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Harmonics Identification with Artificial
Neural Networks: Application to Active Power

Filtering
Ngac Ky Nguyen, Patrice Wira, Damien Flieller, Djaffar Ould Abdeslam, and

Jean Merckle

Abstract

This study proposes several high precision selective harmonics compensation schemes for an
active power filter. Harmonic currents are identified and on-line tracked by novel Adaline-based
architectures which work in different reference-frames resulting from specific currents or powers
decompositions. Adalines are linear and adaptive neural networks which present an appropriate
structure to fit and learn a weighted sum of terms. Sinusoidal signals with a frequency multiple of
the fundamental frequency are synthesized and used as inputs. Therefore, the amplitude of each
harmonic term can be extracted separately from the Adaline weights adjusted with a recursive
LMS (Least Mean Squares) algorithm. A first method is based on the modified instantaneous
powers, a second method optimizes the active currents, and a third method relies on estimated
fundamental currents synchronized with the direct voltage components. By tracking the fluctuating
harmonic terms, the Adalines learning process allows the compensation schemes to be well suited
for on-line adaptive compensation. Digital implementations of the identification schemes are
performed and their effectiveness is verified by experiments.

KEYWORDS: harmonic identification, harmonic compensation, active power filter, adaline,
artificial neural networks, power quality, adaptive control, nonlinear system



1 Introduction
In recent years, power quality has become a significant and critical issue. Today’s
power distribution systems are large and complex. Furthermore, the power produc-
tion becomes more and more distributed while consumption constantly increases.
Nonlinear elements like thyristor-controlled devices and high power converters pro-
liferate in the whole power distribution system and generate harmonic currents.
Other types of pollution like unbalance between the phases, reactive power and a
bad power factor do not only increase the losses but also produce unwanted distur-
bances, damages and stress in power distribution systems (Peng, 2001). As a result,
electrical pollution is of a raising presence.

Power quality improvement has motivated the development of harmonics
compensation schemes such as shunt Active Power Filters (APFs) (Akagi, 1996,
Akagi, Watanabe, and Aredes, 2007). These devices estimate the harmonic terms
and re-inject them phase-opposite in the power distribution system. For optimal
performances, APFs should be able to track the changing harmonics and should
be able to adapt their parameters to take into account the time-varying behavior of
the power system. Under these conditions, neural-based adaptive controllers are
advisable.

An Artificial Neural Network (ANN) provides a computationally efficient
way to approximate the nonlinear relationship between multidimensional spaces (Pic-
ton, 2000). Basically, an ANN estimates a relationship without any mathematical
model and only with representative data. Data are measured inputs and outputs in
the case of a real system. Furthermore, by iteratively adjusting their parameters,
ANNs are able to take into account complex systems with time-varying behaviors.
They have therefore been applied successfully for the identification and control of
dynamical complex systems (Norgaard, Ravn, Poulsen, and Hansen, 2000).

The use of adaptive linear neurons called Adalines (Widrow and Walach,
1996) for estimating the harmonic components has been initiated with the work
of (Dash, Swain, Liew, and Rahman, 1996). Adalines are able to directly estimate
the Fourier coefficients of nonlinear currents corrupted by a random noise. A uni-
fied ANN architecture has thus been proposed in (Ould Abdeslam, Wira, Mercklé,
Flieller, and Chapuis, 2007) for the control of a shunt APF. Several neural estima-
tion schemes based on Adalines are employed to on-line learn the load currents
expressed in different reference frames. The amplitude of the harmonic terms are
deduced and their compensation is achieved. Various approaches have been pro-
posed in the literature and reflect the increasing interest of applying adaptive and
neural-based techniques for estimating harmonic components (Azevedo, Ferreira,
Martins, and Carvalho, 2008, Nguyen and Liao, 2009, Mohanty, Kumar, Routray,
and Kabisatpathy, 2010). Multi-Layer Perceptrons (MLPs) and Radial Basis Func-
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tion Neural Networks (RBFNNs) are investigated in (Mazumdar and Harley, 2008),
Probabilistic Neural Networks (PNNs) or Support Vector Machines (SVMs) are
combined to other techniques like wavelet-based feature vectors (Dash, Nayak,
Senapati, and Lee, 2007) or the S-transform (Panigrahi, Dash, and Reddy, 2009).
They are efficient solutions to severe estimation problems event with fluctuating
parameters (Zadeh, 2010). However, the learning of complex neural architectures
remains stiff when handling real-time systems.

This article proposes three simple neural network schemes for identifying
harmonic currents. The proposed schemes use Adalines and are based on specific
expressions of powers or currents representative of the distorted currents. In the first
scheme, the expression of the modified instantaneous powers are learned by Ada-
lines. In the second scheme, optimal active currents are deduced from instantaneous
powers and are estimated by Adalines. In the third scheme, the direct fundamental
current is expressed in an appropriate current reference frame and is estimated by an
Adaline. Once training is achieved, the Adalines allow to access to the amplitudes
of the harmonic terms which can be used for compensation and monitoring. Per-
formances of the neural schemes are discussed and verified through compensating
current generation in a shunt APF. Results show that the proposed neural schemes
can efficiently identify and remove the harmonic terms. This is confirmed with a
dSPACE-based prototype used in experiments.

The paper is organized as follows. Section 2 introduces the instantaneous
p-q powers and describes how to calculate them with Adalines for estimating har-
monic terms within an APF compensation scheme. New Adaline-based methods
for estimating the current harmonics are presented in Section 3. Section 4 verifies
the expected features and performances of the proposed neural harmonic identifica-
tion schemes by means of selected experimental results. In addition, a performance
comparison with the original p-q method for estimating the harmonics is provided.
Section 5 presents the concluding remarks of this paper.

2 Harmonics identification and powers interpretation

2.1 Instantaneous harmonic tracking

Many papers have dealt with the definition, identification, characterization, detec-
tion, measurement, and compensation of non-sinusoidal and non-periodic currents
and powers (Peng, 2001). The Instantaneous Power Theory (IPT) of (Akagi, 1996),
also known as the p-q theory, has demonstrated its ability for efficiently describ-
ing and modeling power systems. Initially proposed for balanced systems, the
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Figure 1: Block diagram of the shunt APF

IPT has since been enhanced and derived for systems under unbalanced condi-
tions (Willems, 1996, Peng, 2001, Czarnecki, 2004, Herrera, Salmeron, and Kim,
2008).

The instantaneous active power is defined as the time rate of energy gener-
ation, transfer, or utilization. It is a physical quantity and satisfies the principle of
conservation of energy. For a single-phase circuit, it is defined as the instantaneous
product of the voltage and the current:

p(t) = v(t)i(t). (1)

For a circuit with M-phases, the instantaneous active power is expressed
as (1) for each phase and the instantaneous total active power is the sum of the
active powers of the individual phases:

p(t) = ∑M
i=1 pi(t) = ∑M

i=1 vi(t)ii(t). (2)

The non-active power can be thought of as the useless power that cause
losses, burdens and other harmful effects to power systems (Peng, 2001). The in-
stantaneous non-active power or reactive power is called q(t).

From the compensation standpoint, the goal of the IPT is to improve the
power factor, to minimize power losses and to compensate for disturbances by iden-
tifying, measuring, and eliminating the useless power. As mentioned, the compen-
sation is tackled with an APF. A shunt APF for minimizing the useless power and
for compensating for the harmonic currents is shown by Fig. 1. Relevant currents
and voltages at different points of its circuit are shown and enumerated thereafter:
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• vs−abc(t) is the three-phase voltage delivered by an AC source supply;
• vL−abc(t) is the three-phase voltage measured on the load;
• iL−abc(t) is the three-phase current measured on the load;
• ire f−abc(t) is the identified harmonic currents of the three phases;
• vre f−abc(t) is the control signal issued by a regulator to control the Voltage

Source Inverter (VSI);
• vL−abc(d)(t) and θd(t) are respectively the vector of the instantaneous direct

components and the instantaneous phase of the load voltage;
• s135(t) =

[
s1 s3 s5

]T and s246(t) = s̄135(t), where each si ∈ [1,0] with i =
1,2...6, are the gates control signals defining the state of the IGBT (Insulated
Gate Bipolar Transistor) gates, whether they conduct or not;

• Vdc is the ideal supply voltage of the VSI;
• vvsi−abc(t) is the three-phase output voltage of the VSI;
• iin j−abc(t) are three-phase compensating currents injected in the power distri-

bution system.

Additionally, Ts which is not represented on Fig. 1, is the sampling time of the
numerical implementation of the APF control scheme. The continuous time is dis-
cretized, this allows to write t = kTs where k represents the discrete time index.

One of the objective of the APF scheme is to characterize the harmonic
terms generated by nonlinear loads. It is well-known that signals of three-phase
systems can be represented by the sum of sine terms and by their direct, inverse and
zero-sequence components. The three-phase voltages and currents measured on the
nonlinear load can thus be respectively expressed by:

vL−abc(t) =
N

∑
n=1







√
2VdnC32P(nθd)

[
1 0

]T

+
√

2VinC32P(−nθi)
[

1 0
]T

+
√

2V0nC31 cos(nθ0)







, (3)

iL−abc(t) =
N

∑
n=1







√
2IdnC32P(nθ ′

d)
[

1 0
]T

+
√

2IinC32P(−nθ ′
i )
[

1 0
]T

+
√

2I0nC31 cos(nθ ′
0)







, (4)

where n is the rank of the harmonic terms, N represents the rank of the highest
harmonic term taken into account, θk = ωkt +φk and θ ′

k = ωkt +φ ′
k with k = d, i,o

are the instantaneous phases with the phase angles φk and φ ′
k of respectively the

voltages and the currents. The d, i and o indexes denote respectively the direct,
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inverse and zero-sequence components. In (3) and (4), P(θ) is the matrix of the
Park’s transform:

P(θ) =

[
cosθ −sinθ
sinθ cosθ

]

, (5)

and C32 and C31 are the matrices of the Clarke’s transform

C31 =
[

1 1 1
]T

, CT
32 =

[
1 −1/2 −1/2
0

√
3/2 −

√
3/2

]

, (6)

which respect the following criteria (Akagi et al., 2007):

CT
32C31 =

[
0 0

]T
, CT

32C32 =
3
2

[
1 0
0 1

]

. (7)

2.2 The instantaneous power theory

The IPT, or p-q theory, is based on the instantaneous active power p, the reactive
power q, and the zero-sequence power p0 for defining systems under unbalanced
conditions (Akagi et al., 2007). These powers are expressed as follow:





p
q
p0



=





vα vβ 0
vβ −vα 0
0 0 v0









iα
iβ
i0



=





p̄+ p̃
q̄+ q̃

p̄0 + p̃0



 , (8)

with
[

vα vβ v0
]T

=

√

2
3

[

C32
C31√

2

]T
vL−abc, (9)

[
iα iβ i0

]T
=

√

2
3

[

C32
C31√

2

]T
iL−abc. (10)

As written in (8), the instantaneous power p is always composed of an con-
tinuous part p̄ and of a alternative part p̃. In the same way, q̄ and q̃ are the continu-
ous and the alternative parts of the instantaneous power q, p̄0 and p̃0 the ones of p0
respectively.

Developing the instantaneous active power p from (8) leads to the following
expression (with only the direct fundamental voltage component):

p = p̄+
N
∑

n=2
pn−1 cos

(
(n−1)ωt −φd1 +φ ′

dn

)

+
N
∑

n=1
pn+1 cos((n+1)ωt +φd1 +φ ′

in)
, (11)
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Figure 2: Adaline architecture for estimating the instantaneous active power p ac-
cording to the p-q theory

where its continuous part is p̄ = 3Vd1Id1 cos(φd1 − φ ′
d1) and with the coefficients

pn−1 = 3Vd1Idn and pn+1 = 3Vd1Iin. (11) can be rewritten with sums of vectors:

p = p̄+ p̃ = p̄+
N
∑

n=2

([
cos(n−1)ωt
sin(n−1)ωt

]T [ pn−1 cos(φd1 −φ ′
dn)

pn−1 sin(φd1 −φ ′
dn)

])

−
N
∑

n=1

([
cos(n+1)ωt
sin(n+1)ωt

]T [ pn+1 cos(φd1 +φ ′
in)

pn+1 sin(φd1 +φ ′
in)

])

.

(12)

In conventional compensation schemes, low-pass filters are used to extract
p̄. On the other side, it is possible to learn and to estimate the terms of p̃ in (12)
by using Adalines (Ould Abdeslam et al., 2007). Compensating currents can be
deduced from p̃ with v2

αβ = v2
α + v2

β :

ire f−abc =
1

v2
αβ

√

2
3

[

C32
C31√

2

]






vα vβ 0
vβ −vβ 0

0 0
v2

αβ
v0










p̃
q
p0



 . (13)

2.3 Learning on-line linear sums of periodical signals

The Adaline neural network was originally conceived and formulated for approxi-
mating linear combinations of scalar signals (Widrow and Walach, 1996). Based on
the LMS (Least Mean Square) learning rule, this model represents a classic exam-
ple of the simplest intelligent self-learning system that can adapt itself to achieve a
given linear modeling task. The problem consists of finding a suitable set of weights
such that the input-output behavior of the Adaline becomes close to a set of desired
input-output data points linked with a linear relationship. The Adaline weights are

6

International Journal of Emerging Electric Power Systems, Vol. 12 [2011], Iss. 5, Art. 1

http://www.bepress.com/ijeeps/vol12/iss5/art1
DOI: 10.2202/1553-779X.2783



solved using an iterative LMS algorithm in order to minimize the estimation er-
ror (Picton, 2000). The weights of the Adaline can be interpreted, giving thus a non
negligible advantage to the Adaline over other ANNs.

The Adaline, whose architecture is represented on Fig. 2, represents a linear
mapping between an input vector x(k) and a scalar output y(k) at instant k, its output
is thus:

y(k) = xT (k)w(k), (14)

and the weights are adjusted according to

w(k +1) = w(k)+η
e(k)x(k)

xT (k)x(k)+ξ
, (15)

where η is a learning rate, ξ is a small non-null positive constant and e(k) = d(k)−
y(k) is the output error of the Adaline, i.e., the difference between y(k) and a desired
reference signal d(k) measured on the system at each sampled time.

In the context of harmonic estimation, the underlying idea is to learn and
approximate linear sums of sinusoidal signals with Adalines (Ould Abdeslam et al.,
2007). Appropriate sinusoidal signals that are representative of possible harmonic
terms are synthesized and used as inputs. Then, the Adaline compares its output
to a measured variable and adjusts its weights in consequence. The weights of the
Adaline are thus enforced to converge toward values which represent the ampli-
tudes of the sinusoidal signals. Applied to a power system, the final weights are
representative of the amplitudes of the real harmonic terms.

For example, one Adaline can be used to estimate the decomposition of p
given in (12). Therefore, the following generic input vector is created to fulfill the
expression of p with n = 2 to N (see also Fig. 2):

x(k) =
[

1 ... cos(n−1)ωt sin(n−1)ωt cos(n+1)ωt sin(n+1)ωt
]T

.
(16)

After learning, the weights w of the Adaline converge to:

w∗(k) −−−→
k→∞

[
p̄ ... pT

N−1 pT
N+1

]T (17)

with

pN−1 =

[
pn−1 cos(φd1 −φ ′

dn)
pn−1 sin(φd1 −φ ′

dn)

]

,pN+1 =

[
pn+1 cos(φd1 +φ ′

in)
pn+1 sin(φd1 +φ ′

in)

]

. (18)

It can be seen that the weights w∗(k) contain continuous terms corresponding to
the amplitude of each power harmonic and that its first element is the continuous
part of p. The output of the Adaline is p̂, the estimation of the instantaneous power
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p, and its desired value is the power p recovered from the measured currents and
voltages. Two other Adalines are used to estimate the instantaneous powers q and
p0 of (8). This has been proposed in (Ould Abdeslam et al., 2007) to identify and to
compensate in real-time for the most common harmonic terms in power distribution
systems which are of rank n=5, 7, 11, 13, 17, 19, 23, 25... i.e., by using the terms
cos6 jωt and sin6 jωt with j=1,2,3... for estimating the powers.

The principle of formalizing expressions of instantaneous variables by mean
of sums of sinusoidal terms for estimating their amplitudes with Adalines has been
applied to other types of variables. More specifically, the following section pro-
poses to learn modified p-q powers, active currents and synchronized currents. In
each decomposition learned by Adalines, the resulting weights allow to recover the
amplitudes of the harmonic terms of either instantaneous powers or currents.

3 Original neural schemes for harmonic currents iden-
tification

Three neural schemes for harmonic currents identification are developed. The first
method is based on the modified instantaneous p-q theory, the second one is based
on optimal active currents and the third method is based on synchronized currents.
Each one allows to clearly identify the harmonic terms and thus to compensate for
them with different objectives: full compensation, selective harmonic compensa-
tion, power factor correction, unbalance correction, and power flow control.

In the case of unbalanced nonlinear loads, a symmetrical component ex-
traction algorithm is necessary in order to estimate the direct voltage components,
i.e., vL−abc(d)(t). A Phase Locked Loop (PLL) can be used; we adopted the neural
approach developed in (Flieller, Ould Abdeslam, Wira, and Mercklé, 2009).

3.1 Neural method based on the modified p-q theory

Most APF devices use the instantaneous powers defined by the well-known p-q
method (Akagi, 1996) which is not appropriate in all cases. Extensions and alterna-
tive methods have been proposed since, like the modified p-q method which uses at
the same time the active, reactive and zero-sequence instantaneous powers (Akagi
et al., 2007). Under balanced conditions, the modified and the original p-q methods
use the same expression of the continuous parts of the powers. This is not the case
with unbalanced nonlinear loads. The instantaneous power q can be separated into
two parts, qα and qβ . Their resulting expressions are learned by Adalines (Nguyen,
Wira, Ould Abdeslam, and Flieller, 2009) as will be explained thereafter.
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Figure 3: Adaline-based modified p-q method

Under unbalanced conditions, the modified p-q theory is based on the fol-
lowing expressions of the powers:







p
qα
qβ
q0







=







vα vβ v0
0 −v0 vβ
v0 0 −vα
−vβ vα 0











iα
iβ
i0



 , (19)

where vα , vβ , v0, iα , iβ and i0 come from (9) and (10).
The active power p in (19) can be detailed by:

p =p̄+ p̃, (20)

p̄ = ∑
k=d,i,0

N

∑
n=1

3VknIkn cos(φkn −φ ′
kn), (21)

p̃ = ∑
k=d,i,0

N

∑
m6=n

N

∑
n=1

3VkmIkn cos(θkm −θ ′
kn),

+ ∑
k=d,i,0

N

∑
m=1

N

∑
n=1

−3VkmIk∗n cos(θkm +θ ′
k∗n) withk∗ =







i if k = d
d if k = i
0 if k = 0

. (22)

This approach separates the reactive power q into three components, i.e., the α −β
components and the zero-sequence component. The reactive power along the α
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axis is

qα =− v0iβ + vβ i0 = q̄α + q̃α , (23)

q̄α = ∑
k=d,i

N

∑
n=1

a
3
√

2
2

[
V0nIkn
−VknI0n

]T [ sin(φon −φ ′
kn)

−sin(φkn −φ ′
on)

]

, (24)

q̃α = ∑
k=d,i

N

∑
m6=n

N

∑
n=1

a
3
√

2
2

A
[

sin(θom −θ ′
kn)

−sin(θkm −θ ′
on)

]

+ ∑
k=d,i

N

∑
m=1

N

∑
n=1

a
3
√

2
2

A
[

sin(θom +θ ′
kn)

sin(θkm +θ ′
on)

]

with a =

{
1 if k = d
−1 if k = i , (25)

and where A =
[

A1 A2
]
=
[

V0mIkn −VkmI0n
]
.

The reactive power along the β axis is obtained in the same way but with an
angle shifted of π

2 . The sine terms of (24) and (25) can thus be replaced by cosine
terms for defining q̄β and q̃β . The power q0 is determined in the same way as q in
the original p-q method:

q0 =q̄0 + q̃0, (26)

q̄0 = ∑
k=d,i

N

∑
n=1

3aVknIkn sin(φkn −φ ′
kn), (27)

q̃0 = ∑
k=d,i

N

∑
m6=n

N

∑
n=1

−3aVkmIkn sin(θkm −θ ′
kn)

+ ∑
k=d,i

N

∑
m=1

N

∑
n=1

3aVkmIk∗n sin(θkm +θ ′
k∗n). (28)

Expressions (20) to (28) determine instantaneous powers in terms of linear weighted
sums of sinusoidal signals. Indeed, p, qα and q0 respectively given by (20), (23)
and (26), and qβ which can be deduced from qα by replacing the sine terms by
cosine terms in (23), are sums of sinusoidal signals weighted by coefficients. For
example, p can be written in the form of (14) with:

x =







cos(n−1)ωt
sin(n−1)ωt
cos(n+1)ωt
sin(n+1)ωt







,w =







3Vd1Idn cos(φd1 −φ ′
dn)

3Vd1Idn sin(φd1 −φ ′
dn)

−3Vd1Iin cos(φd1 +φ ′
in)

3Vd1Iin sin(φd1 +φ ′
in)







, (29)

with n = 1, ... N. x is the input vector of the Adaline which contains synthesized
signals representing the N harmonic terms. w is the weights vector of the Adaline.
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With these vectors, the output of the Adaline given by (14) provides an estimation
of p which is on-line compared to measured values. The iterative LMS learning rule
makes the weights to converge toward the appropriate coefficients. The weights of
the Adaline therefore represent the amplitudes of the harmonic terms composing
p. The first weight is associated to an input which is the fundamental term and
therefore represents the continuous active power produced by the direct fundamen-
tal currents. Fig. 3 illustrates the principle of estimating the harmonic terms of p.
The harmonic terms of the three other reactive powers are estimated according to
the same principle.

Under unbalanced conditions, this approach must be completed by a sym-
metrical voltage components extraction algorithm. This can be achieved by a con-
ventional PLL or a neural dedicated scheme (Flieller et al., 2009). If the voltages
system is unbalanced, the continuous parts of the powers p, qα , qβ and q0 con-
sist of three components from the direct, inverse and zero-sequence system. As a
consequence, the reference currents from (30) will not be able to compensate for
the whole imbalance. These currents will only be able to maintain a constant active
power. Generally, an APF ensures a constant active power in the distribution system
but also a sinusoidal waveforms of the source currents.

This compensation approach allows to handle not only four-wire but also
three-wire systems. According to the compensating objective, the instantaneous
powers can be used to elaborate the reference currents to be injected in the power
distribution system:

ire f−abc =
1

v2
αβ0

√

2
3

[

C32
C31√

2

]





vα 0 v0 −vβ
vβ −v0 0 vα
v0 vβ −vα 0











p
qα
qβ
q0







(30)

where v2
αβ0 = v2

α + v2
β + v2

0. Even if the zero-sequence voltage is null, the modified
p-q method considers the zero-sequence current i0 as a reactive current because of
its contribution to the reactive powers qα and qβ as mentioned in (19). A compen-
sation scheme without any energy storage unit can be used to fully cancel i0 and the
harmonic currents if v0 = 0. It can be noticed that i0 is not canceled if the reactive
powers qα and qβ are not taken into account in the right hand-side of (30), i.e., if
they are replaced by 0.

3.2 Neural method based on active currents

The instantaneous reactive current is a component which does not contribute to
the active power (Akagi et al., 2007). This current contributes to the amplitude

11

Nguyen et al.: Harmonics Identification with ANNs : Application to APF

Published by Berkeley Electronic Press, 2011



+

-

…

dp

ip

cos( 1)n tw-

sin( 1)n tw-

cos( 1)n tw+

sin( 1)n tw+

dp

ip+

-

…

cos( 1)n tw-

sin( 1)n tw-

cos( 1)n tw+

sin( 1)n tw+

( )ref b di
-

+

+

symmetrical
components
extraction

L av
-

L bv
-

L cv
-

L ai
-

L bi
-

L ci
-

( )L abc dv
-

( )L abc iv
-

( )ref a di
-

( )ref c di
-

( )ref b ii
-

( )ref a ii
-

( )ref c ii
-

in
st

an
ta

n
eo

u
s 

ac
ti

v
e

p
o

w
er

s 
ca

lc
u

la
ti

o
n

ac
ti

v
e 

cu
rr

en
t

co
m

p
o

n
en

ts
 c

al
cu

la
ti

o
n

Figure 4: Adaline-based active currents method

of the total current but increases the losses. This current can be estimated by dif-
ferent ways. We propose to use the Lagrange multiplier method (Luenberger and
Ye, 2008) to calculate the active currents from instantaneous powers estimated by
Adalines (Nguyen et al., 2009).

In a power distribution system with l + 1 wires, i.e., l phases and a neutral,
the voltages and currents of the nonlinear load can be respectively defined by the
following vectors:

v =
[
v1 v2 . . . vl

]T
, (31)

i =
[
i1 i2 . . . il

]T
. (32)

The active currents method estimates the active part of the load currents under the
constraint that these currents produce the instantaneous active power p (Akagi et al.,
2007) by the following expression:

p = vT i, (33)

Two optimization strategies are proposed to calculate the active currents
minimizing the losses of the network with a given instantaneous power p.

3.2.1 Optimization on l lines with i0 = 0

The optimization can be achieved by considering l lines. In this case, the neutral
current have to be equal to zero at the source-side and this means:
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with u1 =
[
1 1 · · · 1

]T .
There is an infinite number of solutions, i.e., of line currents, which satisfy

at once equations (33) and (34). However, a unique solution can be determined by
introducing the ohmic losses

g(i) =
1
2

iT i, (35)

and the objective function L1 can thus be used:

L1 = g(i)+λ1
(

p−vT i
)
+λ2uT

1 i. (36)

We can write (37) by taking the partial derivatives of L1 according to the each phase
current and equating them to zero:

i = λ1v−λ2u1. (37)

Replacing (37) into (33) leads to:

p = vT i = vT (λ1v−λ2u1) = λ1vT v−λ2vT u1. (38)

Replacing (37) into (34) gives:

uT
1 i = uT

1 (λ1v−λ2u1) = λ1uT
1 v− lλ2 = 0. (39)

The following two Lagrangian multipliers can be calculated from (38) and (39):

λ1 =
l

lvT v− (u1T v)2 p, (40)

λ2 =
uT

1 v
lvT v− (u1T v)2 p. (41)

Finally, the line currents can be expressed with λ1 et λ2 by:

iopt (l) = l
v

lvT v− (u1T v)2 p− uT
1 vu1

lvT v− (u1T v)2 p =
l
(
v− 1

l uT
1 vu1

)

lvT v− (u1T v)2 p. (42)

The currents defined by (42) release instantaneously a constant active power
and minimize the ohmic losses in the l lines of the power system. If a neutral current
is allowed, i.e. i0 6= 0, then an alternative strategy is proposed to minimize the Joule
losses on l +1 lines.

uT
1 i = 0 (34)
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3.2.2 Optimization on l +1 lines with i0 6= 0

In the case of l +1 lines, the objective function is defined by introducing the ohmic
losses on the l phases and the neutral line according to:

L2 = g(i)+
1
2
(
u1

T i
)
+λ3

(
p−vT i

)
. (43)

With the same developments as in the previous case, we establish:

i+u1
T i =










2 1 1 . . . 1
1 2 1 . . . 1
1 1 2 . . . 1
...
1 1 1 . . . 2










︸ ︷︷ ︸

l×l

i = λ3v (44)

and:

i =
λ3

(l +1)










l −1 −1 . . . −1
−1 l −1 . . . −1
−1 −1 l . . . −1

...
−1 −1 −1 . . . l










︸ ︷︷ ︸

A

v. (45)

Replacing (45) into (33) leads to:

p =
λ3

(l +1)
vT Av, (46)

with:

vT Av =lvT v−2
l

∑
k=1

l

∑
j 6=k; j=1

vkv j

=lvT v−
((

uT
1 v
)2 −vT v

)

= (l +1)vT v−
(
uT

1 v
)2

. (47)

The Lagrangian λ3 is thus deduced:

λ3 =
(l +1)p

(l +1)vT v−
(
uT

1 v
)2 , (48)
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and the line currents are obtained by substituting λ3 into (45):

iopt (l+1) =
(l +1)v−uT

1 vu1

(l +1)vT v−
(
uT

1 v
)2 p. (49)

Expression (49) provides the active currents that optimize the transmission losses
in (l+1)-wire systems. A comparative study shows that in l-wire systems, the trans-
mission losses are equivalent if the compensation is achieved by the p-q method or
by the active currents (Malengret and Gaunt, 2008). On the other side, the losses
are lower with the active currents method than with the p-q method in (l+1)-wire
systems.

It can be seen that the optimal current iopt , which is iopt (l) or iopt (l+1) ac-
cording to the considered strategy, is obtained from the instantaneous powers and
in particular from (33). This power is learned with two Adalines, one for estimat-
ing pd , the active power of the direct voltage and current components and one for
estimating pi, the active power of the inverse voltage and current components.

A compensating scheme for a three-phase nonlinear load described by i =
iL−abc uses the following reference currents:

ire f−abc = iL−abc − iopt . (50)

It is illustrated by Fig. 4. The active currents are sinusoidal signals obtained
from the amplitude of the active currents synchronized with the direct voltage com-
ponents. As a consequence, the power factor is corrected and achieved near to
unity. The compensation of the reactive power can be considered as a part of the
harmonics compensation strategy.

3.3 Neural synchronized method

The neural synchronized method implicitly works in a reference frame which is
synchronized with the direct voltage components (Nguyen, Ould Abdeslam, Wira,
Flieller, and Mercklé, 2008). The amplitude of the fundamental current I1 and the
phase-shift angle of the positive voltage are extracted from a decomposition of the
currents proposed in (Moran, Dixon, and Wallace, 1995). This decomposition al-
lows to formulate the harmonics in a reference frame obtained by multiplying the
load current indifferently by sinθd or by cosθd issued from a symmetrical compo-
nents extraction algorithm. This reference frame can be considered as representing
a virtual power synchronized with the source voltage of the system. The principle
of this method is described by Fig. 5.
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Figure 5: Principle of the Adaline-based synchronous method for one phase

Therefore, the three-phase voltage of (3) with only the direct components
can be written as:

vL−abc(t) =
N
∑

n=1

√
2Vn





cos(n(ωt +ϕ))
cos(n(ωt −2π/3+ϕ))
cos(n(ωt +2π/3+ϕ))





=
N
∑

n=1

√
2Vn





cos(nθd)
cos(nθd −n2π/3)
cos(nθd +n2π/3)



,

(51)

with θd = ωt +ϕ . A symmetrical components extraction algorithm or a PLL allows
to recover the direct voltage components which are without harmonic terms:

vL−abc(d)(t) =
√

2V





cos(θd)
cos(θd −2π/3)
cos(θd +2π/3)



 . (52)

Here, the objective of the compensation is to recover sinusoidal current
waveforms which are in phase with the direct voltage components. As a conse-
quence, the total free and available power transmitted from the source to the load
will be at its maximum. The three-phase current defined by (4) with only the direct
components can be rewritten by:

iL−abc(t) =
N

∑
n=1

√
2In





cos(nθd +δn)
cos(nθd −2nπ/3+δn)
cos(nθd +2π/3+δn)



, (53)

with δn the phase of harmonic term of rank n expressed between the voltage and the
current components. Multiplying the load current of the first phase by cosθd issued
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from the symmetrical components extraction algorithm gives:

iL−a(t)cosθd =
N
∑

n=1

√
2In
2 {cos((n+1)θd +δn)+ cos((n−1)θd +δn)}

=
N
∑

n=1

√
2In
2 {cos(n+1)θd · cosδn − sin(n+1)θd · sinδn}

+
N
∑

n=1

√
2In
2 {cos(n−1)θd · cosδn − sin(n−1)θd · sinδn}

(54)

This expression is a weighted sum of harmonic terms which can be decomposed
with the following generic vectors:

x =
[

cos(n−1)θd + cos(n+1)θd sin(n−1)θd + sin(n+1)θd
]T (55)

w =

[
In cosδn√

2
− In sinδn√

2

]T

(56)

where n = 1, . . .N. Expression (54) is learned with one Adaline using x as an input
and iL−a(t)cos(θd) its desired output. θd is estimated by a symmetrical compo-
nents extraction algorithm. The learning therefore enforces the weights vector to
converge toward w of (56). The values of the two first weights w∗1 = I1 cosδ1√

2
and

w∗2 = − I1 sinδ1√
2

are thus associated to the direct fundamental sinusoidal term of the
load currents and can be used to calculate I1 and δ1:

I1 =
√

2(w∗1)2 +2(w∗2)2, (57)

δ1 = arctan
−w∗2

w∗1 . (58)

In the same way, it is possible to calculate the amplitude and phase of each harmonic
term, In and δn, by using the corresponding Adaline weights w∗(2n−1) = In cosδn√

2
and

w∗(2n) = In sinδn√
2

. Each harmonic term can thus be taken into account individually.
Compensating only for the specific harmonic of rank n > 1 requires the following
reference current for the first phase:

ire f−a = In cos(θdn +δn)+ I1 sinδ1 cosθd. (59)

The reference current for compensating for of all harmonics at once can be calcu-
lated by the sum of the higher-order harmonics or more simply by:

ire f−a = iL−a − I1 cosδ1 cosθd. (60)
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In (60), the current I1 cosδ1 cosθd is an active current in phase with the di-
rect voltage component and represents the active fundamental term of the load cur-
rent. As a consequence, a compensation scheme with reference currents provided
by (59) or by (60) inherently maintains the power factor to unity.

3.4 Discussion

The neural approaches proposed for the identification of the harmonic currents are
all based on instantaneous powers estimated by Adalines. One is based on the
modified p-q powers, one on the active powers pd and pi, and one on a virtual
power defined by the measured load currents and a recovered voltage cosθd .

Their characteristics are presented and compared to a neural scheme based
on the conventional p-q theory in Table 1. The expressions for calculating the refer-
ence currents are recapitulated and completed by the variables required according
to the compensating objectives. The number of Adalines involved in each neural
scheme is specified, their compatibility with single or three phase power systems
and a rough estimation of the computational costs are provided.

The proposed harmonic currents identification methods can all be used in 3-
wire or 4-wire three-phase power systems. If the voltage components are balanced,
all the proposed neural schemes demonstrate a quite similar behavior. On the other
hand, with unbalanced voltage components, their behavior differs with the number
of wires. In 3-wire three-phase power systems, the neural method based on active
currents optimized for 3 phases leads to a null homopolar current after compen-
sation. This is also the case of the method based on the conventional p-q powers
because it uses the same expression of the power in this particular case. In 4-wire
three-phase power systems, the neural method based on the modified p-q powers
results in highest Joule losses. The most reduced losses are obtained with the neu-
ral method based on active currents when they are optimized for 4 phases. These
consideration are important, especially for controlling synchronous machines and
maintaining at the same time a constant torque and minimum Joules losses with a
non sinusoidal electromotive force.

The scheme based on the modified p-q powers is the most computationally
extensive method with 4 Adalines, against 2 Adalines for the neural method based
on the conventional p-q powers and only one for the two other methods. The sim-
plest implementation is achieved with the neural synchronized method.
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4 Evaluation of the proposed neural harmonic iden-
tification schemes by experimental tests

The precision and the robustness of the proposed Adaline-based harmonic identifi-
cation schemes are evaluated with real-time experiments. The schemes are inserted
in a shunt APF for compensating harmonics generated by a nonlinear and unbal-
anced load.

4.1 Experimental setup

The experimental set-up is a three-phase sinusoidal electrical grid at 130 V rms
and 50 Hz with a 1 kVA nonlinear load. This load is composed of a diode bridge
supplying a highly inductive load and a linear resistive load and generates higher-
order harmonics up to rank 30. The nonlinear load fluctuates and changes therefore
the harmonic content of the currents and the unbalance. A dSPACE-based APF
prototype is inserted for identifying the harmonics and improving the power quality
under various operating conditions. This system is represented by Fig. 6.

The control of the APF is implemented as a stand-alone process on a dSPACE
board with a sampling period Ts = 0.6 ms. Mainly, the neural harmonics identifica-
tion schemes are hosted by this high-speed DSP board. Once calculated, compen-
sating currents are generated by a three-phase VSI. This inverter is connected to the
grid by a filtering inductance L = 3.8 mH and a resistance r = 2.5 Ω and the current
control is ensured by a neural controller (Ould Abdeslam et al., 2007).

4.2 Compensating for all harmonic currents

The compensation of the harmonics is achieved by the proposed neural schemes.
Their performances are also compared to the performance of their original methods.

Table 1: Characteristics of the neural harmonics identification schemes
identification
method

expression of
the reference
currents

expression or
variables for
only harmonics
compensation

variables for only
reactive power
compensation

variables used for
only the current
unbalance correc-
tion

compatible
with 1 or
3 phases

number
of Ada-
lines (3
phases)

compu-
tational
costs

neural conv. p-q (13) p̃+ q̃ q p0 3 2 +
neural mod. p-q (30) p̃+ q̃α + q̃β + q̃0 q̄α + q̄β + q̄0 qα +qβ 3 4 ++

neural active cur (50) p̃ inherently included 3 1 −
neural synchr (60) (59) inherently included 1 1 −
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Table 2: Compensating performances of the different harmonics identification
schemes

phase a h5/h1 (%) h7/h1 (%) h11/h1 (%) h13/h1 (%) h17/h1 (%) T HD (%) rise time
nonlinear load bal unbal bal unbal bal unbal bal unbal bal unbal bal unbal (ms)
load current 20 10 13 6 7 2 8 3 3 1 36 14 -

orig. mod. p-q 0.46 0.42 0.55 0.52 0.54 0.51 0.47 0.42 0.15 0.22 0.88 0.71 200
orig. active cur 0.46 0.43 0.55 0.51 0.54 0.52 0.47 0.42 0.15 0.22 0.84 0.75 200

neural conv p-q 0.23 0.31 0.27 0.37 0.32 0.37 0.23 0.30 0.25 0.25 0.82 0.61 200
neural mod p-q 0.23 0.30 0.27 0.37 0.32 0.37 0.23 0.30 0.25 0.25 0.80 0.60 60
neural active cur 0.23 0.31 0.27 0.37 0.32 0.37 0.23 0.30 0.25 0.25 0.75 0.58 40
neural synchr 0.24 0.25 0.21 0.33 0.35 0.38 0.32 0.42 0.65 0.58 0.70 0.60 32

Limits of the IEEE < 4 < 4 < 4 < 4 < 2 < 2 < 2 < 2 < 1.5 < 1.5 < 5 < 5 -
Std 519-1992

nonlinear load

1104 board hosting:

inverter
+ low-pass

filter

source supply

current
sensors

voltage
sensors

personal computer
- neural current control
- neural harmonic currents detection

- SPWM

- symmetrical voltage components
extraction

- A/D and D/A conversions

3-phase electrical grid

Figure 6: Principle of the experimental test-bed

Table 3: Performance in compensating only for harmonics of rank 5 and 7
phase a h5/h1(%) h7/h1(%) h13/h1(%)
nonlinear load bal unbal bal unbal bal unbal
load current 20 10 13 6 8 3

neural mod. p-q 0.78 0.53 0.32 0.30 6.44 3.93
neural active cur 0.41 0.47 0.47 0.46 4.90 3.00
neural synchr 0.63 0.54 0.38 0.35 6.24 3.85
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Results are presented by Fig. 7 with a nonlinear load whose parameters
change at t = 2.595 s. Fig. 7 a) shows the current waveforms iL−abc measured on
the nonlinear load. Fig. 7 b) shows the currents compensated with a neural scheme
based on the conventional p-q powers. The currents compensated with the proposed
harmonics identification schemes are represented by Fig. 7 c) to Fig. 7 e). The fre-
quency content of the load current and the compensated currents is represented by
Fig. 8. From this frequency spectrum, it is clear that the harmonic currents are ef-
ficiently removed. It can also be seen that the performances of the compensating
schemes are very close. This is confirmed by the numerical values given by Table 2.
Indeed, this table indicates the amplitude of the harmonic terms of rank 5, 7, 11,
13, and 17 and points out the THD (Total Harmonic Distortion) of each method.
Two values are provided, one with the balanced load and one with the unbalanced
load after t = 2.595 s. The performances of the neural schemes are compared to
those obtained with conventional methods where Adaline are replaced by low-pass
filters. In all cases, the neural approaches prove to be more efficient than the con-
ventional methods in terms of reducing the amplitude of the most important har-
monic currents but also according to the resulting THD. The harmonic terms are
reduced to an amplitude of less than 0.65 % and the THD to less than 0.82 with
the neural approaches. Furthermore, Table 2 shows that all schemes permit a full
compliance with the IEEE standard 519-1992 which provides maximum harmonics
current distortion in percent of the full load fundamental current. The three new
neural schemes are faster than the conventional ones and than the neural scheme
based on the conventional p-q powers. Indeed, their response time is less than 60
ms (60ms for the neural method based on the modified p-q theory, 40ms for the
neural active currents method and 32ms for the neural synchronized method) where
the other methods need 200ms to take accound of a frequency content changes.

4.3 Selective harmonics compensation

Selective harmonic compensation consists in canceling only some specified har-
monic currents. Harmonic compensation by conventional methods is achieved by
band-pass filters which introduce additional computational costs, lower precision
and time delays. Original methods are therefore not able to precisely compensate
for individual harmonic terms. On the other hand, the proposed neural identification
schemes allows to precisely estimate each individual harmonic term.

21

Nguyen et al.: Harmonics Identification with ANNs : Application to APF

Published by Berkeley Electronic Press, 2011



-10

0

10

-10

0

10

-10

0

10

-10

0

10

2.56 2.58 2.6 2.62 2.64

-10

0

10

a)

b)

c)

d)

e)

(A)

(A)

(A)

(A)

(A)

L a
v

-

L a
v

-

L a
v

-

L a
v

-

L a
v

-

load change

load 1 (balanced) load 2 (unbalanced)

time (s)

Figure 7: Experimental compensating results with a nonlinear load change at t =
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p-q method, d) three-phase currents compensated with the neural active currents
method, e) three-phase currents compensated with the neural synchronized method
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Figure 8: Frequency spectrum of the compensated currents: a) with a balanced
nonlinear load, b) under unbalanced conditions after the load variation

As a case study, the objective of the present experiment is to compensate
only for the harmonic terms of rank 5 and 7. The harmonic content generated by
the nonlinear load is the same as in the previous experiment. Results presented by
Table 3 clearly show that the desired harmonic currents are well compensated under
balanced and unbalanced conditions. Indeed, harmonic terms of rank 5 and 7 are
reduced to less than 0.8 % whatever the conditions. The harmonic term of rank 13
and other high-order harmonics are not affected. The neural method based on the
active curernts is the most efficient in cancelling some specific harmonic terms.

4.4 Power factor correction

Power factor correction is achieved by including the terms representative of the
reactive power in the compensating currents (see Table 1). The power factors ob-
tained with the APF using the proposed neural schemes are presented in Table 4. It
can be seen that the proposed neural schemes permit a full correction of the power
factor. The power factor is maintained to a mean value of 0.999 under balanced and
unbalanced conditions which is acceptable in industrial installations.

The instantaneous powers p and q consumed by the nonlinear load and the
instantaneous powers delivered by the supply and corrected by the APF using the
proposed neural schemes are represented by Fig. 9. The instantaneous powers con-
sumed by the nonlinear load fluctuates rapidly. From this figure, it is clear that
the correction achieved by proposed neural schemes allows to significantly reduce
these fluctuations. The neural methods based on the conventional and modified p-q
powers, the neural method based on the active currents and the neural synchronized
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Figure 9: Evolution of the instantaneous powers with and without compensation

Table 4: Comparison of power factor correction
phase a power factor

nonlinear load balanced unbalanced
without correction 0.760 0.750

neural conv. p-q 0.999 0.999
neural mod. p-q 0.999 0.999
neural active cur 0.999 0.999
neural synchr 0.999 0.999

method permit a full compensation of the reactive power, with no difference in
the performance appreciable in the time domain analysis. The neural synchronized
method leads to lower performance in compensating for the active power compared
to the other ones. Except the neural synchronized method, the other neural methods
take 50 ms to fully compensate for the active power.

Finally,the proposed Adaline-based schemes which work in different reference-
frames resulting from specific currents or powers decompositions have demon-
strated their ability to identify and to track on-line the harmonic currents. The
proposed neural schemes lead to performances compliant with the IEEE standard
519-1992 (partially provided by Table 2). Furthermore, a trade-off should be done
between best performances, robustness against variations and computational costs.
The neural active currents method represents the best solution. It presents the sig-
nificant advantage of handling the harmonic distortions in a instantaneous power
reference frame and optimizing the active currents. Obviously, a high number of
harmonics can be taken into account without excessively increasing its computa-
tional complexity.
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5 Conclusion
Three Adaline-based harmonics identification schemes are proposed and designed
based on the decomposition of the instantaneous active and reactive powers. One
uses the modified p-q theory, one is based on the instantaneous powers and mini-
mizes the reactive currents, and one expresses the harmonic currents in a reference
frame synchronized with the direct voltage components. In these methods, Ada-
lines are used to learn and to on-line estimate the harmonic terms of the powers
individually. Compensating currents are deduced and used in an active power fil-
tering scheme for on-line canceling the harmonic currents and for correcting the
power factor of a power distribution system disturbed by a changing nonlinear load
under unbalanced conditions. The performance of the proposed techniques are con-
firmed by experiments with a dSPACE-based implementation. Results demonstrate
the superiority of the neural harmonics identification schemes and that they can be
easily inserted in real-time active filtering devices without been computationally
extensive.
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