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Abstract Vehicular ad-hoc networks have received increasing 
interest in the last years for their potential to support a variety of 
services and applications in order to improve driving safety or 
traffic efficiency and to provide information and entertainment 
to the users. This paper focuses on the analysis of some 
connectivity characteristics in dynamic vehicular communication 
scenarios, that are important for the design and the performance 
and dependability assessment of such applications. In particular, 
we focus on the process describing the occurrence of encounters 
between cars in single and multi-hop scenarios. Using analytical 
proofs and simulation experiments, it is shown that under some 
key assumptions on the movements and the placement of the 
cars, this process can be approximated as a stationary or a 
nonhomogeneous Poisson process. Results are also provided 
concerning the duration of connections in the ad-hoc domain. 
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1.  INTRODUCTION 

Vehicular communication scenarios are characterized by 
high dynamicity and challenging propagation environments, 
while at the same time the communicating applications are 
frequently having safety-critical nature and hence are subject 
to high availability and reliability requirements [1]. In order to 
provide and analyze the quality of service required by such 
applications, it is important to characterize the connectivity 
between the highly mobile nodes. For static snapshots of 
certain mobility models in vehicular freeway scenarios, 
Reference [2] develops solutions of stochastic models and 
discusses numerical results. Certain application types and 
support functions, such as the Distributed black-box and 
dynamic data and service replication in the vehicular domain 
[3], can benefit from dynamic changes of the connectivity set. 

This paper focuses on the analysis of the stochastic process 
describing the moments in time at which a particular vehicle 
enters a new k-hop connectivity relation with another vehicle. 
Due to requirements of route stability and low end-to-end 
delay, low values of k are of particular interest. Hence, large 
parts of the paper focus on direct neighborhood relations  
(k = 1). Link-layer connectivity can thereby be established as 
soon as the distance between two vehicles is below a certain 
value R, called the communication radius [4], see Section 3 for 
more details. 

Section 4 proves that under certain conditions, most notably 
independent movement of vehicles at different but constant 
speed and initial spatial Poisson placement of vehicles on a  
1-dimensional space, the process of meeting new direct 
neighbors is a Poisson process, whose rate, , can be expressed 
as the product of the vehicle density and the expected value of 
the absolute relative speed of the other vehicles. Section 5 
discusses the consequences of the proven result for single 
straight freeways with multiple lanes, in particular 
characterizing the impact of changing communication radius R. 
Deviations from the Poisson property and the obtained relation 
for the Poisson rate  are then investigated for increasingly 
complex mobility models that deviate from the original 
assumptions of the proof in Section 4. In Section 3, 
independent movement of vehicles on a finite long stretch of 
freeway are investigated, while in Section 6, traces from a 
more complex mobility model that includes dependencies 
between individual vehicles and varying speeds are 
investigated. 

2. RELATED WORK  

Much of the existing work on connectivity analysis in ad-
hoc networks focuses on static snapshots of the node 
placement: [5] analyses different connectivity metrics under the 
assumption that the node placement can be described by a 
spatial renewal process. This setting is generalized in [6] to 
cases of spatial correlation described by Markovian Arrival 
Processes [2]. The metrics thereby include distribution and 
moments for the number of direct neighbors (single-hop) and 
for the number of reachable nodes via multi-hop connections. 
Furthermore, spatial distances and hop-count distributions are 
characterized and analyzed via numerical results. In 
comparison to this existing work, this paper focuses on models 
that describe the dynamics of the connectivity, specifically the 
stochastic processes that describe the intervals between time 
instances in which new nodes get into single or multi-hop 
connectivity range. 

This problem has been seldom investigated in the context 
of vehicular ad-hoc networks. It is noteworthy that some recent 
work has been done in this direction in the context of 
encounter-based protocols. We can cite for example [7] which 
presents an analytical methodology for calculating a number of 
encounter-related statistics including inter-encounter times and 



encounter duration considering popular epoch-based mobility 
models such as the Random Waypoint mobility model, and 
Random Direction mobility model. 

3. FREEWAY MOBILITY AND CONNECTIVITY MODEL  

Many of the future Telematics Applications [8, 9] are 
particularly relevant in vehicular freeway scenarios, as the high 
speeds together with the rather structured geographical 
movements make safety applications relevant and feasible. 
Figure 1 shows an abstraction of such a vehicular freeway 
scenario, used in our context to analyze and estimate some 
connectivity characteristics between the mobile nodes (i.e., 
vehicles). We consider a long straight piece of freeway with 

movements in two directions. In the example of Figure 1, all 
cars on the upper half of the freeway (with width W) move to 
the right, while cars on the lower half move into the opposite 
direction. The considered piece of freeway has a finite length 
of L 

 

W. In order to avoid edge effects, we assume in 
simulations that cars that leave on one side enter at the 
corresponding point on the other side, i.e., the long piece of 
road can be seen wrapped around a cylinder. The individual 
directions themselves may have multiple lanes, but as we in 
large parts of the paper assume that cars move independently of 
each other, the actual concept of lanes within the same 
direction is irrelevant. As a starting assumption, vehicles have a 
constant (absolute) speed vi which is assumed to be i.i.d. with 
probability density function fabs(v). 

 

Figure 1: The mobility model scenarios 

In order to focus on understanding the impact of the 
geographic mobility model, we adopt the approximation that 
two nodes can communicate on a direct link when their 
geographic Euclidean distance is less than a communication 
radius R, where R is a constant for all nodes regardless of 
speeds (so neglecting Doppler shifts). Hence, we assume a 
homogeneous communication technology and avoid having to 
describe detailed influence of the communication 
environment. In order to avoid technicalities in the 
derivations, we later on also utilize squared connectivity areas, 
i.e., two cars can communicate if their distance with respect to 
the supermom-norm is less than R, i.e., max{x1-x2, y2-y1}

 

R. 
In order to define metrics to characterize connectivity 

dynamics, we consider a reference vehicle located at position 
(x1, y1). In this paper we analyze two metrics:  

 

The temporal Node Encounter Process, E, which 
describes the time instances at which other cars enter 
(single-hop or k-hop) connectivity to the reference car. 
For k=1, these moments correspond to new cars coming 

into radio range R of the reference car. The mean time 
between such encounters is represented by -1 and  is 
called the rate of the encounter process. 

 
The duration of the Connectivity Periods, which is the 
random variable describing the length of the time-interval 
starting when another node enters into k-hop connectivity 
range of the reference node and ending when this node 
leaves k-hop connectivity. The mean duration of the 
connectivity period is denoted by T. 

In the following, we first prove that under certain 
assumptions, the nodes encounter process is a Poisson process 
with rate  and come up with

 

a relation to calculate . Then, we 
compare this result with simulations of more general mobility 
models as reflected by Figure 1, investigating first the case of 
independent movements of vehicles and then accounting for 
dependencies between movements of different vehicles. 

4. PROOF OF POISSON ENCOUNTER PROCESS  

In this section we show that under certain scenario 
assumptions, the encounter process is a Poisson process with 
rates 

 

that can be calculated from the car density and the 
expected absolute value of the relative speed distribution. 

Assuming a quadratic connectivity range for the mobility 
scenario with independent movements in Figure 1, the vertical 
dimension of the scenario is irrelevant and we can simplify the 
freeway model to a 1-dimensional movement scenario. We 
now assume that the road is infinitely long and the initial 
placement of the cars is a spatial Poisson process. We place the 
reference vehicle at position 0 at all times, and let the other 
vehicles, say xi, move with constant velocities vi drawn from a 
continuous distribution V with density f  (i.e., we consider their 
relative velocity to the reference vehicle). The following 
theorem then shows that the single-hop encounter process E of 
meeting new direct neighbors in this case is a Poisson process. 

Theorem 1: Let X be a Poisson process with intensity (x) 
for x 

 

R, and vi be i.i.d. continuous random variables with 
density f. Then the encounter process E is a Poisson process 
with intensity 

t R vt f v vdv
0

R vt f v vdv
0

 

provided  is locally integrable. In the case where X is 
stationary with intensity , the encounter process E is also 
stationary and has intensity 

.E V                                          (1) 

where V is a random variable with density f provided E|V|< . 

Proof: Let X1 and X2 denote the point processes of those  
xi 

 

X with vi > 0 and vi < 0, respectively. Since vi are i.i.d and 
they are independent of  X, X1 and X2  are independent thinning 
of X, so they are Poisson with intensities p (x) and  (1-p) (x), 
where p = P(vi>0) (see e.g. [10]). 

Consider first X1. Since the vehicles in X1  have a higher 
velocity than the vehicle at zero, these will get into 
communication range at position R. The time at which this 
occurs for a vehicle with position xi at time zero is given by 



ti = -(xi - R)/vi ; denote the process of these ti by E1. Since vi is 
distributed with density f1(x) = f(x)/p on (0, ) (i.e., f restricted 
to the positive half-line), the conditional distribution of ti given 
xi has density 

f1(
xi R

vi
). xi R

vi
2

 
By Proposition 3.9 in [10], Ei is a Poisson process with 

intensity 

1(t i ) p (xi ) f1(
xi R

ti
)

R

. xi R

t i
2 dxi 

(R vt i)
0

f (v)vdv 

where the transformation v = -(xi - R)/ti has been used.  
Similarly it can be shown that E2, the process of ti resulting 

from xi 

 

X2, is a Poisson process with intensity 

2(t i ) ( R vt i)
0

f (v)( v)dv 

Since X1 and X2 are independent, E1 and E2 are also 
independent, so their superposition is a Poisson process with 
intensity (t) = 1(t)+ 2(t) (see e.g. [10]), from which the first 
assertion follows. The stationary case follows directly by 
letting  be constant in the expression for

 

(t). 

5. SIMULATION OF INDEPENDENT MOVEMENTS SCENARIOS  

The rigorously proven theorem in the previous section 
relies on three key assumptions: (1) infinite, 1-dimensional 
stretch of freeway, (2) initial Poisson placement of cars, (3) 
independent movements of cars over time at constant speed 
selected from some given distribution. In this section, we will 
check the sensitivity of the Poisson result towards slight 
deviations from Assumptions (1) and (2) by investigating 
slightly more complex freeway mobility scenarios as 
described in Section 3. The impact of mobility models 
deviating from Assumption (3) is investigated in Section 6. 

Subsequently, we perform simulation experiments in order 
to compare with the Poisson result of the previous section and 
to validate to what extent Equation (1) provides a useful 
quantitative approximation even in more complex mobility 
models. We therefore consider the 2-dimensional spatial 
scenario described in Figure 1. Vehicles move in two different 
directions with the following example selection of a uniform 
speed distribution and uniform initial placement: 

 

Each vehicle has a constant speed selected at the 
beginning of the simulation uniformly distributed 
between vmin and vmax; 

 

Each vehicle is assigned x coordinate between (0, L) and 
y coordinate between (0, 2W) according to a uniform 
distribution; 

 

The reference vehicle at the beginning of the simulation 
is assigned initial coordinates (x1, y1) and speed v1.  

Unless specified differently, we use the following set of 
default parameters: the freeway has a geometry of L = 5000m 

and W = 15m; the car density is  = 1car/100m; the bounds 
for the uniform distribution for the initial speed are  
vmin = 80km/h and vmax =130km/h; the communication radius 
is R=25m and the initial placement of the reference car is  
(x1, y1) = (2500m, 22.5m) with speed v1 =108km/h. Note that 
for this set of default parameters, the communication range of 
the reference car covers the full width of the freeway in both 
driving directions. Also, the expected absolute value of the 
relative speed in comparison to the reference car results as 
Evrel,1 = 31.287 m/sec. 

The geographic movement of the cars is simulated 
considering fixed time steps of granularity 0.1sec. Time steps 
at which k-hop connectivity relations to the reference car are 
established newly or vanishing are recorded. The results from 
the simulation model are used to investigate the distribution 
of the inter-encounter times. In the second part of this section, 
we analyze the impact of the communication range on the 
encounter process rate both by detailing Equation (1) and by 
simulations. Finally, we analyze the distribution and expected 
value of the connectivity periods. In most parts of the section, 
we focus on single-hop connectivity (k=1). 

5.1. Marginal distribution of single-hop inter-encounter times  

 

Figure 2: Empiric probability density function of the time between 
single-hop encounters for, car density  = 1car/100m: simulation 

results and comparison to an exponential distribution with its rate 
computed from Equation (1) 

Figure 2 plots the empiric probability distribution function 
for the inter-encounter time in the single-hop case obtained 
from samples from 300 simulation runs, each entailing 5hrs 
simulated time (approximately 600 encounter samples in each 
run). Statistics for the times between encounters observed 
from the simulation show a mean = 3.34sec corresponding to a 
rate estimate 

 

= 0.29/sec and a variance of inter-encounter  
times = 10.38sec2. The encounter rate value that results from 
Equation (1) is  =0.312/sec, so rather close to the simulation 
estimate (see later for confidence intervals). Also, the empiric 
marginal distribution represents a close fit to the exponential 
distribution with rate  =0.312/sec. This is confirmed by 
applying Kolmogorov-Smirnov and 2 tests for exponential 
distribution. As shown in Figure 2, the P-Value for each of 
these tests is acceptable for confidence levels equal to 5%. 



Note that the actual simulated mobility model deviates 
from the assumptions of the proof in: (1) the road length is 
finite; (2) the road width is not zero; however as cars keep 
their y-coordinate during the simulation runs and the 
communication range covers the full road width, there is no 
expected impact on the results; (3) the initial placement is 
using uniformly distributed coordinates, which however for 
large number of cars converges to a spatial Poisson 
distribution. With decreasing node density, the impact of (1) 
and (3) becomes stronger and deviations from the Poisson 
properties of the encounter process become more pronounced.  

5.2. Impact of the communication radius R 

Note that the encounter rate  as resulting from Equation 
(1) does not show a direct dependence on the communication 
radius R. However, if R is so small that it does not cover the 
full width of the freeway, there is an indirect dependence, as 
not all vehicles driving in the opposite direction can come into 
range, hence both the effective vehicle density  and also the 
expected value of the relative speed will depend on the 
communication radius in that case. In the following, we 
quantify such dependence for the example case of a uniform 
speed distribution. The calculation can be performed 
analogously for any speed distribution. 

Let us consider the reference vehicle at position (x1, y1) 
shown in Figure 1. As mentioned in Section 3, each vehicle 
has a connectivity range R. Let us denote by P1 the fraction of 
the upper lane (in which the reference vehicle is placed) that is 
covered by R. The upper lane is completely covered (P1 = 1), 
when y1 satisfies the condition: R  max(2W- y1, y1-W). For 
other cases (P1 < 1), two situations should be distinguished:  
1) if the radio range R of the reference vehicle does not cross 

the other lane (R< y1-W), P1
R (2W y1 )

W

 

2) otherwise, P1
R (y1 W)

W

 

Similarly let us define by P2 the fraction of the lower lane 
covered by R. It can be shown that P2 is obtained by: 

P2 min(1, max(0, 
R W y1

W )) . 

As a consequence, the effective car density which only 
takes into account cars that can come into connectivity range 
is: 

(R)
P1 P2

2                                  (2) 

Given that the absolute speed of the cars is distributed 
according to f(v), we need to go through some technicalities in 
order to compute the expected relative speed, which we 
illustrate here for the case of the uniformly distributed speed. 

Considering the case wherev1

vmax vmin
2 , we need to 

distinguish the three following situations: 

 

Vehicles have a larger speed than the reference vehicle 
and are in the same lane where the reference vehicle is. 
Let us denote by S1, the average relative speed 
corresponding to this case. 

S1 v. f1(v).dv
0

vmax v1

 

where, f1(v)
P1

P1 P2
fabs(v) 

 
Vehicles have a smaller speed than the reference vehicle 
and are in the same lane where the reference vehicle is. 
Let us denote by S2, the average relative speed 
corresponding to this case. 

S2 v. f1(v).dv
0

v1 vmin

   
Vehicles are in the other lane where the reference 
vehicle is. Let us denote by S3, the average relative speed 
corresponding to this case. 

S3 v. f2(v).dv
vmin v1

vmax v1

 

where, f2(v)
P2

P1 P2
fabs(v)  

Taking into account the v1

vmax vmin
2

 

and by combining 

the three averages S1, S2, and S3 together, the average relative 
speed is obtained as follows: 

E V f1(v).v.dv
0

v1 vmin

f1(v).v.dv
v1 vmin

vmin v1

v.dv
vmin v1

vmax v1

f2 (v).v.dv
vmax v1

vmax v1

Considering the case of uniform distributed speeds 

f (v) 1
vmax vmin

for vmin v vmax , the average relative 

speed is given by:  

E V
(vmax

2 2v1 (vmax vmin ) vmin
2 )P2 ((v1 vmin )2 (v1 vmax )2 )P1

2(vmin vmax )(P1 P2 )

 

The same procedure can be applied for the other case where 

v1

vmax vmin
2 . 

Finally we get: (R) = (R).E|V| from Equation (1). 

For the remaining of this section, we will consider the case 

wherev1

vmax vmin
2 . 

Figure 3 plots the resulting (R) from this calculation for 
different values of R and compares it to the estimated 
encounter rate from our simulations. Despite the small 
deviations of the mobility model from the underlying 
assumptions of Equation (1), calculated values are always 
within the 95% confidence intervals of the simulation 
estimates. We can note that for radio ranges with P2 = 0 the 
encounter rate is increasing slowly then dramatically 
increases, during the period P2 > 0, until it reaches a saturated 
state when P1 and P2  are equal to one. 

When extending our simulation analysis to also count  
2-hop connectivity via relaying nodes, the empiric distribution 
of the time between encountering new (single-hop or 2-hop) 
neighbors is shown in Figure 4. There is no theoretically 
proven result for this connectivity case, but as the Poisson 
result in Section 4 is actually insensitive to the communication 
range (except for the artifacts for small R discussed in the 
previous section), there is some hope that a Poisson 
approximation may still be reasonably close. Figure 4 
confirms visually the appropriateness of an exponential 
approximation for the considered scenario. 



 

Figure 3: The impact of the Radio Range on the encounter rate 

 

5.3. Multi-hop connectivity dynamics   

 

Figure 4: p.d.f of time between encounters: simulation results and 
curve fitting,  = 1car/100m and 2-hops connectivity  

The simulation estimate of the encounter rate from the 
simulation data is =0.44/sec. The increased encounter rate 
for the 2-hop case results from the fact that: (a) obviously, any 
car can only communicate with the reference car if its distance 
is below 2R; (b) while being in that distance range however, a 
car can get into and out of connectivity to the reference car 
multiple times caused by relay nodes gaining or loosing single-
hop connectivity. It is noteworthy that, for three and four hops 
connectivity scenarios (not shown here), the exponential 
distribution is also a good approximation in the considered 
cases, which led to estimated rates (k=3)=0.458/sec and   

(k=4)=0.552/sec, respectively. With the analogous arguments 
as for the 2-hop case, the meet rate increases slightly with 
increasing number of hops. Analytic derivations for this case 
comparable to Section 4 are beyond the scope of this paper. 

5.4. Connectivity duration characterization  

For many application cases, not only the process of 
meeting new nodes in connectivity range is relevant, but also 
the duration of the connectivity period. For the single-hop 
connectivity case with squared connectivity range (i.e., 
whenever the distance of 2 nodes with respect to the 
supermom-norm is smaller than R, the two nodes can 
communicate), we again utilize the mobility model of the 
previous sections. Under these assumptions, the random 
variable T describing the connectivity duration results from: 

relVRT /2 . Hence, when f(v) is the density function of the 

absolute value of the relative speed, the connectivity duration 
has density:  

g(t) f (2R/ t) 2R
t 2                            (3) 

For circular connectivity range, the calculation of the 
density becomes slightly more complicated as the distribution 
of the vertical distance between the nodes has to be taken into 
account. We skip the technical details here and focus on 
squared connectivity ranges.  

 

Figure 5: Simulation results: p.d.f of connectivity duration  

Figure 5 plots the empiric probability density function 
obtained from the same simulation experiments as used for the 
encounter process; the histogram is based on 180000 samples. 
The figure also plots the expected probability density function 
resulting from Equation (3), where f(v) is the resulting density 
of the absolute value of the relative speed as computed for the 
case of uniform distributed speeds in Section 5.2. Also shown 
in the figure is an exponential fitting of the empiric 
distribution. This exponential approximation may be useful 
when connectivity dynamics are reflected by Markov models 
in performance and dependability models, see e.g. [11]. The 
estimate of the expected value of the connectivity duration 
from the simulation data is 2.018sec, so the exponential fit has 
rate parameter 1T

 

= 0.5226/sec.  



 

Figure 6: The impact of the Radio Range on the expected 
connectivity duration  

As derived in Section 4, the expected value of the relative 
speed is a function of the connectivity radius R as long as  
R < max(y1, 2W-y1). The expected value of T can then be 
calculated as: 

E(T ) 2R
E V

 

(4)  

where both the enumerator and denominator depend on R.  

Figure 6 shows the evolution of the mean connectivity 
duration time for different values of the communication range 
R. This figure also plots the estimated values from simulation 
experiments with the following parameters: =1car/100m, 
vmin=80km/hr, vmax=130km/hr, v1=108km/hr, L=5000m, 
W=15m, (x1,y1) = (2500m,22.5m). The radio range in the 
simulation is of circular shape, which shows its impact only 
for small values of R. It can be observed that E(T) first 
increases with the radio range R till the radio range covers the 
upper lane entirely, and decays subsequently (as vehicles from 
the lower lane with high relative speed contribute to the 
connectivity events). Starting from (R = y1), E(T) starts to 
increase linearly with R. 

6. MOBILITY WITH DEPENDENCIES BETWEEN VEHICLES 

One of the key assumptions in the simulation models of 
the previous section was that the cars move independently of 
each other at fixed speed (though different between cars) and 
they do not change lanes. As we saw in the simulation results, 
we are in such settings close to the assumptions of the 
mathematical theorem in Section 4, and hence a Poisson 
process is a close approximation for the encounter process, 
even in multi-hop connectivity settings. We could also derive 
and analyze the distribution of the connectivity duration and 
the impact of the connectivity range on the expected value of 
both parameters. 

In this section, we remove the assumption of independence 
between cars by utilizing publicly available mobility traces 

that were produced by a more complex simulation model [12]. 
The traces describe a vehicular freeway scenario containing 
also two driving directions, where each direction has either 
two or three lanes. The dimensions of the freeway are 2.5m 
per lane and a 2m gap between the two sets of lanes. Each 
trace file contains 120 time steps of granularity 0.5s, which is 
coarser than in the earlier simulations. 

As compared to the previous section, the car movement in 
these mobility traces now shows variable speeds, cars can get 
slowed down by slower cars in front of them, and they need to 
change lanes and speed up in order to pass by. Hence, these 
simulations show strong correlation between the trajectories of 
different cars (except for sparse car densities when there is 
little mutual obstruction). Speed values thereby are in the 
range of 57.6km/h up to 197 km/h.  

In contrast to the simulations in the previous section, the 
freeway is now not considered wrapped around a cylinder, but 
cars enter on one side and leave at the other end. 

Figure 7 illustrates the changing speeds for a set of cars in 
one of the traces. Since the absolute speeds are varying, also 
the absolute value relative speed with respect to a reference 
car i, vrel,i(t), is a function of t. Therefore the estimate of the 
expected value of this relative speed (averaging over the 
ensemble of cars j i is a function of time, illustrated for 
different reference cars in Figure 7. As a consequence of this 
mobility model, both the car density and also the expected 
value of the absolute value of the relative speed are time-
dependent. 

 

Figure 7: Vehicle speed and speed relative to the observed vehicle 
(unit: m/sec) 

 

Figure 8: Histogram of the rescaled interevent times, and a pdf of 
an exponential distribution with mean=1 



6.1 Connectivity duration characterization 

As both the vehicle density and also the average relative 
speeds are time-dependent, we cannot apply the results and 
analysis approach of Sections 4 and 5 directly to this scenario. 
Instead, we investigate the following conjecture:  

The process that vehicle i meets new direct neighbors can 
be approximated by an inhomogeneous Poisson process with 

rate )()()( , tvtt irefi . 

As cars enter and leave not exactly at the beginning and 
end of the freeway, we adopt the following approach to obtain 
(t)from the simulations: Let d(t) be the distance between the 

last two cars at the beginning and end of the freeway stretch. 
(t)=N(t)/d(t) is then the number of cars on the freeway at time 

t divided by this spatial distance. The mean relative speed is 
determined by averaging over the cars that are on the freeway 
at time t, as illustrated in the lower part of Figure 7. 

In the following, we observe the inter-encounter times in 
trace-driven simulations with these mobility traces for which 
we assume a connectivity range R=100m. To check visually 
whether the inter-encounter times can be approximated by a 
inhomogeneous Poisson process, we plot the empiric density 
of the re-scaled inter-encounter time, where we rescale by the 

rate )()()( , tvtt irefi , and then compare to an exponential 

density with rate 1. This comparison is shown in Figure 8. 
Except for the very first bin of the histogram (corresponding 
to small re-scaled inter-encounter times), the exponential 
density shows an excellent match.  

When comparing the empiric Cumulative Distribution 
Function (cdf) of the rescaled inter-encounter times with an 
exponential cdf of rate 1 (F(t)=1-e-t), the deviations with 
respect to the number of small samples in Figure 8 will lead to 
some initial vertical offset in the cdfs, which will only 
gradually reduce. In order to quantify the deviation from the 
inhomogeneous Poisson assumption, we define as goodness-
of-fit metric the re-scaled distances between the empiric cdf 
and the exponential cdf: 

GOF 1
C F(t) Fexp(t) dt

0

 

where C is chosen to renormalize the value to the range 
between 0 and 1; 0 indicates an exact fit, while 1 represents 
the strongest deviation from the exponential distribution. 

 

Figure 9: Scatter plot showing the goodness of fit against the car 
density. The scenarios that contain 3 lanes per freeway direction 
are marked as diamonds, 2-lane scenarios are shown by crosses 

Figure 9 shows a scatter plot the resulting goodness of fit 
values for different simulation traces corresponding to 
different car densities. Except for the cluster of traces at the 
very right side with goodness of fit values between 0.6 and 
0.65, the exponential distribution shows a tendency of better 
fit for increasing car densities. The outlier cluster on the right-
hand side is actually for a 2-lane scenario, in which the 
comparably high density and fewer lanes lead to more 
clustering of cars on the road. 

The causes of the deviations of the empiric pdf in Figure 8 
will require further analysis. Also, a cdf based goodness of fit 
metric may not be the best choice due to the deviations caused 
by the small samples. Nevertheless, it allows identifying first 
trends of influential parameters as observed in Figure 9. More 
investigations are planned in future work. 

7. MOBILITY WITH DEPENDENCIES BETWEEN VEHICLES 

Vehicular ad-hoc networks have received increasing 
interest in the last years for their potential to support a variety 
of services and applications in order to improve driving safety 
or traffic efficiency and to provide information and 
entertainment to the users. Connectivity between cars in 
freeway scenarios thereby influences the reliability and quality 
of the communication applications. Most of the existing 
connectivity analysis focuses on static snapshots of the 
geographic mobility. This paper investigates the stochastic 
process of encountering new nodes in communication range, 
focusing to a large extend on single-hop (direct link-layer) 
connectivity. 

It is rigorously proven that under certain assumptions the 
process of encountering new nodes in connectivity range is a 
Poisson process whose rates can be calculated from the car 
density and the average relative speed. Subsequently, 
simulation experiments with more complex freeway mobility 
models are used to check the sensitivity of this result to the 
underlying assumptions. It thereby shows that the Poisson 
assumption is a good approximation in also more general 
scenarios of independent car movements, even in multi-hop 
connectivity situations. The distribution of the connectivity 
times can also be computed. The influence of the 
communication radius $R$ on the encounter rate and the mean 
duration of the connectivity period is derived. Finally, trace 
driven simulations of a complex freeway mobility simulation 
from [12] are investigated and the initial analysis results show 
that an inhomogeneous Poisson process whose rate is 
calculated from the previous established relations presents a 
good approximation in certain scenarios. 

More detailed investigations of mobility models with 
correlated movements as well as a mathematical treatment of 
simple multi-hop cases is planned as future extension of this 
work. 
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