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Abstract — This article presents the ANIMATED-TEM (ANalysis of IMagésr Automatic
Targeting and Extraction of Data in Transmission Etectvlicroscopy). This software package is
composed of a set of image analysis algorithms for tamgettson and characterization of
biological sample in transmission electron microscofppmbined with a microscope control
software package, it selects automatically regions ofdstet appropriate magnification. Acting
as a supervisor, ANIMATED-TEM controls the microscopasks (stage displacement,
magnification, etc.), localizes the regions of instr@nd manages the sample exploration strategy.
Data are extracted at different magnifications to ases grid quality at low magnification, the
characteristics of the biological samples at medium rfiagtion (membrane size, shape, and
stacking-level), and thcrystallinity at high magnification (identification afiffraction peaks).
Grid quality and sample features are used to trigger newisitions at higher magnifications.
These tools have been developed to allow high-throughpeersng of 2D-crystallization
experiments; the microscope is equipped with a grid-autoloalitaring the automatic analysis of
96 samples. The toolbox is operational; the testing condtaitegveral months confirms that the
image analysis achieves a full automation with an ieffic target selection and a limited

computational time for image analysis.

Keywords— Automated image acquisition; Transmission Electron Microscope;
Target selection; Specimen characterization; Fully automated electron

microscope

1. Introduction

This article presents a software toolbox for the autmmavf an electron

microscope. All the examination steps of a biological damgre entirely
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autonomous. An autoloader system attached to the microsalipes the
continuous processing of a set of 96 grids without humanvietion.

Each examination step corresponds to the acquisition and anafysne image.
All data, the measured characteristics as well as thgespaare stored and
managed by a database system that allows the biologigrifg the analysis a
posteriori, and if required, to reload and resume the sarbpkrvation. A typical
96-grids run acquires about 6000 images, taking 54 hours, cordaspdo a
mean time of 34 minutes per sample. The run time and theewof image
acquisitions are strongly tied to the quality of the damgnd the protocol
parameters, as will be specified further in the text.

ANIMATED-TEM (ANalysis of IMages for Automatic Targeting and Extraction
of Data in Transmission Electron Microscopy) triggers micrographs acquisiti
and analyses them to evaluate the sample quality, laldasable to fully control
the microscope. The main innovation of the ANIMATEDMEoolbox is the
automated online image analysis including the decision steps gffor
examination. The automation technique mimics the strategyna€roscopist that
selects potentially interesting regions at various magnifinatiThe objects being
generally scarce and scattered randomly on the gridndtisealistic to pre-define
regions randomly nor to examine a grid systematically. @bgcts must be
localized by analyzing the images acquired with the integ@a@d camera.

The design of algorithms for electron microscopy imagelyais is a current
challenging issue, both for its difficulty and the greatteptial is shows.
Manufacturers offer microscopes interfaced to CCD casnénat are entirely
software controlled, with performances suitable for aat@mn. Several recent
publications introduce very interesting tools for the autedhadcquisition of
images (e.g.[1-3]). For an entirely autonomous control that is intelligembugh
to adapt to each sample, image interpretation must tmdirded, at least partial
image interpretation. Therefore computer vision for efectmicroscopy needs to
be devised.

Image processing in electron microscopy appeared to bg dalllenging and
led us to develop several original algorithms to solvepttablem of localizing
objects that are hard to detect, even for the expertTéyedifficulties are caused
by the high level of noise in the images, the weak centoh the biological

objects, and the absence of texture or precise chastictetihat would identify
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the objects searched for. As it appears commonly in compigien tasks, the
organization of the image data analysis steps is highly apphod¢pendent. The
processing chain that we present is dedicated to detectifigialrtnembranes
and testing if these membranes present a periodicaliguct

Our algorithms would need to be adapted to visualize othertshjean electron
microscopy context. The purpose of the ANIMATED-TEM toolb®xo provide
an efficient tool for the study of bi-dimensional crystation conditions of
membrane proteins, part of a European Union project (HT3DENY, raore
generally for the testing and validation of an actual TEMtomation
implementation.

The HT3DEM (High-throughput three-dimensional Electron Micopy) project
resulted in the implementation of a robotic platforor the bi-dimensional
crystallization of membrane proteins. This approach usestatiographic
techniques to study the three-dimensional structure of protdias are
reconstituted in the presence of lipids to form aitficmembranes. The
determination of bi-dimensional crystallization condigagequires a large number
of trials that compels automation.

The HT3DEM toolchain includes: i. the DropBox, a device to asaesurately
the amount of detergent needed to purify a membrane prateirhe Ternary
Mixture Robot, a machine mixing automatically the purified proteith various
lipids and additives, as membrane proteins are recondtitatéhe presence of
lipids to form artificial membranes, iii. the 2DX Robot,ceystallization robot
based on the neutralization of the detergent by Cyclodextr. the Staining
Robot, a machine preparing the crystalline samples made 8DikeRobot on
special grids suitable for EM screening.

ANIMATED-TEM contributes to the final link of this robotizatn chain and
automates the examination step of each sample withleb&ran microscope to

evaluate crystallization.

The scientific effort towards full TEM automation is oviewed in section 2. The
main image processing tools to achieve automation arelybri@foduced in
section 3, followed in section 4 by the description ofdh&hitecture of the fully

automated microscope control. Section 5 presents thetsremud experiments
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conducted on the experimental platform, illustrating théopmances achieved by
ANIMATED-TEM toolbox.

2. Towards full TEM automation — State of the art

Several recent works illustrate the effort of the dthencommunity to automate
tasks in electron microscopy. The application fiellsain somewhat limited, and
concentrate on a number of specific fields. Among thémm,study of the three-
dimensional structure of proteins is the most illustratesxeample. Indeed,
different techniques- tomography, single particles, and crystallizatioare the
subject of specific and long term efforts for the dewvelept of software tools.
The evolution of certain software toolboxes over thers/eshows both the
magnitude of the task at hand and the increasing importaagedpby computer
vision.

Today’s electron microscopes are microprocessor controlled and can therefore be
controlled by external software. The generalizationigital cameras opens the
possibility to automate the acquisitions. A complemenséep towards autonomy
is the recent appearance of loading systems to insertnsgesiinto the
microscope. Potter et al.[4] use a robotic arm that reprodireeiuman grid
insertion gesture. Lefman et al. [5] describe a motorizedidget holder of 100
samples for rapid specimen exchange. In this project, weau$ecnai T12
equiped with an carousel which can host up to 8 cassettes, fotal of 96
grids [6].

The first software tools for the control of a TEM habveen devised for the
automation of repetitive data acquisition tasks by exeguaripts[7-9] and to
create dedicated interfaces for specific techniques likeogoaphy [10, 11]
Image processing has first been used to design auto-toneitigpds for accurately
setting astigmatism, focus, and alignment of the TEMst&r [7] introduced a
correction of image shifts resulting from tilting thpesimen in tomographic
saies data.

With the evolution of image processing techniques and strongaserand
availability of computational power, the interpretation ofages becomes of
growing importance. It allows to improveuto-tuning techniques (e,g.

Mastronarde [12], for correction techniques in tomography)imsgtly to address
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new purposes. Image classification, interpretation owsoé evaluation become
literally a necessity to process the thousands of imagmsded by certain semi-
automated systems, like the one proposed by Oostergelel[£8]a Anderson et
al. [14] describe an ambitious project of automated anatysise neural circuitry
reconstruction by assembling thousands of TEM images. Tiwesparticle
technique [15] is strongly based on computer vision techniguesconstruct the
three-dimensional structure of macromolecules. The pims to average a large
number of identical particles to compensate for the fitsert precision of the
electron microscope. However, as the reconstructedutesolapproaches the
atomic level, hundreds of thousands of particles mapdeessary. The manual
selection of particles in micrographs becomes too tediDatection algorithms
have been the subject of much research work compilgbin

To automate the microscopy tasks entirely, the softwarst make the decisions
in place of the human expert. The interpretation ofitn@ge must therefore be
done in real time to make choices during the examinatidineofample. Although
these decisions are often limited, very repetitive and agit-dependent, it is
still challenging to replace the expert with computatiopgiraaches. Two fields,
electron tomography and single particles, illustrate well tate ©f the art, and
they are both the subject of important developments.

In the field of electron tomography, the autormoatand integration of software
tools in a unified interface is well advanced [3, 17], and rzaturers, like FEI,
offer software packages for tomogram acquisition and récat®n The
sequential tilt-series acquisition is fully automatedcd®¢ software packages
enable to chain several series, advancing from onettéwganother. Three-
dimensional reconstructions are produced in real time adintervention to set
markers for reconstruction could be suppressed recently Th&] automation is
therefore almost total, the selection of targets reimgithe responsibility of the
user. Even though this work is eased by an optimal orgamizgtathering the
selections at the beginning of the session and anesftisbftware assistance [17]
it seems not yet possible to replace it by a reliable isthgpor

The technique of single particles almost benefits fromllaatitomation when the
macromolecules to be detected are localized on a cditbgrwith regular holes.
The selection procedure determines successively the good saihare the holes

containing suitable and uniform ice layers. Some toolboakkspugh offering
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efficient software assistance, remain semi-automated [&& 19]). They require a
selection phase where the user picks interestingshfiem images. Other
toolboxes [1, 2, 20] recently introduced an entirely automatedenusing a
computational image analysis for the selection task. Beit designers remain
cautious and do not consider their technique reliable enougts, NutoEM [20]
Is configured by default in semi-automated mode; JADAS [2] gsep an
automated selection after manually setting the image smyewrriterion and
calibrating parameters as diameter of a hole, therdist between neighboring
holes, etc. Even with the success of the automatibang, et al., write théthe
presence of trained user or the availability of an intelligesal-time data
assessment software is still necessary to assuratthgudlity”. Stagg et al. [21]
on the other hand, report the satisfactory performamfdgis selection with the
Leginon software package [1].

The important noise and the intensity fluctuations reprethe main difficulties
to extract reliable information from CCD micrographs. Tbealization of the
holes is simplified by the regular geometry of the gnd a fixed hole diameter
and their periodical organization. However, the selectbrsuitable holes is
delicate. The cited software packages afl the mean value and the variance of
the image intensity within the hole

In many other applications of electron microscopy,abjects of interest are more
complex and not localized by a regular structure. Thalexige for computer
vision is therefore all the more important. The autommatibthe analysis of bi-
dimensional crystal samples is one example [22, 23].Wildwk presented in our

article is the first to integrate a fully automated s@@cof targets.

We close this section with the analysis technique introdbgedylberg [24] for
the first two levels of magnification of an automatedisidiagnosis system. The
overview images of the grid are first analyzed to precitmtglize and select
good squares. At higher magnification, an empirical anatyfstise problem leads
to the formulation of a few simple rules: regions hwi higher probability to
contain small clusters of viruses are identified by detgcbbjects that are
somewhat circular and of diameter in a given range. dlgorithms have not yet

been integrated in a control system, but seem promising.
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3. Presentation of the image processing tools

The main image processing tools to achieve a full automatfoa TEM are
briefly introduced in this section. These algorithms are &bhdapt to the various
types of membranes and to the possible fluctuations cdtpeisition parameters,
based on a few known characteristics of the samplespalimeters are pre-
determined or automatically adjusted, e.g. thresholds, aactihe system runs
without human intervention at any time.

Automatic analysis of a specimen requires the acquistifomages at different
magnifications and their direct processing to determine sanedy the regions of
interest. In this section we present an overview oftdbés we developed for the
three levels of magnification [25]

3.1 Low magnification image analysis

At low magnification (field of view of at least 300x300um for 18Pd24 pixel
images), images of mesh grids typically used in TEM expetsrame analyzed to
assess the quality of the overall grid and retain a numbezggions for further
analysis. In particular, regions where the carbon fédntocally broken must be
discarded (see Figure 1).

A three-step algorithm uses the gray-level histogram tonaatically select the
various thresholds. First, the grid squares are segahersing a global threshold
positioned after the first peak of the histogram (rept@sgerihe copper bars).
Second, the background of each grid square, i.e. the brightgsh represented
by the last peak of the local histogram, is segmented aslocal threshold. Each
square is classified in three classes: broken carbon ¥éiid membranes, and
unknown. From the first two classes, typical grayelsvof backgrounds are
extracted. Third, these gray-level statistics are usethssify squares previously
labeled as unknown.

This analysis outputs the proportion of good grid squarethéocharacterization,

and their coordinates for medium-magnification targeting.

3.2 Medium magnification image analysis

At medium magnification (field of view = 15x15um), images of membranes are
processed through a chain of algorithms: a segmentation stép of a newly

developed contour detection algorithm supplemented by a fdtpe emoval
7
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phasd?2-28], followed by two labeling steps to identify the foregrouegion and
to characterize its stacking [29]. Once membrane regioasisalated, other
characteristics such as size and shape can be exiraéor the automatic
targeting, regions of interest (ROI) selected are tdwedinates of the largest non-
stacked membrane regions.

A thorough and complex image analysis is not always nagegs select the ROI.
In [25] we describe a fast procedure to select potentiallgta@itine regions by
simply avoiding background regions (no information) and dagiors (artifacts,
important aggregates or stacking, etc.) and selecting R@leirtse objects near
background edges. The Partial Edge Detection (PED) procesissBIOl near
edges detected by a Prewitt filter, as long as themaginot too dark (i.e. above a
threshold experimentally set).

In this section, we describe a more precise method ectgebtentially crystalline
regions (cf. [25] for a detailed description).

These target regions being identified by distinct propefieterm of size, shape,
etc.), the procedure requires a precise segmentationhamecterization of the
biological objects present in the image. The chaingdrihms used is presented

in Figure 2. The principle of the algorithms is given ia tlext paragraphs.

Contour detection

Because of the nature of the TEM images (very noisyy-dontrasted,
heterogeneous gray-levels), a new algorithm based ontastale approach has
been devised especially to detect the contours in thdariliifmages [27]

To identify all types of contrasted edges, gradient imagbtained at different
scales of a pyramidal transform, are thresholded ubmd -point algorithm [26]
This algorithm outputs the threshold of unimodal histograngé@san a robust
manner, practically insensitive to noise distributiontdgsam fluctuations and
guantity of edges to segment. The different resulting pimaages are combined
in one image, called reconstructed gradient-like (RGL), whiaeegray-level is
proportional to the scale at which the edge has beenifiddntA finer scale
corresponds to a higher gray-level, which leads to a m@&asgr positioning of
the contour. The final splitting and contour positioningahieved by applyig
the watershed algorithm to the RGL image. On the resultnage (Figure 3B),

this method allows the identification of most of the o®gi, even the lowest

8
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contrasted ones. The downside of the approach is that,tlewagh they are few,

generating false edges cannot be avoided.

False Edge removal

The second algorithm will remove the spurious edges introdiogete contour
detection method using a statistical analysis of thel looatrasts [28]. Each
segment of the partitioned image, i.e. each set ofocwnixels separating two
regions, is analyzed: if the segment is relevanggular and coherent gradient
perpendicular to this segment can be observed; in tieeotasfalse segment, the
gradient is either absent, or it exists only partiallyjtds incoherent along the
segment. The contour segments are validated using inltbeife algorithm: i)

a mask is created from the orientation evaluatiorhefdontour pixels and the
one-dimensional profile of the reference potential cantewextracted according
to this mask. ii) a correlation measure between the prafil a reference filter is
achieved. iii) the correlation factor, averaged ovesediment pixels, is compared
to a threshold derived from statistical hypothesis tegbngake image noise into
account. Segments whose correlation factor is belowthheshold are removed
(Figure 3C).

Stacking level determination

Once the image is properly partitioned, the specimen cahdmcterized. In the
third step of the chain, regions are labeled: after hadiegtified the background,
foreground regions are classified according to the numbsumdrposed objects
by the stacking level. The background is temporarily idextitas the brightest
and largest region [30]. The labeling of the remaining regie achieved using an
iterative algorithm [29]. This algorithm achieves a labeling tioé regions

according to their stacking level, and it also compgléte background detection
by detecting smaller background regions. Each iteratidgheoflgorithm is made
of two steps, and corresponds to the identification dbregbelonging to a given
stacking level. To accomplish the classification of téagions, thresholds have to
be set. In the first step, using a priori knowledge, viecsa set of regions whose
probability of belonging to the searched stacking levéigs. These regions are
used to identify the typical contrast of such regionghé second step, this typical

contrast is used to compute the threshold and refineldlssification. This result

9
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Is the labeling of each region according to its redéasvacking level within the

image (Figure 3D).
Linear and circular shapes

In the last step of the characterization, an algoritias been developed to locally
assess the shapes of the contours of the biologicattshbj31]. Since biological
objects are randomly deposited on the support, they ane adjacent, partially
superposed, or stacked. Therefore, the shapes can onlalbated by analyzing
locally the objects in contact with the background. Corstanside the foreground
cannot be used to separate adjacent objects, as a climeauay represent a fold
inside a folded object and not the object’s outline. Shapes of the external contours
are divided, when possible, into coherent “linear” or ‘“circular” sections. A
recursive method based on shape regression is used tifyiifethe contours can
be approximated locally by lines or arc of circles (Figure 3E)

These characteristics are used to determine the retjfiahsorrespond, with the
best probability, to well spread out membranes, not superpasdd;rystalline,
therefore interesting regions to validate the crygiaiibon conditions of the
sample. An empirical sorting rule has been devised faomegassification (see
section 5.2) The primary regions are retained for the next analstgp at high

magnification.

3.3 High magnification image analysis

This is the final step where images are acquired at higimifieation (around
x30.000, i.e. 0.5 nm/pixels) in order to assess the sample q@lstallinity can
be automatically checked with a process analyzing theigfolmansform (FT) of
images acquired at high magnification. However, TEM ContrBsnsfer
Function (CTF) prevents simple thresholding of the FKEITF generates a
heterogeneous background, called the Thon rings, whichdsheulemoved first.
CTF is assessed by computing the average radial podfiee FT. This profile is
then used to reconstruct the 2D CTF and subtract it fltemmoriginal FT. The
obtained corrected FT is finally thresholded to identifyfrddtion peaks. By
default, the threshold is set to identify peaks whosea$tg-noise ratio is above
3.5 (false detections become important below this thrddtedause of the noise).

The user can optionally adjust this value.

10
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4. Fully automated microscope control

The tools presented in section 3 have been assembled amizedgt form the
ANIMATED-TEM software presented herd. has been developed as a Matlab
Toolbox (R2008a), requiring the Image Processing Toolbox. aé been
developed to analyze the images acquired and achieves two goals

(1) Automatic targeting: identify the ROI to be acquired ah&ignagnification to
assess the crystallization experiment. Coordinates eftdahgeted regions ar
transmitted to the control system for further acqusiti

(2) Automatic Extraction of Data for sample charactgion: images selected and
analyzed at different magnifications are used to agkessupporigrid’s carbon
film), the detected membranes, and check their crystsllitihirough the
diffraction pattern.

ANIMATED-TEM has been integrated on a prototype locatethat C-CINA,
Basel. The on-line automatic control consists of thteraction between three
systems: the TEM and two computers, one for the micpescontrol tools, and
one for the analysis of the images achieved by ANIMATED-THMe software
interacts with the microscope control tools by sending HTERuests
corresponding to the desired action (stage displacemertge acquisition
magnification to be set, etc.) The microscope control coempedntrols physically
the devices of the TEM according to the requests recelivatbo transmits to the
image processing computer the images acquired by the CCD camera

The Tecnai T12 microscope is equipped with a 1kx1k CCD, and wvittpue
autoloader and carousel. The carousel encloses 8 casdettegrids. Cassettes
can be inserted consecutively into the autoloader whichdbetnols the loading
of the grid into the microscope, enabling to control tiieroscope for a fully
autonomous acquisition of images from 96 different samglbs. microscope
control tools achieve the physical command of the micmscdstage
displacement, image acquisition, magnification setting...). ANIMATED-TEM
processes the images acquired, and decides when, whetgvamthages should

be acquired.

11
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In the first subsection below, the microscope controlst@mé briefly presented.
The second subsection develops the scenario monittengutomatic acquisition
and introduces the GUIs (Graphical User Interfaces).

4.1 Microscope control

Presentation

The microscope control tools have been developed tafange our image
processing tools and the microscope as presented in Figlhe 4oftware, called
JusT12, interacting with the microscope is using the kEdraation servers. An
additional server has been developed to control the dsetta carousel. COM
technology permits to access remotely other compubetst introduces network
latency. Hence, the JusT12 software installed on the stop® computer has
been written, and designed to react to HTTP requests. thisahoice has been
made to separate the microscope control code from ANIMATEM to keep
the matlab code as clean as possible, and to delegatei¢ctoscope control to a
dedicated software which made it easier to maintain.

“Semantic” commands are those received from ANIMATED-TEM via an HTTP
interface. They include the name of the physical comntarise performed, and
the required parameters (for instance the coordinatébeonew position, the
index of the grid to be loaded, the amount of illuminatibme, value of the stage
displacement, the magnification, etc.). We note tlhatring the stage
displacement, a backlash correction is achieved by alweysng to the desired
target from the same direction.

Therefore, the Image Processing part sends HTTP reqgieest® Microscope
Control part that manages TEM devices. If an image aciusiias been
requested, the 1k x 1k image acquired with a CCD cameransfareed to the

Image Processing computer for analysis and storage.

Carousel Graphical User Interface

A carousel control GUI has been developed to:
« initialize the position of the 8 cassettes within the wseb (Figure 6, right):

initialization is one of the first steps to do once ttarousel is installed on the

12



O J o U bW

OO UG UTUITUTUTUTUTUTUTE BB DD B DS DNWWWWWWWWWWNNNONNNONNNONNNNR R RRR PR PR
O™ WNFROWOJdNT D WNRPOW®O-IAAUDRWNR,OW®OWJNTIBRWNRFROWO®W-TNUB®WNROWOW-10U D WN R O WO

microscope. The initial positioning adjustment is robust sl valid in our T12

prototype since its initial installation and initialization.

« visualize the state of the machine and the sensors;

« manually control the carousel and the cassette (un)loathirggfeature can be
used if the user does not use the automatic process, takdocontrol of the
carousel if there is a problem during the automatic peodédsere tharathousand

loadings and unloadings have been automatically and manudityrped so far

without any problem.

4.2 Automatic run scenario

Presentation

The scenario aims to articulate the different alporg and allow an on-line
image computation of up to 96 grids in a fully automated manner.sténario
has been elaborated to generate the semantic commeguiréaimage, move
microscope, etc.) at the appropriate moment.

The scenario can be decomposed into 4 parts: grid loading1(pand specific
processing (part 2-4) for each magnification. Figure @vshiypical acquisitions
for this scenario. The flowchart in Figure 7 details estejp.

This flowchart has a certain number of loops; the amofiiterations depends on
the result of the image processing, and on parameterbysthe user before
launching the automatic run (as presented in the nexbsgcti

As shown in the flowchart, the low-, medium-, and high-miggation steps are
made of three parts:

« the managing of the iterations (amount of images aatjuire

« the semantic commands to move the stages to thede¢angets, and to acquire
the images (this latter includes the commands of thesexpdime, illumination,
defocus): at high and medium magnification, positions arermgted by the
image processing achieved at the previous magnificatiofovAtmagnification,
images are acquired according to a circular-like pattersh@sn in Figure 8.

« the processing of the images, using the tools presented pneitious section.

13
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Main Graphical User Interfaces

Two graphical user interface (GUI) are used: one to launchutoenatic run and
set some parameters, the other to visualize the results.

GUI - Launcher

Through the GUI Launcher, the user can pre-set paramébeneet the
requirements of the above described basic scenario. d\therdefault parameters
that can be changed, we note:

 the stop criteria which define how many grid squares shouldidieed at
medium magnification (limit for ) MM), or the maximum number of low-
magnification images to acquire (limit for LM);

« the maximum number r of ROI to identify at medium magatf@an and the
algorithm to use (the PED and/or the multi-resolution-baseitianl);

» the grids g which should be analyzed during the run;

« the acquisition parameters (illumination, exposure tehe).

As will be seen in the experimental result section, ehparameters greatly
influence the time spent by the automatic run.

Setting up the ANIMATED-TEM toolbox for other microscopesymaquire only
a few adaptations of the parameters (depending on the autolodire
microscope), and of the instructions used to send the sem@zommands

(depending on the microscope control tools).

GUI - Browser

A GUI Browser has been developed to view the images aut@iatacquired.
The interface links images to the corresponding adarisat lower or higher
magnification. The user can reload a selected grid and rhadeethe position
where the current image has been acquired.

A pop-up window can be opened to display statistical charstate concerning
the run and the sample. For each grid it gives the sppeat for its screening; the
number of images acquired; the estimations of the pegerof good-quality grid

squares; and the average size of non-stacked membramestegi

14
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5. Results and experiments

ANIMATED-TEM toolbox is used to control a customized Techaimicroscope
equipped with an autoloader and a carousel, which allowabdrgomatically up
to 96 grids. During the testing phase, over 66,000 images reave tbeated,
corresponding to approximately 1,500 grids analyzed in 230 runs.

This section focuses principally on 2 features: the time reduor each step
during a run, and the automatic determination of theorsgiused for next
examination, the ROI, which is an essential point of ougiral automation

approach.

5.1 Run time

The overall time spent on an automatic run mainly dependsvo parameters:
the settings defined by the user (maximum amount of imageésemions of

interest), and the results of the image processing (aetmaunt of targets
identified, related to the quality of the grid and to theeriest of the sample at
medium magnification).

Successive acquisitionat low-, medium-, and high-magnification will be
processed according to the control strategy defined igitisihg the GUI.

The processing time can be approximated as follows:
T:(NLM 'TLM +anv| 'T/IM +Nuv| '-EM +N I )N; +N -E +N; -E; J
with:

e N,,, N, ,andN,, , respectively the amount of images acquired at low,
medium, and high magnification;
e T,.Tw. andT,,,the average times for acquisition and processing;

autofocus process at high magnification;
N; , andT; , the amount of grids an the loading time of a grid;

N., andT., the amount of cassettesd the loading time of a cassette.

Figure 11 gives a chronogram of a grid analysis leading tadgeisition of 10
images. In white, we show the microscope control times, abthok the image
processing times. The average times required at low, umedand high

maghnification are respectively 20s, 27s, and 40s.

15
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The times displayed here are obtained on an Intel Yeocessor at 2.67 GHz &
6 Gbytes of RAM computer, on large images (1k x 1k images)eBsog larger
Images may require adaptations to cope with the importamonyerequired.

In the example of Figure 11, image 1 allows the selectidwo targets (images 2
and 5) that will trigger the next acquisitions at mediumgnification. On the
contrary, image 7 (low magnification) does not allow a @brt@get selection, so
a new image has to be acquired at low magnification (image 8)

Average times for microscope control and image acquisition

It takes aboufl,~ 180s to insert a gridnto the microscope, and abott~ 300s

to insert a cassetteto the autoloader.

Table 1 shows the times for the execution of the physmamands on the first
row. Average times for microscope control and image iateun include the
setting of the acquisition parameters (magnificatioposyre time, illumination,
and defocus), the stage displacement, and the imagesiioquiThe last two
steps are the most time-consuming. Only the time smeninfage acquisition
could be reduced by using a faster camera (we estimate aofahbout 5

seconds). The greater distances to travel at low megtiifn can explain the
difference between average times at low and medium nieggioh. At high

magnification, the average time also includes the autofogusiep which are

time-consuming (up tdl. =50s). An improved method for autofocusing would

reduce this delay. We notice that its influence on theadiviéme can be reduced
by modifying the frequency of the autofocusing measurement. n\Wiigh-
magnification images are acquired consecutively, theiripasitare close enough
to avoid focusing before each acquisition. An option in @ildl Launcher
presented previously can be used to decide if the measurenoernd e done

before each high-magnification acquisition or not.

Average time for image processing

The strategy used for the grid analysis is to acquire aragnification image in
order to assess the quality of the grid and to establissthad valid grid squares
to be examined at higher magnification. At low magnificatiooye than 99 % of

the selected grid squares are non-broken carbon filmnegBuch a high result

16
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implies two compromises. First, to obtain such a ratfalsé positivesa higher
rate of false negatives was accepted: 81 % of the gridalliconsidered as valid
were indeed selected. Second, the microscope illuminatiboulds be
homogeneous and properly set to operate with a good comxpstsure time and
illumination should be sufficiently high to achieve this lgdmut not too high to
avoid over-exposition of the camera. The saturatioestiold of the camera has
been set to 75%rThis value is indicative but not critical as illustrated the
experimental results (see Sectia@)5At this magnification, the average time for
the image processing is about 3s.

At medium magnification, the chain of algorithms deteciges of membranes,
characterizes each region r and selects a listrgéti® The computational time is
about 15s. The quick ROI selection with the PED algorithibisut 2s. At this
magnification, processing time is about 15s for the rmakolution-based
process, e.g. multi-resolution segmentation, contoadidation, stacking
representation, shape recognition, and ROI selection bmdt &s for the PED
ROI selection. In our example of Figure 11 two ROI atetbin image 2, one in
image 5 and none in image 9. Each ROI leads to one up to four high-
magnification acquisitions.

At high magnification, the average time for image precggscorresponds to the
computation of the Fourier Transforms for the estioratf the power spectra and
the diffraction peak identification. This treatment talipproximately one second.
98 % of the Fourier Transforms were properly automaticddigsified in terms of
diffraction peaks. The false classifications are fyaitue to bad-quality crystals
or crystals presenting diffraction peaks watBSNR below the detection threshold
(fixed by default to 3.5).

Table 1, second row, presents the average times of imagesging for each
magnification. Regarding the size of the images and ppédication, a relatively
fast processing is available for on-line TEM image proogssand target
selection. Execution of the physical commands by tleeascope (Table 1, first
row) takes more time. The proposed strategy appears thetefoeewell adapted
for such controls.

Other strategies could also have been considered. Fangesone could acquire
all the images at low magnification, then the onemedium magnification, and

at last the ones at high magnification. However this esgsabas been discarded
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for a number of reasons. First, the low reliability aedroducibility of the stage
movements: when moving to a targeted position, it seetterlie increase the
magnification immediately to the target without moving tbage, as the
positioning error tends to get higher when the stage hasrbeeed too much in
between. Second, the low flexibility in the stopping comnsasuch as stopping

the processing of a grid when a satisfying amount of dsystes been found.

Conclusion

Table 2 shows the time and the number of images acquiesthtmagnification
for a several runs. The overall time of a run dirediéypends on the amount of
objects in the images, but also on conditions like thgimum number of low-
magnification images to be acquired, the number of gridregua analyze at
medium magnification, or the maximum number of ROI faclke medium-
magnification image, (set by default to 20, 20, and 8 respgqtive

Figure 12 shows the last run of Table 3 in detail. For el@nae can see that the
carbon film is completely broken on grid 8, cassette 1. Onlp\@0magnification
images have been acquired; it takes less than 10 minutescesprsuch a grid.
However, when the grid was interesting, 20 suitable grid squzes been
identified, and for each of the medium-magnification imagésnost 8 ROI have
been identified, each one corresponding to an acquisitibigh magnification.
Finally, in order to reduce these times, several wayg@assible, such as doing
the stage displacement and launch a new image acquaitiba same time while
the previous high-magnification image is processed (Fouriesnsform
computation). Moreover we notice that by optimizing Matladdec into C-

compiled code, these standard times for image processirgeareatly reduced.

5.2 ROl selection at medium magnification

The ROI selection at medium magnification is a cructap sfor the correct
development of the automatic analysis of 2D-crystalsréfbee, It has to be
robust, quick and as close as possible to the choicesvthdd make a biologist

during a traditional analysis of the grid. This is showraarexample where the
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automatic selections made by ANIMATED-TEM are comparet whie decisions

of an expert, in various acquisition conditions.

ROl selection

The selection procedure described by biologists has wicatyributed to the
choice of the parameters used in the automatic sateztithe ROI.

1. Only the lowest-stacked regions are selected. Indeed, tfmactdn
pattern is easier to study on non-stacked objects.

2. The smallest regions are removed from the selection.umntests, we
considered that small regions (500nm, i.e. smaller thafetldeof view at
high magnification) are less interesting for pattern ifieation.

3. Experience shows that the crystalline membranes ofteargresme linear
edges. The general appearance of a membrane is thusnaeper that has
to be considered.

Among all the segmented regions, only those that arsidened non-stacked by
the stacking algorithm and of size above 500nm are retameargets. All other

regions are discarded. It is then necessary to rastkaahese regions in order to
select the best ones. Each region is indexed both dingoto its size and the

length of its linear edges. Regions are characterized thyifdexesL [Si, | = n (for
the size) and.[sh]= m(for the shape), with n,ma N, corresponding to the rank
of the region compared to the other regions of the imBge the widest region
n=1; in the same way the region having the longest linear sdgearacterized
by m=1. An average rank;, , is deduced using:

ax L[Sj]+bx L[ Sh]
a+b

r =

where a and b are weights that can be used to adjust theamg of one of the
parameters. ROl having the loweastare considered as the best ones. By default,
in our application, only the best two regions are usedaguisitions at high
magnification. This limit can be modified by the user. @ttriteria may be added
to refine the choice of the ROI, considering for exangkrong local contrast,

meaning that a membrane contour is present rather thiEactalike stain.
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Test conditions

Figure 13a shows an image acquired at medium magnificatien.a¥ded an
expert to select the most appropriate areas at midagmification to be checked
for cristallinity at higher magnification. The result tfis manual selection is
presented in Figure 13b. Highly interesting regions are septed in black,
interesting regions in gray. The main differences in ¢lassification are the size
and the shape of the regions. These two parameters doewly from the
expert’s manual segmentation. This image will be the reference image.

The conditions of image acquisition during a run are not avegtimum, as a
process to automatically set exposure time and illuminagioot available yetlt

is interesting to verify the robustness and the réypeibility of the selection by
modifying their parameters in large ranges. Membranesguiré 13a were thus
acquired several times with various exposure times and iation rates within
realistic value ranges for that application. Table 3 shtwesvalues of these
parameters for each acquisition (acquisitions 1-113. $econd step, acquisitions
have been made varying the magnifications (acquisition$6},2then the stage
position (acquisitions 17-22). Figure 14 shows each of thegeisitions on which
the segmentations processed by ANIMATED-TEM are oigerl@he ROI are
selected among these segmented regions. Several ctsnmey already be
made. First, it can be noted that the segmentation vasy depending on the
acquisition conditions. Second, new elements may appeathe images
depending on the magnification or the stage position. Tpasemeters have not

been considered during the classification done by the texper

Results

The ROI have been selected on each of the 22 acquistiioRggure 14. The
results are presenteéd Figure 15. For each acquisition (abscissa), the pegenta
of ROI found by ANIMATED-TEM is represented according to the classification
by the expert: first class in black, second class in dark gegions not selected
by the expert in lighter graynd regions not even present in the expert’s image in
pale gray (acquisition 12 to 22). Stars and little cirogsesent for each category
the number of ROI found by ANIMATED-TEM, i.e. the numbdrnon-stacked
regions of over 500nm. Two stars for an acquisition epoad to the best two

selected regions leading to acquisitions at high magnificaon example in
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acquisition 7, 12 ROI have been found, 5 of them accordirigetdirst class of
the expert (41,6%), 4 to the second one (33,3%) and 3 lmumean retained by
the expert (25%).

The main difference between first and second class lieseiside of the ROI.
These two classes allow therefore to verify the afisity of a sample. We can
notice that segmentation in regions within the differanquisitions is very
variable and what is considered by the expert as one sole zanbéecé®roken
down in several regions by ANIMATED-TEM.

When the acquisition parameters change for the sameologatquisition 1-11),
we notice that in average 80% of the selections made byMANED-TEM
correspond to the selection of the expert. Moreovesgifonly consider the two
retained regions, only one of the ROA acquisition 11 does not match with a
choice of the expert, and for this acquisition the @rpemtal conditions are far
off the nominal values (Table 3). In 64% of cases, lsefbcted targets match
with regions of first class of the expert and in 91Pcases they are part of the
choice of the expert (first or second class).

The goal of the application is to validate experience®lptrystallization. If the
experimental protocol is correct, there will be plentyogtasions to observe
crystaline membranes on the grid. Consequently, evera ifew high-
magnification acquisitions are useless because of a vetorige of targetst will
not have a dramatic effect on the final result. Theilkbe statistically enough
observations allowing the characterization of the stuebigetrimental protocol.
When the magnification is changed or when the stageved(acquisitions 12 to
22), the elements composing the image are not the sameommyiet the
selection of the targets remains relevant. Exceptafmuisition 12 where the
membrane we used as reference is too small and lesstiniggtban other objects
within the image, many regions being identified as intergdty the expert also
appeared to be so by ANIMATED-TEM.

Conditions of acquisition have to be as good as plesdib allow image
processing tools to be efficient. Despite this, ANIMATHEM is capableof
selecting ROI in a very robust manner, according to ahasdlogist expert would

do, even when the conditions are not optima
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Conclusion

In this article we have presented the first fully automatgstem for sample
analysis without human intervention. In recent monghseral test runs have been

made, where about 1500 grids have been analyzed automaticallymuogfthe
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efficiency of the overall system. The image processing isrmuch less than the

microscope control commands and can easily be optimizedure development.

The proposed control strategy handling the acquisitimtguture achieves the

processing of a grich an average of 34 minutes.

This first success of a full TEM automation opens the feayhe development of

image processing tools for electron microscopy.
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Figure Captions
Fig. 1 Selection (white squares) of valid membranes gridsgua
Fig. 2 Structure of the image processing chain for medhiagnification images

Fig. 3 lllustrative example of an image processing chainmfedium-magnification images. A/
Initial image; B/ Result of contour detection displayed loa initial image; C/ Segments to be
removed (in red) after statistical analysis of the lamahtrasts; D/ Labeling of the stacking
(lowest-stacked regions in red, bi-stacked regions in griémeae-stacked regions in magenta;
multi-stacked regions in cyan); E/ Labeling of the shageabke contour (linear portions in red,;

circular portions in cyan; portions not associated aihof these two shapes in black)

Fig. 4 Detailed architecture of the microscope corgnadl interaction with the TEM and the image

processing computer

Fig. 5 Carousel GUI Left: visual and manual control of skete of the carousel; Right: pop up

window to initialize the position of the 8 cassettéthin the carousel

Fig. 6 Typical example of an automatic run scenario at gnifieation levels. Selected grid
squares appear in red at low magnification; Selected tamgptsar, at medium magnification, in
yellow (PED method) and red (multi-resolution-based method)fifael diffraction peaks appea

in red (4.5 < SNR), blue (4 <SNR < 4.5) and green (3.5 <SNR < 4)

Fig. 1 Flowchart of the major steps of the scenario (3 MM is the amount of images acquired at
medium magnification on the whole grid)

Fig. 8 Example of 20 low-magnification images acquired during amumbers show the order in

which the images have been acquired; each image is peddesmediately after its acquisition

Fig. 9 GUI to set the parameters for an automatic aboye), and two pop-up windows to select
the grids to be analyzed (left), and to adjust the defautnpeters used by image processing

algorithms (righ)

Fig. 10 GUI to browse through the result and the corresponding popHugow displaying

statistical results for each of the grid analyzed

Fig. 11 Example of the chronology of events in an autamati

Fig. 12 Pop-up window showing a summary of an automaticxecuged with 96 grids
Fig. 13 a) Initial image at medium magnification and B)l Relection by an expert

Fig. 14 Results of the automatic partition obtained onstree object acquired under different

conditions

Fig. 15 Comparative results of the automated selectioneafium magnification, for images

acquired under different conditions
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Figure 3
Click here to download high resolution image
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Figure 14
Click here to download high resolution image
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Table 1

Table 1 Average processing times

Magnification L_OYV ] Me.d.ium. H_igh _
Magnification Magnification Magnification
Standard time
for microscope
control and ~17s ~12s ~39s
image
acquisition
Standard time
for image ~3s ~15s ~1s

processing




Table 2

Table 1 Examples of automatic run experimental results

Number of images

Number
. Medium High Time
of grids | Low magnification o o Total
magnification | magnification
96 1651 1351 3012 6014 50h25
58 400 569 1018 1987 21h09
96 1004 1305 3278 5587 59h17
55 592 936 1623 3151 37h43
41 454 696 1067 2217 22h23
96 1254 1751 3229 6234 59n08




Table 3

Table 1 Acquisition conditions used for the tests

Image index | Exposure time| lllumination Magnification
1 0.2 0.4 1350*
2 0.3 0.4 1350*
3 0.4 0.4 1350*
4 0.5 0.4 1350*
5 0.6 0.4 1350*
6 0.7 0.4 1350*
7 0.7 0.6 1350*
8 0.7 0.7 1350*
9 0.7 0.8 1350*
10 0.7 0.9 1350*
11 0.7 1.0 1350*
12 0.7 04 560
13 0.7 0.4 890
14 0.7 0.4 1350
15 0.7 0.4 1700
16 0.7 04 2200
17 to 22 0.7 0.4 1350




