattice structure. In Appendix B we have made an
estimate of the molecular parameters #, a, and g which
substituted in (1.3) yields a critical temperature
T.,=98°K. This calculated value compares favorably

* This work was brought near completion at Syracuse Uni-
versity, Syracuse, New York, and was su in part by the
Office of Naval Research, uction of this document for any
pu of the U. 5. Government is authorized.

t M. Lax, J. Chem. Phys. 20, 1351 (1952).

#N. L. Brown and R. H. Cole, J. Chem. Phys. 20, 1961 (1952);
21, 1920 {1953).

with the measured value of 80°K given by Brown and
Cole.? Quantitative predictions of the spherical model
require the evaluation of the function F({f) which is
defined by an integral of the form

F()=(1/3) f é[t—h{p}]“‘dp / f dp, (1.4)

where the region of integration is the unit cell of the
reciprocal lattice and the functions A.(p) are the eigen-
values of a matrix defined by a poorly convergent sum.
Since similar integrals seem to arise in other lattice
problems, we have described in some detail in an ap-
pendix a practical method for the evaluation of this
and similar functions. A more detailed discussion of the
spherical model theory than is contained here can be
found in the references,!?

2. PARTITION FUNCTION

Let m; denote the total dipole moment of the ith
lattice site,
(2.1)

where g; is a unit vector of arbitrary orientation, g the
magnitude of the permanent moment, and %, the in-
duced component of the total dipole moment. The
potential energy of the lattice when interacting with
?n externally applied electric field E; can be put in the
orm,

—U=in Zj eru'lﬂ;'i'Z{ m;-Eq
— (2a)! Z g (2.2)

m;=pe;+n,,

where « is the polarizability and » the number of lattice
sites per unit volume. The dyadic Gy; is the dipole-
dipole interaction matrix given by

Gq= n,“‘[Smn;-nfl], (2.3)

where rgy=1,—1;, riy=|ry;| and r,is the position vector
of the #th lattice site measured in units of =.

*T. H. Berlin and ]J. L. Thomsen, J. Chem. Phys. 20, 1365
(1952).



The partition function for the lattice can be written
in the form

Q=f ZNf e~ UIkT
ni=—® eN=—0

N
XTI (1 —ei-e)dedn.. (2.4)
-1

Now we have the general result,

)

coeN--o f exp(x’Ax+b'x)dx

=i det4A T exp(—1b'A-b), (2.5)
where x’Ax is a negative definite quadratic form in N
variables x. The integrations over the induced dipole
degrees of freedom in (2.4) are of the general form (2.5).
The quadratic terms in the n; will be negative definite
provided w=1/na>A\y, where Ay is the maximum
eigenvalue of G;;. This maximum value depends on the
lattice structure. Assuming this condition to hold on
the magnitude of the polarizability and the density of
lattice sites, we obtain using (2.5), the following inter-
mediate result for Q.

Q=m"[detKG(w)]*
Xexp(— (K/nu9)Bo- T (G ()i Bo

i

e~ U IkT II 5(1 — g Si)dti

(2.6)

where K=nu?/2kT and we have introduced the notation

Gij(x)EG,-,-—xla,-j, (27)

and set

—U'/kT=exp[K T &+ (Gij— 2 Gir- Gui™ (w) - Gij) - ¢
i 6l
+(2/m) 2 e (1’“% GuGrl(w)-Eo]. (2.8)

Owing to the cyclic character of the dyadic G;;=G;**
in its dependence on the particle indices ¢ and 7, we
may readily reduce Gi; to block form with diagonal
elements whose dimension is D=3m, where m is the
number of particles per unit cell. This partial diagonal-
ization yields the eigenvectors y and ‘“‘eigenmatrices” 2,

YO =N L enmie, (29)

Ap) =X Gijeteis (2.10)

A(p,x) =2r(p)—xl. (2.11)

For monatomic lattices, 2(p) is a 3X3 matrix and the
vector p ranges over the unit cell of the reciprocal

lattice. With the help of these expressions, we may
rewrite (2.6) in the alternative form,

Q=m¥ I} 11 [w—a(p) T

XexpKN/(n*u?)Eo-[w—2(0)"1]-E,
x [ Tot-ee) v, @12

where U’/kT as a function of y(p) takes the form
—U'/kT=exp[K{X y(p)-[1—ned(p) T
P

-0(p) y* (D) 2N/ (np)Bo
[1—na0(0) I+ y*(0)} .

In the foregoing expressions A,(p), a=1, 2, 3, denotes
the three eigenvalues of y(p). Comparing the expression
(2.13) for the case a#0 with the corresponding expres-
sion with a set equal to zero shows that the existence
of a finite polarizability results in a modified energy
contribution of the pth mode and an effective field

Ey/=Ey-[1—nad(0) .

(2.13)

The analysis to this point has been without approxi-
mation. As is well known, the purely induced dipole
lattice problem can be treated in exact fashion employ-
ing the methods just outlined in reducing the mixed
problem to a modified permanent dipole lattice problem.
The difficulties arise in the evaluation of an integral of
the type occurring in (2.6). Since the purely induced
lattice problem exhibits no transition phenomenon,
such cooperative behavior must be attributed to the
permanent part of the dipole moment at each lattice
site. The spherical model consists of a retreat from the
problem just posed to a consideration of an approxi-
mating model which is mathematically tractable and
which retains at least one essential feature of interest;
it displays a predictable transition temperature in the
susceptibility.

3. SPHERICAL MODEL

We may regard the original problem of evaluating
the integral expressing in (2.6) as the problem of
averaging a function of the 3N coordinates e; over a
2N-dimensional subspace of those variables. All of
the points of the subspace lie on a sphere of radius N?,
but do not cover it. Formally, the spherical model
consists of replacing the average over the 2N-dimen-
sional subspace by the average over the entire sphere of
radius N* in the 3N-dimensional space of the e;, whence
the name spherical model. We can determine the spheri-
cal average by replacing the N constraints represented
by the product of delta functions in (2.6) by the single
constraint 8(N—3_; ¢2). Then, introducing the integral



representation of this delta function,
S(N—-2 &)= (K/2mi)

et-iw

% f explK(V—F «)ldt, (3.1)

we can write the partition function for the spherical |

model as follows:
o+

Q=(K/2mi) f eNKQ(D)di

c—io

3.2)
Q) =7V KG(w)|~* exp(— (K/n"u*)Ey)

L Gt B [ 00T [T e (33)
—U”/kT=K{Z.." e [Gi; (1)

=2 GuGri  (w)Gyy] g
kl

+(2/mu) Z £ [1—% GuGi (W) ]-Go). (3.4)

The integral (3.4) is now of the standard form (2.5),
and after some algebraic manipulation the result of the
integration may be stated as follows:

Q) =K=*"I¥ (1+nat)/ (ne) ILIT [¥ —Na(p) T

Xexp(KN /n2u?)Ey-[1 =2 (0) ]Eo, (3.9)

where we have put ¢'=t/(1+nat). A necessary condi-
tion for the convergence of the integral (3.3) is that
¥'> Ay or equivalently, £> A/ (1—nahy).

We are left with the integration (3.2) over the param-
eter ¢, which, owing to the large value of N, can be
effected by the method of steepest descent. A transition
phenomenon in this formalism is exhibited by the dis-
appearance of a true saddle point in the allowed region
of ¢ for which the previous integrals exist.

Putting Z(f) =limu_.,Q (¥, the equation determin-
ing the saddle point is

d/di[InZ (H)+Kt]=0
which can be put in the form

(/3R T)[1—{Eo-[1¢/ =2 (0) I (1 —nat') / (nu) }*]
=na(1—nat)+ (1—nat (1 —3)1). (3.7)

The bracket symbol appearing in the above expression
is defined as follows:

(3.6)

(== % [r-rwTa/ [a 68

Now, the root ¢,’ of the saddle point equation is a func-
tion of the parameters 7, Eo, o, etc, If ¢, (T, Eq, -+ )

>, a true saddle point exists in the allowed region of
the ¢ plane. It was shown in I that, for such values of
the parameters, then in the limy_., the partition func-
tion is given by Z=Z(i,), t/>\y, whereas, for all
values of the parameters leading to a root &’ <Ay,
Z=Z(\y). Having thus determined Z, the polarization
P is given in the usual way

P=nkTd InZ/0E,
=[1t/ ~2(0) ] Ey £/>Mx
=[My—=20)]"-E0 /<M.

The susceptibility tensor, x, defined by P=yx-E, where
E is the field at an interior point of the specimen,
E=E;—4rL, and L is the depolarization tensor which
depends on the shape of the specimen, by comparison
with (3.9), is given by

=[It/—20)—4rL]  t/>Ay
x=[Dy—20)—4zLT" 1/ <Ny

But 2(0) is a lattice sum whose distant terms contribute
a shape dependent tensor —4rxL; hence, 2(0)+4xL
=47/, is a shape independent tensor depending only
on the lattice structure. As required then,

x=[1t/—4xL']? (3.11)

is a tensor independent of the shape of the specimen.

It is evident that for fixed values of all parameters
except the temperature, the function x=x(7") suffers a
discontinuity in slope at a critical temperature deter-
mined by t/=t/(Tc)=Au, where T, depends on the
values assigned the remaining parameters.

(3.9)

(3.10)

4. COMPARISON WITH THE ONSAGER THEORY

The spherical model bears an interesting but seem-
ingly accidental relationship to the theory developed by
L. Onsager for polar liquids.* We have made the com-
parison in a way that we now describe.

If one retains only the zero-order terms in the electric
field E,, the saddle points equation (3.7) reduces to the
following

(/36T = na(1—nat' )+ (1—nat VE (), (4.1)

where we have further shortened the notation by setting

FO=0DE [Tr-n@ra / [a. @)

A final determination of the susceptibility of the
spherical model as a function of the temperature re-
quires a numerical evaluation of the function F(¢)
which is a three-dimensional integral over the unit cell
of the reciprocal lattice whose integrand must be ob-
tained from a poorly convergent lattice sum. This
involves considerable labor, as will be apparent on
examination of the appendices where we have outlined

L. Onsager, J. Am. Chem. Soc. 58, 1486 (1936).
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F1e. 1. The function F(f)={((t—X.(p))~!) that appears in the
spherical model saddle point equation (3.7).

the numerical techniques developed for this purpose.
However, if we make the crude approximation that the
three eigenvalue branches A,(p) are constants as p
ranges over the unit cell, the averages are obtained
trivially. Let us choose the constant values

Mp)=4r/3,  M(p)=4r/3, Ns(p)=—87/3, (4.3)

where the constants are such that the eigenvalues agree
with the simple cubic values if |p|<1. The spectrum
(4.3) implies that

F()=(2/3)(V —4x/3) 4+ (1/3) (' +8x/3)".  (44)

Rewriting (3.11) in terms of the dielectric constant,
e=4mx+1, (3.11) takes the form

(4m/3)(et+2)/ (e=1)=1". (4.5)

Setting =0 in the saddle point Eq. (4.1) requires, for
this case, that 1—#at’=0, and this in turn by (4.5)
implies that the dielectric constant of the purely in-
duced lattice has a value ¢, given by

(eo—1)/ (e t2) =4mna/3. (4.6)

This is the well-known Clausius-Mosotti law. It should
be noted that (4.6) follows independently of the form
of F(¢). Combining (4.5) and (4.6) with the saddle
point condition (4.1), and using (4.6) to eliminate na,
we find

dmnp?/ORT = (e— €..) (2et€s)/e(ent2)%.  (4.7)
This result is identical to that of Onsager’s for the
polar liquid.

5. COMPARISON WITH EXPERIMENT

Employing the numerical techniques outlined in
appendices A and B, we have carried out the numerical
work on the simple cubic lattice. Figure 1 is a graph
of the function F(f), where the function

F(t)=0.73-0.53((:—5.35))%, ¢~35.35
was fitted smoothly onto the asymptotic form of F,

F(t)= (44+9.68)1[14 (+49.68)!

+110.58 (14-9.68)~2+1356 (¢-+9.68)%], £5.35.
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F16. 2. The susceptibility x of the simple cubic spherical model
as a function of temperature for various values of the ratio
(na/N,). The circles are according to the experimental data of
Brown and Cole on solid hydrogen bromide.

Unfortunately, there does not seem to be any experi-
mental data available for a simple cubic dipolar crystal.
Extensive measurements have been made by Brown
and Cole? on HBr, an orthorhombic structure with three
axes 5.555, 5.64, and 6.063 that belongs to the space
group V3. In order to get a qualitative comparison
between experiment and theory we whall calculate the
dielectric constant versus temperature for a simple cubic
lattice which has the same value of #a and the same
permanent moment g as HBr.

We estimated the material parameters na from the
data of Brown and Cole,> where the extrapolated di-
electric constant at infinite frequency, e,, fixes the
value of na through the relation

na=3(e,—1)/4r(e,+2).

Setting €,=2.35, we get #na=0.074. Then, taking the
value 4 =0.85 debye units for the permanent moment as
deduced from the gaseous dielectric constant of HBr,
we are able to calculate a value of the critical tempera-
ture from (1.3). We find this calculated value to be
T.=98.3K. This is to be compared with the experi-
mental value for the dielectric transition temperature
of solid HBr found by Brown and Cole, (T.)exp=89K.
Figure 2 is a graph of the susceptibility as a function
of the dimensionless parameter 3%&T/mu® for various
values of na. The experimental data of Brown and Cole
are also plotted in these units for comparison.

We see that the theory does not predict as sharp a
rise in the susceptibility as 7—T, from above as was
observed experimentally. Below the critical tempera-
ture, the experimental susceptibility shows an equally
rapid drop. The present theory shows a constant sus-
ceptibility below the Curie temperature. The latter
result is an error in the spherical model that can be



corrected by calculating the molecular field in the
spherical model and treating the dipole on which it
acts correctly.” The resulting susceptibility, in ac-
cordance with section 6 of reference 5, would show a
lambda-type behavior near the critical point.® The
general conclusion will remain valid, however, that the
experimental susceptibility exhibits a sharper peak
than can be obtained from spherical model theory, even
with the molecular field modification.

APPENDIX A

We describe in this Appendix the techniques we have
used to determine the function F(¢) defined by

PO= L [r@Tan / [a. a0

The region of integration is the unit cell of the reciprocal
lattice and the functions A,(p) are the three eigenvalues
of the matrix defined by

2(p)=X G, explip-1;:]- (A2)
A brief discussion of Ewald’s method of summing this
poorly convergent sum is given in Appendix B. Let
I(p,t) denote the integrand in (A1),

I(p) =2 [I—Na(@) I (A3)

Let A, denote the minimum eigenvalue so that
Aa(p) 2 A for all p, and as before let A.(p) be every-
where less than or equal to Ay For all £> Xy we have a
convergent power series for 7(p,!) given by

3w [Ag(P)— A1 A—Am
Ip)=[1—\]" 5 z[ ® ][ *
)\M—)\m t_km

a=1 n=0

]". (A4)

The asymptotic behavior of F(£) for £\ is determined
by the integrals of the leading terms in (A4). We have
then

F(t) =D“)\m]—l Z An[t—)\m]—na (AS)
0
where
A=13 [ S0enTa [ [a. (a9
The coefficients 4, can be reduced to the form
An= ZO (1L (n—35) 151 T (—Am) 8amsy (A7)
=
where the @,’s are given by
a=1/3) [meein / a0 (a9

5 M. Lax, Phys. Rev. 97, 629 (1955).
8 Such a A-type behavior was first obtained by J. H. van Vleck,
J. Chem. Phys. 9, 85 (1941) using a molecular field approach.

Inserting the definition of A(p) from (A2), we verify
that the a4’s are equivalent to cluster sums having the
form

ar=(1/3) X Gij- - Gmi-Gu. (kfactors) (A9)
ifroml

Sums of this type occur in the high temperature ap-
proximation to the dipole lattice partition function.
Values of the first three a’s for a simple cubic lattice
are given by R. Rosenberg and M. Lax.” They find
that for this case, ay=1, a:=0, ¢:=16.8, ¢3=38.7.
Also, for the simple cubic lattice A= —9.68. Using this
data, and (A5)-(A7), we obtain an asymptotic formula
for F(f) consisting of the first four terms in the series
(AS) which yields accurate values of F for sufficiently
large ¢.

In order to determine F(Ay) and the behavior of
F(1) for t~Ay, we have integrated (Al) numerically.
Since the integrand 7(p\x) is singular at all points p
where A, (p) takes on its maximum value, we have used
the following device to facilitate the numerical integra-
tion. We have expressed F in the form

F()=1/3 f (I—14)dp / f dp
+1/3 f T4dp / f dp, (A10)

where the function I4(p,f) is chosen so that the differ-
ence (I—1I,4) remains finite at all points p as £—\.. The
first integral in (A10) was evaluated using a three-
dimensional analog of Simpson’s rule. The function I,
was chosen so that the second integral in (A10) could
be evaluated by a special technique which we shall
describe later. For the simple cubic lattice, the region
of integration is the cube bounded by the planes
p1= L7, po=m, p3=Lm; however, owing to the cubic
symmetry, it is sufficient to average over the first
octant of this cube. For the purpose of the numerical
integration, the integrand (/—I4) was evaluated at
each of the points (Rir/4, Rar/4, Ryw/4)R,=0,1, 2, 3, 4.
The function I.(pt) was constructed as follows:
At each of the points p, p1=(m,10), p.=(m0,7),
ps= (0,m,7), there is one branch A,(p), e=3, 2, 1, of the
eigenvalue spectrum which attains the maximum
simple cubic value of A =15.35. It is for these values of
p and the corresponding values of g, that taking the
limit £#—A ;s leads to a divergent series (A4). The coeffi-
cients [(Aa(p)—An)/(Ax—An)]™ of the terms in this
series for these values of p and ¢ and for #>3 were
proximated by a three-dimensional Gaussian functions
whose matrices of second-order partial derivatives were
made to coincide with the second-order derivatives of
the actual coefficients in the series. Let A, ., denote the
second-order partial derivatives 9?\./9p*dp”* | » =p. where
Az(p) is that branch of the eigenvalue spectrum which

7R. Rosenberg and M. Lax, J. Chem. Phys. 21, 424 (1953).



attains the maximum value Ay at the point p,. Let us
further condense the notation by setting

Sa(p:t)= (Aa(P) —Am)/ (=) (A11)
os(P) =LAx—An)/(t—~An)] expW.(p,H), (A12)
where
W o(D,0)=Na s (p*— p2) (97— 927)/2(1—Nm).  (A13)
We then have
Ta=(0—2)" [ Z:,O S+ né a.”]  (Al4)
and
I—T4=(—\y)™?
X[ S/ (1—=8a)—2 o.f/(1—05)].  (AlS)
Now put
F)=L(O+M@O+N (), (A16)

where L(i) is the contribution to F from the finite sum
in (A14), M (¢) is the contribution to F from the infinite
sum in (A14) and N(¢) is the contribution to F
obtained by numerical integration of I—I,. We
have already indicated how the function L(#) which
determines the asymptotic behavior of F can be de-
termined in terms of the first few moments (A8) and
(A9) of the eigenvalue spectrum of the dipole inter-
action tensor G. We now describe how the function
M(f) can be determined. M (f) can be written in the
form

M) = (t—An)! 224 BJLOw—An)/(t=Am)]* (A1)

where the B, are given by

B,,=(1/3)7r—3§ fo ’ fo ' fo 1expEan(p,t)]
Xdpldprdp®.

For the simple cubic lattice the matrix A, . of second-
order partial derivatives which occurs in the expres-
sion (A13) for W.(p,t) is diagonal with two equal
elements. The contribution to B, is the same for each
of the points p,= (w,m,0), (r,0,m), and (0,r,r); hence,
the sum over x in (A18) is simply three times the result
of any one term, say that which corresponds to
p.= (m,7,0). This integral factors and we obtain the
following expression for B.,:

(A18)

B,=(t—An)i[deth, ., ]} (2m)EE2E 0%, (A19)
where the E, are given by
Er=erf[m{nhzu/2(—An)}1]
. (A20)

erfx= (2/3/7) fz exp(—u?)du.

As n—o, E.#—1 so that the B, tend rapidly to their
asymptotic value given by (A19) with the E,*s re-
placed by 1. Now, the dominant variation in F(t) as
t—Xy is determined by the series M (!) whose distant
terms are a constant multiple of #»~%, Hence, for ¢ in the
neighborhood of Ay, we have made the following ap-
proximation to F:

F(O)~F () = CL{E=An)— A=) I
=F\s)—C(t—An)

xé L=/ (=2 (A20)
=R(),

where g,=(3D)(—1)?/(3—n) In! tends asymptotically
to the value 1/(2eH)n%. The constant C in (A21) was
fixed by requiring that the series (A17) and (A21) have
the same asymptotic form. This demands that we set
C=(deth,,.,)/ (VZx).

Finally, the contribution N (f) to F(t) was determined
by numerical integration of I(p,f)—1I.(p,t) for the
single value =X, of the parameter ¢. This is the most
important value of the parameter ¢ since F(\ay) de-
termines the critical temperature. Also, when F(Ay) is
substituted in (A21), we obtain good values of F for ¢
sufficiently near Ay. The two curves F(f)=~R(J),
i~y and F($)~L(2), >\ can be joined reasonably
smoothly to obtain values of F for intermediate values
of ¢. See Fig. 1.

APPENDIX B

Required in the course of the analysis of Appendix A
were the values of the dipole matrix elements X (p)
and the second derivatives of the branch of the eigen-
value spectrum of this tensor field which attains the
maximum value Ay=35.35 at the point (0,r,7) and the
eleven other points related by symmetry. The dipole
matrix elements were computed by first transforming
the poorly convergent sum (2.10) by Ewald’s method
into the sum of two rapidly convergent sums, one sum
over the space lattice and the other sum over the
reciprocal lattice. These dipole sums have been calcu-
lated for the three cubic structures by M. H. Cohen
and F. Keffer. A good survey of the values of A(p) is
given in their report.® The Ewald form of the dipolar
sum is

» (p)=S5*(p)+R(p), (B

where
Sur(p) =4n2ri 3/ rifry oy (raeri?) explip- 1]
l
—2rr9* 3 oy(rmr?) explip-r], (B2)
l

8 M. H. Cohen and F. Keffer, Sci. Paper 60-94469-2P2, West-
inghouse Research Laboratories (1954).



where the 7,# are the position vectors to the space lattice
sites, the primed sum denoting omission of the term
r=0. The R*(p) are defined by the following sum over
the points 4 of the reciprocal lattice,

Rer(p)=—(V/7) Zl eo(R*/4xT)RRy  (B3)

with V equal to the volume of the unit cell, and the
vector R is defined by Ri#= (p*— 2xb). The functions
¢m are defined by

om(x)= f ume s du, (B4)
1
They satisfy the recurrence relations
em(®) = @o(2)+ (m/%) om-1() (BS)
dom/dx=—Qn_1. (B6)

The value of any ¢, may, by use of the above recur-
rence relations, be deduced from tabulated functions and

eo(x)=e*/x (B7)
¢-1(x) =—Ei(—%) (B8)
o-3(®)= (r/x)[1—erf(x})]. (B9)

The sum, R**+45*, is independent of the value of the
parameter = which is chosen so as to make the two sums
converge equally rapidly. The proper choice of 7 for
the three cubic lattices is listed in a table given in
reference 8. For the simple cubic lattice, one may take
7=3%. The derivatives of an eigenvalue branch were de-
termined as follows: Consider for the moment the
general case of a symmetric tensor field 4,,(p) whose
rectangular cartesian components in some region R of
p space are assumed to be continuously differentiable
functions of the coordinates p,. Let A® denote the eigen-
values and y,° the corresponding eigenvectors of 4,,,

A“yyva=)\ay“a; y“ay“b=6ab' (BlO)

In R let at least one of the eigenvalues, say A!, be every-
where distinct (nondegenerate) ; then it is easily shown
that X\ '=0dN/8p. and y, ,!=0y,1/9p, exist. That is,
in a region where the elements of the tensor are differ-
entiable functions, a distinct eigenvalue and the com-
ponents of the corresponding eigenvector of the tensor
are differentiable functions. Then differentiating the
eigenvalue equation for the distinct eigenvalue Al
we get,

Auv, ayvl+Auvyv,vl=)\. a'lyu1+)\lyn, al-

From the orthonormality conditions on the eigen-
vectors, it follows that

(B11)

YW =0; X 39, = - (B12)

In particular, we use the result (B12), in the form

D e P e (B13)
ol

Multiplying (B11) by v,! and summing as indicated, we
get, using (B12); and (B10),°

(B14)
Let us denote the quantities 4,, ,y,%,* by the symbols
At so that (B14) reads A =A,". Now, multiply

(B11) by %, a1, and sum on a. Then, using (B13),
we obtain,

N = A ¥yt

Yo' = El Ay, (N —N°). (B15)
Now, differentiate (B14) and obtain,
Aot = Ay, oV 24,00, ViV, oL (B16)
Substituting from (B15), this becomes
Aot =212 3 AteAte/ (A —A%) (B17)

a7l

where we have set A.°b= A, .+ ¥:°y,°.

The conditions under which we have derived the
above result hold for the dipole tensor field A(p) in a
region containing the point (0,r,7). At this point Al is
distinct and we have the further simplifying features:
(1) %(p) is diagonal, hence each y* has but a single non-
vanishing component; (2) each of the A,*® vanishes;
(3) A, is zero unless u=v. For the case at hand, we
then have the simple result,

>\, yvl =0 [J.;é 14

(e=1, 2, and 3).

Furthermore, the second derivatives u=2, 3 are equal.
The derivatives A, . of the components A,, of A can

be obtained in rapidly convergent form by differentiat-

ing the Ewald formulas (B1)-(B3). This process yields
the formulas,

)\uv, ar = Duy, ¢f+an,¢-r
Sus,ar=—4m2r8 3 10,7 7 03 (wrr?) exp(ip 1)

+ 277 3 11 80y (mrr?) exp(ip-1),
Rﬂv. o= V/ (T)Z $o (Rz/ 47"7') [5,w5w+5y05,,,-]

+V/2rr) X o1(R?/4r7)[80r RuRy 484 R R,
+8,e RuRo+ 8,0 RuR+5,0R,R, ]
—V/ (412 o2(R?/4n7) RuR,R.R,.

This general result was then used to obtain the two
distinct numbers A1, 11=—2.8 and Ay, 33=0.25 at the
point (0,m,r). The derivatives of the eigenvalue branch

A1(p) at that point were then known with the aid of the
result (B18).

9 T. Y. Thomas, J. Math. and Phys. 23, 167 (1944).

(B18)

A mtl=>‘11,mt

(B19)





